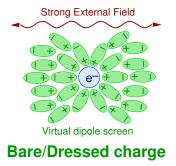
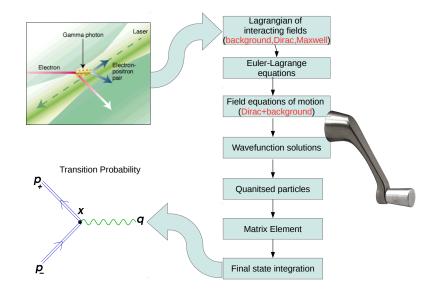

Possible strong field particle physics experiments at XFEL

A. Hartin


Universität Hamburg/DESY/CFEL

Hamburg Sep 20, 2017

Motivation - physics in strong background fields



Vacuum polarisation

- Heisenberg uncertainty, Casimir force
 virtual particles are real!
- Strong background field polarises the vacuum
- The screening charge is rearranged, leading to possibly large effects even at modest field strengths
- At Schwinger critical field strength, vacuum decays into real pairs
- New phenomenology results odd vertex diagrams, resonant propagators, different manifestations of IR divergences
- Careful studies will allow planned experiments that test strong field theory
- Need to investigate experimental signatures within reach using today's and upcoming technology

How to make a strong field QFT (IFQFT)

Furry Picture

Furry Picture

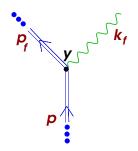
$$\mathcal{L}_{\mathsf{QED}}^{\mathsf{Int}} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}(\mathbf{A}^{\mathsf{ext}} + \mathbf{A})\psi$$
$$\mathcal{L}_{\mathsf{QED}}^{\mathsf{FP}} = \bar{\psi}^{\mathsf{FP}}(i\partial \!\!\!/ - e\mathbf{A}^{\mathsf{ext}} - m)\psi^{\mathsf{FP}} - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}^{\mathsf{FP}}\mathbf{A}\psi^{\mathsf{FP}}$$

Equations of Motion

$$(i\partial - eA^{\text{ext}} - m)\psi^{\text{FP}} = 0$$

Wavefunction

$$\psi^{\mathsf{FP}} = \mathbf{E}_p \ e^{-ipx} \ u_p, \quad \mathbf{E}_p = \exp\left[-\frac{1}{2(k \cdot p)} \left(e^{\mathbf{A}^{\mathsf{ext}}} \mathbf{k} + i2e(A^e \cdot p) - ie^2 \mathbf{A}^{\mathsf{ext}2}\right)\right]$$


Propagator

$$G^{\mathsf{FP}} = \int \frac{\mathsf{d}^4 p}{(2\pi)^4} \mathbf{E}_p(x) \frac{p+m}{p^2 - m^2} \bar{\mathbf{E}}_p(x') e^{-ip \cdot x} u_p$$

Experiment 00000000

Prospects 0000000

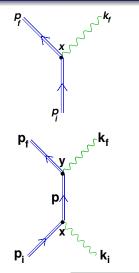
Dressed Furry Picture (FP) vertices

- Double fermion lines are Volkov-type solutions
- Volkov E_p functions "dress" the vertex

$$\gamma_{\mu}^{\mathsf{FP}} = \int d^4x \, \bar{E}_{p_f}(x) \gamma_{\mu} E_p(x) \, e^{i(p_f - p + k_f) \cdot x}$$

 Momentum space vertex has contribution nk from external field

$$\gamma_{\mu}^{\mathsf{FP}}(x) = \sum_{n=-\infty}^{\infty} \int_{-\pi L}^{\pi L} \frac{d\phi}{2\pi L} \exp\left(i\frac{n}{L}[\phi - (kx)]\right) \gamma_{\mu}^{\mathsf{FP}}(\phi)$$

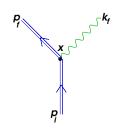

• Fourier transform of circularly polarised field leads to Bessel functions

$$\int_{-\pi}^{\pi} \frac{d\phi_v}{2\pi} \exp\left[ir\phi_v - z\sin\phi_v\right] = \mathbf{J}_r(z)$$

