The Mount Elbrus Conference, RUSSIA (September 13, 2017) Search for new physics at KamLAND

The University of Tokyo Alexandre Kozlov

Talk's content

□The KamLAND-Zen neutrinoless double-beta decay experiment using ¹³⁶Xe.

- Overview
- Results
- Future developments

Research infrastructure for rare event searches.

□Underground clean rooms

DAQ

Ultra-pure NaI(TI) crystals

□New ultra-low background 4-inch PMT

□Supplementary detectors

Use of KamLAND for rare event searches

KamLAND makes searches for Dark Matter, $0v\beta\beta$ signals possible.

In 2007 KamLAND's favorite isotope was ¹⁵⁰Nd

- However, by comparing sensitivity of experiments with all realistic 0ββv isotope candidates ¹³⁶Xe was selected.
- Thanks to highly efficient Cold War's enrichment facilities it is the cheapest among enriched isotopes available in amounts needed for KamLAND (1-2tons).
- $\circ\,$ It has the **longest T_{1/2} (2v\beta\beta),** and thus, the lowest non-removable $2v\beta\beta$ background which is critical for KamLAND.
- It can be dissolved in large quantities in a liquid scintillator without affecting transparency and, thus, energy resolution.
- ¹³⁶Xe has the lowest level of U/Th impurities compared with isotopes in a solid form. It can be extracted from a scintillator by using nitrogen purge, and purified by distillation.
- The **1**°C background we worried about for sometime can be effectively suppressed by **neutron tagging technique**.

My talk at the KamLAND meeting at Caltech, March 2008 "Neutrinoless double beta decay experiment at KamLAND"

<u>Summary</u>

- During the solar neutrino phase the R&D for the medium size 0vββ experiment (200kg of enriched ¹³⁶Xe) needs to be completed. That includes a small balloon (1.5m radius) manufacturing, construction of the Xenon loading/extraction system etc
- Depending on results of the medium size experiment a larger Xenon experiment may start few years later. That should allow to start probing neutrino effective mass region corresponding to inverted hierarchy faster than CUORE, SuperNEMO or other 0vββ experiments.

The 0vββ test of seesaw mechanism

Structure of the KamLAND-Zen (year 2011)

- In 2011, enriched ¹³⁶Xe(2.5-3wt%) + Liquid Scintillator in a ø3.08m miniballoon made of a 25µm-thick Nylon film was deployed at KamLAND.
- It exploits the KamLAND detector radio-purity, light sensors (1879 PMTs 17&20-inch) and data acquisition system.

Events/0.05MeV

enriched xenon was increased from **320kg** to **383kg**.

KamLAND-Zen 400: final result (year 2016)

First test of the IH mass region with KL-Zen 800

Prediction for the $m_{\beta\beta} = 47 \pm 1$ meV: K. Harigaya, M. Ibe, and T. Yanagida "Seesaw mechanism with Occam's razor" PRD 86, 013002 (2012)

KamLAND2-Zen to cover the IH mass region

Enriched xenon mass > 1000kg

We need to detect **more light** to improve energy resolution \rightarrow reduce the $2\nu\beta\beta$ tail background. Sensitivity target: m_{BB} ~ 20meV

Gain in number of detected photons (after upgrade to KamLAND2) New LAB scintillator: 1.4 times High QE PMTs: 1.9 times Light collecting cones: 1.8 times

The KamLAND-Zen summary

Accomplished:

- □**The KamLAND-Zen 400** was completed in Oct 2015. Enriched xenon was extracted from liquid scintillator, purified by distillation, and returned back to a storage facility.
- **D**We published world's best limit: $T^{0ν}_{1/2}$ >1.07×10²⁶ yr at 90% C.L. (m_{ββ} is 61-165meV depending on choice of NME).

Ongoing:

- □A new mini-balloon for 800kg of ¹³⁶Xe will be deployed into KamLAND this year.
- During the 800kg phase we may test Yanagida's prediction for m_{ββ}= 47±1meV.

