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Introduction

Introduction

The relation between motions of fast electrons and the corresponding radiation
spectra in general is rather complicated. In a finite target, it is further
encumbered by an interplay of volume and edge effects [1, 2], which can be
separated according to diagram 1 (see [2] for discussion). But certain
simplifications can arise away from the boundary lines, where it may be
possible to reduce the double time integral to a single one.
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T Figure: Domains of continuity of the integrand
of the double time integral for the radiation
spectrum.
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Infrared asymptotics up to NLO (lf (ω) � T )

Infrared asymptotics up to NLO (lf (ω)� T )

For instance, the well-known infrared factorization theorem [3, 4] states that the limiting value of
the spectrum at ω → 0 depends solely on the final electron deflection angle, viz.,

dIBH

dω
=

e2

(2π)2

∫
d2n

∣∣∣∣ ~n × ~vf (t)
1− ~n · ~vf (t)

−
~n × ~vi (t)

1− ~n · ~vi (t)

∣∣∣∣2 =
2e2

π

 2 + γ2v2
fi

γvfi

√
1 + γ2v2

fi /4
arsinh

γvfi

2
− 1

 .

(1)
The merit of formula (1) is its independence of the detail of electron motion inside the target. To
predict behavior of the spectrum for all ω, one often interpolates between (1) and the result found
in the approximation of a “thick” target (see the next section). But to this end, it may be expedient
also to find a correction to (1):

dI
dω

'
ω→0

dIBH

dω
+ C1ω +O

(
ω2
)
, (2)

with [5]

C1 = −
e2

2

∫ ∞
−∞

dt[~v(t)− ~vi ] · [~vf − ~v(t)]. (3)

(In contrast to the Low theorem [6], C1 does not express through the scattering characteristics.)
Physically, correction C1ω is related to a difference between the time delay vτ −

∣∣~r(τ)−~r(0)
∣∣ for

the actual trajectory and for its angle-shaped approximation.
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Infrared asymptotics up to NLO (lf (ω) � T )

For monotonous electron deflection, C1 < 0 (see Fig. 2);
for amorphous target, C1 = 0;
for an oscillatory motion within the target, C1 > 0.
For example, in case of undulator radiation, when ~F⊥(t) = ~F0 cos 2πt

T1
within the

interval 0 < t < NT1, where N � 1 is the number of oscillation periods,

C1

NT1
'

N→∞
e2
(

F0T1

4πE

)2

. (4)

At application of result (3), it is worth minding that it is insensitive to non-dipole
radiation effects. Thus, relation (4), well known for dipole undulators, must
equally well hold for wigglers.
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Figure: Spectrum of radiation at double
scattering of an electron through two equal
angles ~χ1 = ~χ2 [2]. Due to the negative
C1 = − e2

2 ~χ1 · ~χ2t21, the spectrum appears to
be non-monotonous at low ω.
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Radiation in thick targets (T � lf (ω)). Quick averaging

Radiation in thick targets (T � lf (ω)). Quick averaging

In thick targets, when most of the photons are generated deeply inside the
target, one may merely neglect edge effects and deal with the radiation yield
per unit time:

dI
dωdt

= ω
e2

π

∫ ∞
0

dτ
τ

{(
γ−2 +

1
2
[
~v(τ)− ~v(0)

]2) sinω
[
τ −

∣∣~r(τ)−~r(0)
∣∣]

−γ−2 sinω(1− v)τ

}
, (5)

where the argument of the first sine can be related to the prefactor:

vτ − |~r(τ)−~r(0)| ' v
2τ

∫ τ

0
ds2

∫ s2

0
ds1

[
~v(s2)− ~v(s1)

]2
. (6)

With the account of averaging, to avoid multiple integrals, one may replace[
~v(τ)− ~v(0)

]2 and (6) by their averages and heuristically insert them to (5).
This approach was devised by Landau and Pomeranchuk in their pioneering
paper on LPM effect [7]. Admittedly, it is not quite correct, but is attractive by its
simplicity, so one may be interested how accurate it can be in practice. In the
dipole limit, it tends to the exact result, so the only question is about its validity
in the opposite, synchrotron-like regime. Let us consider two examples.
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Radiation in thick targets (T � lf (ω)). Quick averaging Radiation in an amorphous target

Radiation in an amorphous target

With
[
~v(τ)− ~v(0)