• Transition probabilities built from FP Feynman diagrams/dressed vertices

$$M_{\rm fi}^{\rm HICS} = \int \! \mathrm{d}^4 x \,\, \bar{u}_{\rm fr} \, \mathbf{\gamma}^{\rm FP} \, u_{\rm is} \, e^{-i(p_f + k_f - k_i)}, \quad W = \int \! \frac{\mathrm{d}\vec{p}_{\rm f}}{2\epsilon_{\rm f}} \, \frac{\mathrm{d}\vec{k}_{\rm f}}{\omega_{\rm f}} \, \left| M_{\rm fi}^{\rm HICS} \right|^2 \label{eq:Mics}$$

1st and 2nd order Furry picture processes



- Ist order intense field process:
 - High Intensity Compton Scattering (HICS)
 - $p_i + \mathbf{nk} \to p_f + k_f$
 - intense laser field included to all orders
 - final state photons can become initial states of second order processes
- 2nd order intense field processes:
 - Stimulated Compton Scattering (SCS)
 - $p_i + k_i + \mathbf{nk} \rightarrow p_f + k_f$
 - extra propagator poles leading to physically accessible resonances
 - related to energy level structure of vacuum

• ALL processes are in effect "strong field" processes

Experiment 00000000

Unstable Strong field particles & resonant transitions

$\rightarrow \circledast \rightarrow$

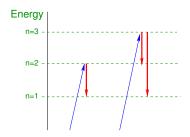
• Electrons decay in strong field Furry picture

- Background field renders vacuum a dispersive medium
- new effects: Lamb shift, vacuum birefringence, resonant transitions
- electron has a finite lifetime, Γ and probability of radiation, W

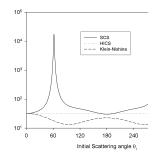
Resonant transitions in propagator

- required by S-matrix analyticity
- Optical theorem $W = \operatorname{Im}(\Sigma)$
- extra propagator poles leading to physically accessible resonances
- related to energy level structure of vacuum

Similar decay (one photon pair production) and lifetime for photons

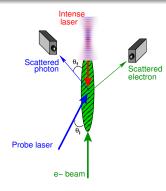

Resonant Compton Scattering

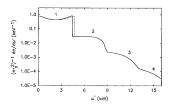

2nd order strong field QFT process


Resonant transitions between quasi energy levels in 2nd order processes

$$(q+nk)^2 = m_*^2$$

q = effective electron momentum n = nth energy level m_* = effective electron mass k = LASER 4-momentum





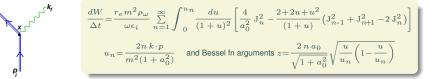
Experiment 00000000

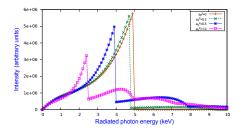
Strong field physics - dimensionless parameters

 $\begin{array}{ll} a_0=\frac{e|\vec{A}|}{m} & \mbox{intensity parameter} \\ a_0 \mbox{ appears as a mass shift, } m_* \rightarrow m \sqrt{1\!+\!a_0^2} \\ a_0=3.7\times 10^{-19} I \mbox{ [W/cm^2] } \lambda \mbox{ [micron]} \end{array}$

 $\chi = 2a_0 \frac{k \cdot p}{m^2} \quad \text{recoil parameter}$ coupling constant conjecture: $\alpha \chi^{2/3}$

$$\begin{split} \Upsilon &= \frac{\gamma E}{E_{\rm crit}} \quad \text{strong field parameter} \\ \text{field strength seen by particle:} \\ E_{\rm crit} &= 1.32 \times 10^{18} \ \text{V/m} \end{split}$$