Future:

□ We work on future KamLAND2-Zen project to cover most of the IH mass region down to m_{BB} =20meV.

DAMA/LIBRA DM claim test at KamLAND

- In 2011 | proposed to place an "identical" Nal(Tl) detector into the ultra-low background region at the centre of KamLAND. Purpose of the test is to find out whether or not the modulated signal exists regardless of its possible interpretation.
- However, development & construction of the Dark Matter detector required:
 - high class underground clean rooms;
 - HPGe γ-ray, radon, neutron and other supplementary detectors but none of that was available at KamLAND.
- Contrary to other neutrino or Dark Matter groups the KamLAND collaboration did not invest into research infrastructure for selection and handling of radio-pure materials. E.g. radio-impurities in detector components were measured by using commercial ICP-MS analysis.

Smoke passed into rooms through a burned ventilation pipe

Clean-rooms after fire in 2012

However, construction of clean rooms was cut-off by the fire accident at the KamLAND area in November 2012.

Full recovery required multiple repeating cleaning steps using: A hot water, ethanol, ... done by myself alone causing > **1.5y delay**.

 Gas-type detectors (Radon, TPC): Baksan Neutrino Observatory Institute for Nuclear Research Russian Academy of Science, Russia: Kuzminov Valery (Director), Gangapshev Albert, Kazalov Vladimir, Gavriljuk Yuri, Gezhaev Ali
Nal(TI) ultra-pure crystals: Tokushima U., Osaka U., Osaka Sangyo U., Tohoku U., I.S.C. Laboratory

MoGURA based DAQ

- 12ch input VME 9U board
- FADC
 - P : 0.1mV/LSB, 8bit, 1GSPS
 - H : 0.5mV/LSB, 8bit, 200MSPS
 - M : 5 mV/LSB, 8bit, 200MSPS
 - L : 50 mV/LSB, 8bit, 200MSPS
 - ≻ 0.1mV ÷ 10V
- FPGA
 - \succ Up to 10 µsec waveform buffer

• HIT

- > Analog discri.: >5mV
- Digital discri.: >0.5mV
- **TFA** for PMT noise cut

Problem of high intensity fast PMT noise

During development of the Nal(Tl) DM detectors we faced a problem of **intense high amplitude fast PMT noise** (~**10ns wide** pulses). The noise was observed for several **Hamamatsu PMT** types: **R6091**, **R11065-20** 3-inch PMTs, **R13444X** 4-inch PMT, **R1250** 5-inch PMT. Use of different DAQ hardware, opened or underground locations had no effect on this noise. **Existence of the noise was admitted by the Hamamatsu Photonics**. Most likely cause - **fast flashes of light in the PMTs**.

natK [ppb]	< 20	558	20~46	40 ~ 50	125
Th-chain [ppt]	0.5 ~ 7.5	13	0.8 ± 0.3	0.5 ± 0.3	0.3 ± 0.5
²²⁶ Ra [µBq/kg]	21.7 ± 1.1	900	10 ± 0.2	< 1	58 ± 4
²¹⁰ Pb [µBq/kg]	24.2 ± 1.6	1500	600 ~ 800	470 ± 10	30 ± 7

We successfully develop highly radio-pure NaI(TI) scintillators using the Bridgman method. For the latest **5×5inch crystal** we expect **radio-purity similar to that of the DAMA/LIBRA crystals.**

2014 3×3inch

2016 3×4inch

2017/07/23

2017 5×5inch

The crystal is being encapsulated.

First phase of the Nal(TI) experiment

Four types of Pb bricks Including ultra-low background old lead were prepared and cleaned by a nitric acid.

Before preparing a detector for deployment at KamLAND we will build NaI(TI) detector in a **standard Cu+Pb shielding at the underground clean room A**.