]2
=
〈

dχ2

dτ

〉
τ , vτ − |~r(τ)−~r(0)| = 1

12

〈
dχ2

dτ

〉
τ2, we get

dI
dωdt

= ω
e2

π

∫ ∞
0

dτ
τ

{(
γ−2 +

1
2

〈
dχ2

dτ

〉
τ

)
sinω

[
(1− v)τ +

1
12

〈
dχ2

dτ

〉
τ2

]
(7)

−γ−2 sinω(1− v)τ

}

=
dIBH

dωdt
Φ̃

 3ω

γ4
〈

dχ2

dτ

〉
 , (8)

where dIBH
dωdt = 2e2

3π γ
2
〈

dχ2

dτ

〉
, while the formfactor reads

Φ̃(Ωa) =
9
8
−
πΩa

4

[
S

(√
Ωa

2π

)
+

3
√

2πΩa
cos

Ωa

4
−

1
2

]2

−
πΩa

4

[
C

(√
Ωa

2π

)
−

3
√

2πΩa
sin

Ωa

4
−

1
2

]2

, (9)

with C(z) =
∫ z

0 dt cos πt2

2 and S(z) =
∫ z

0 dt sin πt2

2 being Fresnel integrals.
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Radiation in thick targets (T � lf (ω)). Quick averaging Radiation in an amorphous target
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Figure: Comparison of (9) (dashed curve) with

Migdal’s function ΦM

(
1
4

√
Ωa
3

)
,

ΦM (s) = 6s2 {4Imψ[(1 + i)s]− 1
s − π

}
(solid curve). The red line shows the relative

difference Φ̃−ΦM
Φ̃+ΦM

.

At Ωa →∞, Φ̃→ 1, thus satisfying the Bethe-Heitler limit. That is natural
because it corresponds to the dipole regime.

On the other hand, in the infrared limit Ωa → 0, Φ̃ ' 3
4

√
πΩa

2 . Compared to the

correct asymptotic behavior known from the Migdal’s theory ΦM '
√

3Ωa
2 , it

differs by factor of
√

3π
8 = 1.085, but in practice such a difference may often be

regarded as small (see Fig. 3).
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Radiation in thick targets (T � lf (ω)). Quick averaging Radiation at doughnut scattering

Radiation at doughnut scattering

A similar but more intricate problem is radiation at electron scattering on a
family of aligned atomic strings (doughnut scattering). Assuming strings to be
parallel but distributed randomly in the transverse plane, the kinetics of
electron multiple scattering on them may be described by Focker-Plank
equation

∂f
∂τ

= D
∂2f
∂φ2 , (10)

where φ is the azimuthal angle between velocity vectors relative to the string
axis. Solving it with the initial condition f (φ,~r⊥,0) = δ(φ)δ(~r⊥), one finds〈

[v⊥(τ)− v⊥(0)]2
〉

= 2v2
⊥ 〈1− cosφ〉 = 2v2

⊥(1− e−Dτ ). (11)

vτ −
∣∣~r(τ)−~r(0)

∣∣ =
v2
⊥
τ

∫ τ

0
ds2

∫ s2

0
ds1

[
1− e−D(s2−s1)

]
=

v2
⊥

D2τ

(
1− Dτ +

D2τ2

2
− e−Dτ

)
. (12)

The behavior of the spectrum obtained by plugging (11), (12) to (5) is shown in
Fig. 4. It is in fair agreement with experimental data of [8].
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Radiation in thick targets (T � lf (ω)). Quick averaging Radiation at doughnut scattering

Let us now scrutinize the accuracy of this approach at γv⊥ & 1. First of all,
note that it interpolates smoothly between infrared and ultraviolet limits, and
examine the spectrum behavior in those limits.

In the ultraviolet limit,
dI

dωdt
'

Ωd�1

4e2γ2D
3π

v2
⊥

(essentially, a dipole behavior).

In the infrared limit,
dI

dωdt
'

Ωd�1

e2ω

2
v2
⊥,

which is ∝ v2
⊥, too! Thus, in the latter limit it must be exact under averaging, as

well.
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Radiation in thick targets (T � lf (ω)). Quick averaging Radiation at doughnut scattering
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Figure: Behavior of formfactor
Φd = 3π

4e2γ2v2
⊥D

dI
dωdt evaluated by Eqs. (11),

(12), (5).
Dot-dashed curve, γv⊥ → 0 [Eq. (13)].
Solid curve, γv⊥ = 1. Dashed, γv⊥ = 3.