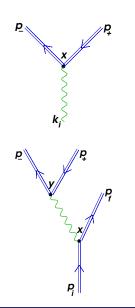

 $Q_n \approx \frac{\omega_i}{\omega}(1 - \cos \theta_i)$ resonance parameter Resonant cross-sections as $Q_n = 1, 2, 3...$ Bound states of electron in intense laser Probe laser tunes the resonance


strong field regime, $a_0, \Upsilon, \chi \ge 0.1$

Strong field QED historical timeline

1935	Dirac equation in external field (Volkov solution)	$\frac{\Delta\mu}{\mu_0} = \frac{\alpha}{2\pi} \int_0^\infty \frac{2\pi dx}{(1+x)^3} \left(\frac{x}{\Upsilon}\right)^{\frac{1}{3}} \operatorname{Gi}\left(\frac{x}{\Upsilon}\right)^{\frac{1}{3}}$
1950	Lamb shift (vacuum polarisation) AMM, spontaneous pair prod (Schwinger) Furry picture (strong field QED)	10 (FC) 03 10 10 10 10 10 10 10 10 10 10
1960		
	1st order FP theory (mass shift, multiphoton)	M BBW
1970	2nd order FP theory (resonant transitions)	Sultant CLIC 3TeV
	AMM/Lamb shift in strong field	EU 0.2-
1990		10 1 1 2 3 1 4 8 T
1550	Exp: 1st order FP experiment (SLAC E144) Exp: AMM/Lamb shift in strong field	Gamma photon
2010		
	Theory: Simple FP tran prob, FP renormalisation Exp: 2nd order FP experiment (proposed)	Electron- positron pair
	2 Year DESY/Uni-HH Seed project funding for experimental proposal, 2016-2017	K A

1st order FP - Radiated x-ray photons



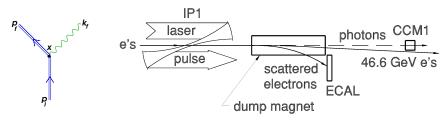
- dW probability in a time slice Δt
- sum over n describes harmonic generation
- momentum conservation $q_{i} + nk = q_{f} + k_{f}$
- radiated photon, ω_f

$$\omega_{\rm f} = \omega \ \frac{n\gamma^2 (1+\beta)^2}{\gamma^2 (1+\beta)(1-\beta\cos\theta) + (a_0^2/2 + n\omega\gamma(1+\beta))(1+\cos\theta)}$$

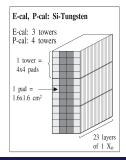
OPPP and Trident processes

- One photon pair production:
 - initial state produced by photon radiation
 - Onset is $\frac{4n\omega\omega_i}{m^2} \ge 2m_*^2$
 - $k_i + \frac{nk}{n} \rightarrow p_+ + p_-$
 - Observed with 46.6 GeV primary electrons at SLAC E144 (30 Gev photon, $n \ge 4$)

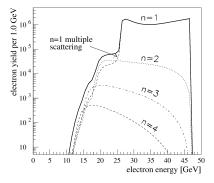
Trident process:


- One step rather than two step process
- $p_i + \mathbf{nk} \rightarrow p_f + p_+ + p_-$
- Resonant propagator poles/Breit-Wigner resonances due to bound states
- $\bullet\,$ Nominally suppressed by 1 order of $\alpha\,$
- Resonant differential x-section can exceed that of 1st order process

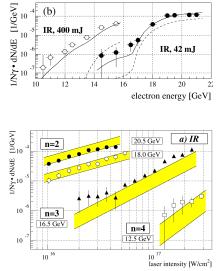
Experiment 00000000


Prospects 0000000

SLAC E144 electron/strong laser experiment, 1990s


[Bamber et al, PRD 60 092004, 1999]

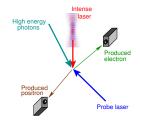
- 46.6 GeV e- beam collides with focussed ND:YAG laser at $\theta = 17^{o}$
- $\bullet\,$ measurements made of pulse width, spot size and laser energy to get Intensity $\approx 10^{18}~{\rm W/cm^2}$
- electrons with $E \leq 30$ GeV detected by Si-Tungsten ECAL, $\frac{\sigma}{E} \approx \frac{0.25}{\sqrt{E(\text{GeV})}}$
- photons converted in 0.2 X $_0$ Al and detected in gas Cherenkov, $\Delta N_{\gamma}=10\%$