This year I purchased **600kg** of copper at **Mitsubishi Materials** specially melted for us only. Freshly manufactured (**1.5month or less old**) electroformed copper sheets were used to avoid ⁶⁰Co. Cu bars were cut into standard size bricks, surface milling, and cleaning according to the Majorana procedure was done. The HPGe measurements found **no** ⁶⁰Co access (UL 0.2mBq/kg at 90%CL).

Experimental ultra-low background PMT R13444X

The **PMT is made** of about **37 components**. Materials: **Ni-Fe alloy, SUS304, ceramics, Al (5N), Ag, Ni, ...** Hard to make a realistic GEANT model based limited information available.

Need ~1 month long measurement at the HPGe detector per PMT, we are taking data now. Preliminary, confirmed presence of ⁴⁰K at few tens mBq/PMT, ⁶⁰Co at few mBq/PMT. Search for radio-pure voltage divider parts with Hamamatsu.

- The **R13444X** is the largest (4-inch) ultra-low background Hamamatsu PMT with a metal body. Optical window is made of Synthetic Silica with the Bialkali photocathode. I purchased **two PMTs** this spring to check if it could be used as replacement for 3-inch Hamamatsu ultra-low background R11165-20 PMT.
- Spectral response maximum at 420nm (200-650nm range); QE@420nm : 34.9% and 33.38%. Gain at +1500V : 5×10⁶; TTS: 13ns

Our HPGe detector shielding design

Cart for Pb bricks made of radio-pure stainless steel

The HPGe detector located underground (2700m.w.e.)

lsotop e	Energy, keV	Backg Event	round, s / day	25	cmPb + 5cm Cu	1.3L container
⁴⁰ K	1460.8	10.0		and the second		
⁶⁰ Co	1332.5	1.6		and and		HPG
^{234m} Pa	1001	3.1				
²²⁸ Ac	911.2	3.2				Enough space
²¹⁴ Bi	609.3	2.3		PAL TO	<u>20cm</u>	
²⁰⁸ TI	583.2	3.3				
²¹⁴ Pb	351.9	3.7	HPGe p-type 75% rel. eff. Room B			
²³⁵ U	185.7	22.5				
²³⁴ Th	92.6	25.0				

- Shielding materials were kept 10+ yrs underground
- Clean-room tent + radon-less air s-m
- Detector's inner volume is purged with boiled off Nitrogen (5.5L/min)

EJ-426

520

540

560

0.8

30.0 0.4

0.2

0.0

400

420

440

460

480

500

Hamamatsu **R1250 PMTs CAEN** 4 channel waveform digitizer **N6724F** (100MHz)

Conical light reflectors covered by **Tyvek** sheets. The Al box made air tight using the **Teflon sealant**.

JSPS grant: 16K05371

- Two 0.32mm-thick EJ-426 scintillator sheets (0.25m × 0.5m each) laminated by 0.25mm-thick clear polyester sheets from both sides were used.
- The EJ-226 is a homogeneous mixture of LiF and ZnS:Ag (mass ratio 1:2), a 95% enriched ⁶Li was used. The ZnS:Ag light yield is 95000photons/MeV.
- ${}^{6}Li + n \rightarrow \alpha + {}^{3}H + 4.78MeV (\sigma = 941barn);$
- The thermal detection efficiency is **34%**;
- The detector is **non-sensitive to γ-rays**;

Summary

- We successfully developed NaI(TI) crystals with the level of RI that allows us to test DM claim made by DAMA/LIBRA collaborations.
- We plan to begin construction of the Nal(Tl) detector in the Pb/Cu shielding at the clean room A during the year 2018.
- The detector will consist of cylindrical 5 × 5-inch Nal(Tl) crystals attached to a single 4-inch R13444 PMT.
- Currently, we select radio-pure components for the Nal(Tl) crystal cover, and the PMT's voltage-divider circuitry.
- We continue to build a **new research infrastructure**, including supplementary detectors (e.g. for thermal and fast neutrons) to be able to **keep various sources of background under control**.