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Motivation
What determines size of XFEL and are there analogues for crystal abased radiation 
mechanisms?

Radiation wavelength:

Undulator size:

© European XFEL

(X-ray) Free Electron Laser
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Motivation
What determines size of XFEL and are there analogues for crystal abased radiation 
mechanisms?

Parametric X-Ray Radiation (PXR) and Channeling radiation (Ch R)

Radiation wavelength:

Undulator size:

© European XFEL

(X-ray) Free Electron Laser

PXR

Ch R
Increment estimation:

Radiation wavelength:

=100pC/(100um)2/100fs
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SASE for PXR – 1-st order perturbation theory
Beam susceptibility

Small perturbation of the 

trajectory (linear theory):

Equation of motion (2-nd 

Newton law, relativistic):

Resulting current density (in k-w space)
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SASE for PXR – 1-st order perturbation theory
Dispersion equation

here

factor due to Induced current 

dispersion equations for “free” waves

electron beam plasma frequency

Direct wave (at exp[i k r]) 

Diffracted wave (at exp[i (k+g) r]) 

Resulting dispersion equation for  polarized wave: 

- dispersion equation in case of dynamical diffraction 

theory 

here
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SASE for PXR – 1-st order perturbation theory
Dispersion equation

Bragg condition

Cherenkov condition

proportional to

Bragg condition
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SASE for PXR – 1-st order perturbation theory
Boundary conditions

Homogeneous and inhomogeneous parts of the current:

Homogeneous and inhomogeneous parts of the field

- continuity at the interface

Field continuity Current continuity

One can show that
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SASE for PXR – 1-st order perturbation theory
Deteriorative effect of emittance

Average over velocity directions:

with emittance

Ideal beam

|SASE from relativistic electrons in crystals: linear response analysis for PXR and channeling radiation | A. Benediktovitch, RREPS-17, 20.09.2017



Page 9

SASE for PXR – 1-st order perturbation theory
Deteriorative effect of emittance

Average over velocity directions:

with emittance

Ideal beam

dα
1
, mrad dα

2
, μrad

Im k
z
/g·106

Numerical example:

Si, (040)

E=1 GeV

I=0.4 kA

s=0.1 μm x 0.1 μm

Δα=0.25 mrad x 0.25 mrad

ψ=1 deg;

Resulting peak gain

L
g
=20 μm, Lg/ψ=1 mm

Multiple scattering 
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SASE for PXR – 1-st order perturbation theory
Analogs in THz range

Artificial crystal in ThZ range

V.G.Baryshevsky, E.A.Gurnevich,Cherenkov and parametric (quasi-Cherenkov) radiation produced by a 

relativistic charged particle moving through a crystal built from metallic wires, NIM B, 402, 30-34 (2017)

 

One can have

And apply the same formalism. 
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SASE for PXR – 1-st order perturbation theory
Analogs in THz range

Artificial crystal in ThZ range

V.G.Baryshevsky, E.A.Gurnevich,Cherenkov and parametric (quasi-Cherenkov) radiation produced by a 

relativistic charged particle moving through a crystal built from metallic wires, NIM B, 402, 30-34 (2017)

 

One can have

And apply the same formalism. 

 

Numerical example:

a=b=0.1 mm

χ
g
=2.3·10-3

E=50 MeV

Q=20 nC

σ
x
=1 mm 

σ
y
=1 mm 

σ
z
=1 mm 

ψ=0.6 deg;

Resulting peak gain

L
g
=1.6 mm, Lg/ψ=15 cm
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SASE for channeling radiation – 1-st order perturbation theory

Axial channeling and channeling radiation

Transverse motion of relativistic electron can be described by 

Schrodinger equation with effective mass γ m

The transition between the transverse energy 

levels results in spontaneous channeling 

radiation. The radiation properties are close to

that of undulator radiation:

|SASE from relativistic electrons in crystals: linear response analysis for PXR and channeling radiation | A. Benediktovitch, RREPS-17, 20.09.2017