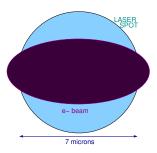
SLAC E144 results

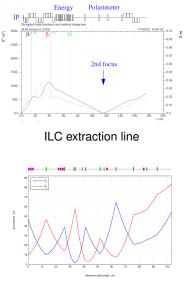
• Compton edge shifted by multiphoton effects

- Multiple Compton scattering vs nonlinear Compton scattering
- n=1 edge should also be mass shifted $m \rightarrow \sqrt{m^2 + e^2 a^2}$
- yellow band uncertainty in I, N_{γ}



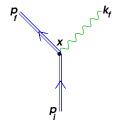
Experimental detection today (XFEL dump line)


Experiment	$\lambda(\mu m)$	E_{laser}	focus	pulse	I(W/cm ²)	E_{e^-} (GeV)	a_{0}^{2}
1990s E144 (SLAC)	1	2 J	$60 \ \mu m^2$	1.5 ps	$\approx 10^{18}$	46.6	0.4
2010s (PL 9000)	1	3 J	40 μm^2	0.5 ps	6.75×10^{18}	18	2.7

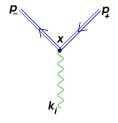

- Strong field mass shift still to be detected
- 2nd order resonant strong field effects should be in reach
- Electrons dont necessarily have to be ultra-relativistic
- Resonant pair production, with probe and gammas

Potential location in the extraction line

- Need overlap of laser and e-beam spot and Rayleigh length
- ILC had a second focus in downstream polarimeter chicane
- minimize backgrounds situation of ECAL, PCAL, GCAL

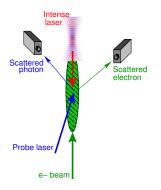

XFEL extraction line

Beam parameters for 1st order processes

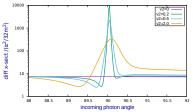

Parameter	Nonlinear Compton	Configuration Beamstrahlung	
N_e	10^{9}	10 ⁹	1010
$\sigma_x, \sigma_y \ (\mu m)$	2000	20	100
$\sigma_{x'}, \sigma_{y'}$ (rad)	10^{-6}	10^{-4}	10^{-5}
$\sigma_z \ (\mu m)$	500	500	500
λ_L (nm)	1054	351	351
Δt_L (ps)	1.2	1.2	1.2
U_L (Joule)	0.16	0.4	0.4 (at IP1)
f/D	3	3	0.4 (at IP2) 100 (at IP1) 3 (at IP2)

E144 parameters

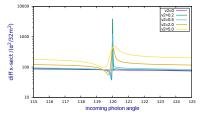
XFEL parameters $E_{\text{beam}} = 17.5 \pm 0.001 \text{ GeV}$ Bunch Charge = 1 nC (6×10⁹)Norm emittance = 1.4 mm mrad $N_{\text{bunchs}} = 3250$ $\sigma_{x,y} = 35 \, \mu \text{m}$ $\sigma_z = 20 \, \mu \text{m}$



1 vertex photon radiation


1 photon pair production

Resonances in probe laser angle scan



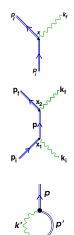
- key ratio for resonance is $\frac{\omega_i}{\omega} \in \mathbb{Z}$
- resonances broadened by larger a₀
- resonances suppressed by large electron energy

Probe laser 2 eV, intense laser 1 eV electrons 10 MeV, detector at 160°

Probe laser 4 eV, intense laser 1 eV electrons 40 MeV, detector at 175°

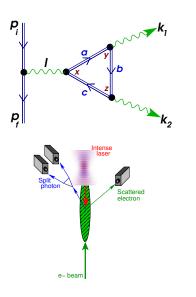
Experiment 00000000

Enhanced rate of photon radiation at resonance


Estimate the rate of vacuum resonance x-ray production

- 3 processes:
 - ICS, inverse Compton scattering
 - SCS, resonant Compton scattering
 - ESE, self energy, resonance width
- Probability proportional to fine structure constant × no. of vertices