To trace the overall spectral behavior, note that at γv⊥ → 0, it tends to the
exact result

dI
dωdt

' 4e2γ2

3πv2
⊥D

Φd0

(
ω

2Dγ2

)
,

Φd0(Ωd ) =
3Ωd

2

{
(1− 2Ω2

d )arccotΩd + Ωd

[
2− ln(1 + Ω−2

d )
]}

. (13)

On the other hand, at γv⊥ →∞, it tends to Φ̃(3Ωd/γ
2v2
⊥) where Φ̃ given by

Eq. (9) is attested to be a sustainable approximation in the region of its validity.
At γv⊥ ∼ 1, it goes somewhere in between (see Fig. 4). Since it works well in
both extremes and interpolates smoothly between them, it may happen to be
numerically acceptable everywhere, thus offering a tenable simple theory of
radiation at doughnut scattering.
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Radiation in thick targets (T � lf (ω)). Quick averaging Scaling in uniform media. LO and NLO IR and UV asymptotics

Scaling in uniform media

Asymptotic behavior of radiation spectra at ω → 0 and ω →∞ is usually
related to behavior of correlators

[
~v(τ)− ~v(0)

]2 and vτ −
∣∣~r(τ)−~r(0)

∣∣
correspondingly at τ →∞ and τ → 0. Let us analyze this relation on general
grounds.

Assume a scaling property of particle motion (in the uniform medium):[
~v(τ)− ~v(0)

]2
= cvτ

n. (14)

Substitution thereof to Eq. (6) yields

vτ −
∣∣~r(τ)−~r(0)

∣∣ =
cv

2τ

∫ τ

0
ds2

∫ s2

0
ds1 (s2 − s1)n = crτ

n+1, (15)

with
cr =

cv

2(n + 1)(n + 2)
.

For synchrotron radiation n = 2, whereas for LPM effect n = 1. For doughnut
scattering, n ' 1 for t � D, and n→ 0 for t � D.
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Radiation in thick targets (T � lf (ω)). Quick averaging Scaling in uniform media. LO and NLO IR and UV asymptotics

LO and NLO IR and UV asymptotics

Employing those items in integral (5), one can derive asymptotic expansion of
the spectrum in the limit ω → 0:

dI
dωdt

'
ω→0

e2 sin πn
2(n+1)

2π(n + 1)
Γ

(
n

n + 1

)
cvω

1
n+1

c
n

n+1
r

− e2ω

2γ2
n

n + 1
+O(ω2). (16)

Its LO term is independent of γ, thus being intrinsically radiophysical (see [2]).
As for the NLO term, it proves to be independent of the strength of the force
acting on the particle, and thus is the same for targets from different materials
(e.g., Si and Ge crystals in the same orientation, or amorphous Al and Au,
etc.).

In the UV limit, the asymptotics reads

dI
dωdt

'
ω→∞

e2γ2

π
(cv−4ncr )

(
2γ2

ω

)n−1

Γ(n) sin
πn
2

+
e2

2γ

√
ωn
π

Re

(
1
τ0

e−
ωτ0
2γ2

n
n+1

)
,

(17)
with τ0 = eiπ(1/n−1/2)

[
2(n + 1)γ2cr

]−1/n. Generally, it involves a power law,
too, but at n = 2 (smooth electron trajectory) the coefficient at the power-law
vanishes, so the decrease becomes exponential, as described by the second
term of (17).
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Radiation in thick targets (T � lf (ω)). Quick averaging Scaling in uniform media. LO and NLO IR and UV asymptotics

Guessing the global behavior

Using those rules along with physically motivated values of n at τ →∞ and
τ → 0, one can assess asymptotics of the spectrum correspondingly at ω → 0
and ω →∞. In between, the spectrum is likely to interpolate smoothly.
Sometimes, the IR and UV asymptotes can cover nearly the whole spectrum
(see, e.g., Fig. 5.).

Figure: Experimental spectrum of channeling
radiation from positrons in Si (110) [9].

Can n be non-integer? Computer simulation indicates that it can (cf., e.g.,
[10]).

M.V. Bondarenco, Talk at RREPS-2017 (DESY) Tips for Quick Calculation of Radiation 14 / 16



Summary

Summary

In thick targets, at ω → 0, the radiation spectrum
can be highly non-dipole, but there are simple
formulae at the leading and next-to-leading orders.
At large ω, the radiation spectrum tends to be more
dipole, so if it needs additional averaging, that may
be safely performed by a simplified procedure.

Together, those tips can help one to promptly
decipher measured radiation spectra and make
direct inferences from them about the electron
dynamics. However, those quick inferences ought
to be subsequently checked by more rigorous
numerical calculations.
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