Page 13

SASE for channeling radiation – 1-st order perturbation theory

Equations from first principles

- starting from Hamiltonian for the field and electrons in axial potential,

- quantizing by imposing equal-time commutation relations,

- from Heisenberg equation one obtains operator equations:
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SASE for channeling radiation – 1-st order perturbation theory

Equations from first principles

- starting from Hamiltonian for the field and electrons in axial potential,

- quantizing by imposing equal-time commutation relations,

- from Heisenberg equation one obtains operator equations:

 Field: 
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SASE for channeling radiation – 1-st order perturbation theory

Equations from first principles

- starting from Hamiltonian for the field and electrons in axial potential,

- quantizing by imposing equal-time commutation relations,

- from Heisenberg equation one obtains operator equations:

 Field: 

Channeled electrons (two level systems) :

The operator describing electron state are: 

coherences                               occupation inversion                                           .
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SASE for channeling radiation – 1-st order perturbation theory

0-th order approximation: spontaneous radiation

When radiation backaction on channeling states is negligible the dynamic of electron variable is 

trivial:                                                                                  .The quantum-mechanical averages are

                                                                               . The radiation field is due to  

 With help of Green function for wave

equation one can obtain  
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SASE for channeling radiation – 1-st order perturbation theory

0-th order approximation: spontaneous radiation

When radiation backaction on channeling states is negligible the dynamic of electron variable is 

trivial:                                                                                  .The quantum-mechanical averages are

                                                                               . The radiation field is due to  

 With help of Green function for wave

equation one can obtain  

 1-st order approximations: beam susceptibility

Assume                                    , performing integration of operator equation one obtains  

 

Substituted in equations for field it results in linear susceptibility. In k,ω space susceptibility is
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SASE for channeling radiation – 1-st order perturbation theory

Wavefields and dispersion equation

Consider periodic permittivity                                                                       due to crystallographic 

order and assume that the emitted radiation is close to Bragg conditions for reciprocal lattice 

vector H (a two-wave approximation):

 

The noise current (resulting in spontaneous radiation) is

 

Here the dispersion equations  for incident and diffracted wavefields are
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SASE for channeling radiation – 1-st order perturbation theory

Dispersion equation and boundary conditions

 Solution of the wave field inside the crystal takes the following form:

To find A
s
 one needs boundary conditions for the field and in addition for 

the current density, since the number of dispersion equation roots is larger 

by one compared to dynamical diffraction case:

 

The dispersion equation can be factorized for σ and π polarizations, for σ one obtains
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SASE for channeling radiation – 1-st order perturbation theory

Dispersion equation: numerical example and general view

Here following parameters were used:

E=25 MeV 

axial channeling in Si along  [001]

Ω=14.3 eV

P
e
-P

g
= 6.5%

B=1.7·1019 A m-2 rad-2 (*)

resulting beam susceptibility

χ
b
=4.6·10-13

Bragg condition for (004) at Θ
B
=π/2 

x-ray photons ω=4.5 keV

 

(*)F.Li, J.F.Hua, et al.,Generating high-brightness electron beams via ionization injection by transverse colliding 

lasers in a plasma-wakefield accelerator, Phys. Rev. Lett., 111, 015003 (2013)
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SASE for channeling radiation – 1-st order perturbation theory

Dispersion equation: numerical example and detailed view

The largest instability increment 

is at roots intersection that takes 

place at the edge of Darwin 

table. For considered case:

Bragg diffraction leads to 

increase of instability increment 

due to decrease of effective 

absorption – an analogue of 

Borrmann effect.
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SASE for channeling radiation – 1-st order perturbation theory

Numerical example of SASE within 1-st order perturbation theory

Gain length L
g
~60 μm
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Conclusions

SASE for PXR – 1-st order perturbation theory

-beam divergence deteriorates the effect crucially

-in THz range the effect could survive

SASE for Channeling radiation – 1-st order perturbation theory

-QM operator equations should be solved, methods developed for X-ray ASE could 

be applied

-within 1-st order perturbation theory one can described by means of 

effective medium -> dispersion equations -> boundary conditions

-Bragg diffraction helps to decrease the absorption length by analogue of Borrmann 

effect

...
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Thank you for your attention!
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