• ICS
$$\propto \frac{1}{137}$$
, SCS $\propto \frac{1}{137^2}$, $\Gamma \equiv \mathsf{ESE} \propto \left[\frac{0.29}{137}\right]^2$

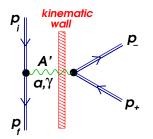

• At resonance, $\propto \frac{\text{SCS}}{\text{ESE}} \propto \frac{1}{0.29^2}$

- \bullet x-ray rate at vacuum resonance $10^3\times$ ICS
- probe laser tunes for resonance
- probe laser pulse length is a factor

Stimulated photon splitting rate at resonance

 At resonance, photon propagator on-shell, multiply differential rates of separate processes


$$\mathrm{d} W_{P_{\mathrm{S}}} = \mathrm{d} W^{\mathrm{HICS}} \, \tfrac{1}{\Gamma^2} \, \mathrm{d} \Pi^{(3)\mathrm{FP}}$$


 Assume N=10¹⁰ electrons per bunch, 50 keV (split) photons

 $dW_{P_{\rm S}} \approx 1$ event per 2 bunch collisions

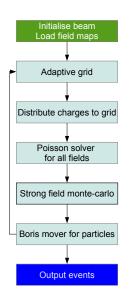
- Order of magnitude estimate
- Without resonance, 1 event per 10⁴ bunches
- Doable at resonance?
 experimental considerations
- Need detailed calculation

Resonant Dark Photon/Axion searches

- BSM mechanisms to explain dark matter
- Spontaneously broken U(1) symmetry Dark photon (vector, *ϵ* mixing) or Peccei-Quinn (axion, *f_a* breaking scale) or

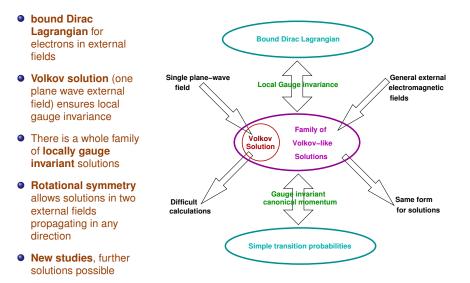
$$\mathcal{L} = g' e \bar{\psi} \gamma \psi A'$$
$$\mathcal{L} = \frac{1}{f_{a}} \bar{\psi} \gamma \gamma^{5} \psi \partial_{\mu} a$$

• Strong field QFT allows resonant production of dark bosons. Rate is increased by order of $1/\Gamma^2 \approx 10^5$ at resonant peak

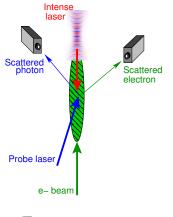

$$\mathrm{d} W = \mathrm{d} W^{\mathrm{HICS}} \, \frac{1}{\Gamma^2} \, \mathrm{d} W^{\mathrm{PPROD}}$$

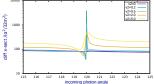
• Strong field interaction permits a kinematic wall which suppresses photon exchange and allows massive dark photon exchange

Experiment 00000000


Prospects 0000000

IPstrong - IFQFT monte carlo in a PIC el-mag solver




- Fortran 2003 with openMPI (Fortran 2008 has inbuilt GPU libraries)
- 3D poisson solver (PSPFFT, MPI)
- HICS photon radiation, resonant higher order SCS by Strong field QFT monte carlo
- Internally generated bunches or externally loaded
- Cross-check with
 - CAIN (KEK, strong field QFT, no FEL)
- e-/laser, e+e-, higher order interactions, FEL
- new processes can be added as modules

Beyond the Volkov solution (for realistic laser pulses)

Summary: Intense field physics in the lab!

- Quantum vacuum polarises in a strong electromagnetic field → new physical features
- QFT with background field predicts multiphoton events, mass shift, resonant cross-sections, electron/photon decays
- Experimental facilities can already perform tests of the theory
- Goal is experimental studies at particular facilities (XFEL, plasma accelerator) leading to experiments
- Discover new quantum effects and perform new tests of QFT in background fields
- Theory development divergence handling/renormalisation in Furry picture, unstable vacuum, analogy with QFT in curved space-time