

RING LASER & GENERAL RELATIVITY TEST

Giorgio Carelli Università di Pisa and INFN-Pisa

Outline

- Existing Ring Laser
- Ginger and Gingerino
- The GR Terms
- Perturbations on The Earth Surface (G Data)
- Results
- Ring Laser And Geodesy
- Conclusions

Gyroscopes **IN G**Eneral **R**elativity

Lense Thirring effect @ 1% precision on Earth

Ring laser measures absolute angular velocity (Sagnac Effect)

SAGNAC EFFECT

The round-trip time difference of two counter propagating beams in a rotating frame is an **inertial measurement** of rotation

$$f = \frac{4 \vec{A} \cdot \vec{\Omega}}{\lambda L} = K \Omega$$

Fig. 9.10 Laser gyroscopes: (a) ring laser gyro (RLG); (b) fiberoptic gyro.

https://www.youtube.com/watch?v=-HzmxW3Jll8

- Large frame ring lasers are top sensitivity devices to measure absolute angular velocity
- Routinely they measure at the pico-rad/s scale and below, present record 10⁻¹³ rad/s in 1 day
- Very low frequency measurements are of primary importance for geophysics and geodesy

EXISTING LARGE FRAME RING LASERS

- **Gross Ring G** at the geodetic observatory of Wettzell, perimeter 16m **geodesy**
- GINGERINO at LNGS, 14.4m perimeter, Fundamental Physics
- **ROMY** array under commissioning, 4 ring lasers 36m perimeter each (ERC project), **seismology**
- a bunch of devices in New Zealand, not working after the Christchurch earthquake, but some of them will be back soon
- project exists in China

An informal collaboration

The probe is a vector which can be oriented at will The quantity to measure is the angular rotation vector The output is the scalar product between the two vectors

- **n** area versor
- $\mathbf{n} \cdot \mathbf{\Omega}$ Beat frequency

THE GR TERMS

$$f = \frac{4A}{\lambda P} \left[\Omega_{\oplus} - 2\frac{m}{r} \Omega_{\oplus} \sin\theta \hat{u}_{\theta} + G \frac{I\Omega_{\oplus}}{c^2 r^3} \left(2\cos\theta \hat{u}_r + \sin\theta \hat{u}_{\theta} \right) \right] \cdot \hat{u}_n = S \left(\Omega_{\oplus} + \Omega_{dS} + \Omega_{LT} \right) \cdot \hat{u}_n.$$

A. Tartaglia, A. Di Virgilio et al. Eur. Phys. J. Plus (2017) 132: 73

The deSitter and LenseThirring terms are equivalent to an extra rotation 9-12 orders of magnitude below the Earth rotation rate

2D apparatus, 3D adding one more ring

A. Di Virgilio et al: GINGER: a feasibility study

Eur. Phys. J. Plus (2017) **132**: 157 DOI 10.1140/epjp/i2017-11452-6

Gingerino

- GINGERINO has bee built to verify whether LNGS is qualified for the GR test
- It has already proved that underground laboratories provides very high thermal stability and quiet environment
- It is now working in a continuous basis to provide data to geophysics

PERTURBATION ON THE EARTH SURFACE(GDATA)

Ringlaser Measures Local Wind Stress

Courtesy of U. Schreiber and U. Hugentobler

GINGERINO TYPICAL SENSITIVITY

Figure 3. Angular velocity linear spectral density of GINGERino during the February 2016 run. Power spectral density is estimated from the raw data interferogram.

BEST ALLAN DEVIATION

GINGERINO CAN DETECT VERY HIGH ANGULAR ROTATION SIGNALS

The Visso M 5.9 earthquake, probably the largest seismic rotational signal ever recoded

CONTINUOUS DATA TAKING SINCE MAY 3 2017, DUTY CYCLE > 97%

RING LASER AND GEODESY

- The top sensitivity ring is the Gross Ring G at the geodetic station of Wettzell
- The main purposes for geodesy are the daily and sub-daily variations of the length of day (LOD) and the earth axis variations, key points for geodesy

Ringlaser Measures Eigenmodes of Earth

 Observed eigenmodes of the ringing Earth, stroked by the Tohoku-Oki earthquake

Gross ring G Wettzell

Courtesy of U. Schreiber and U. Hugentobler

CONCLUSIONS

- Large frame ring lasers are based on a mature technique
- high sensitivity and long term stability make RL able to investigate the very low part of the spectrum, providing remarkable measurements for general relativity, geodesy and geophysics
- They can measure locally global quantity
- G, ROMY and GINGERINO are already providing data for seismology

http://ec2-52-59-201-108.eu-central-1.compute.amazonaws.com: 8000

• GINGER ?

sensitivity & stability key points to access very low frequency signals Underground-Stability

