Universal RG Flows Across Dimensions

Marcos Crichigno University of Amsterdam

Based on

1) 1511.09462 with N. Bobev and F. Benini
 2) 1704.xxxxx with N. Bobev

3) Work in progress with N. Bobev & V. Min, and F. Azzurli & A. Zaffaroni.

DESY

April 20, 2017

Basic Setup

Consider a QFT on $M_d = \mathbb{R}^p \times M_{d-p}$ and flow to IR:

Questions:

- 1) What are properties of such RG flows?
- 2) What is the IR theory?
- 3) What is the holographic description?

Basic Setup

Consider a QFT on $M_d = \mathbb{R}^p \times M_{d-p}$ and flow to IR:

Questions:

- 1) What are properties of such RG flows?
- 2) What is the IR theory?
- 3) What is the holographic description?

• Recently, great interest in QFTs on M_d

- Exact results by localization in various dimensions [Pestun, Kapustin et al., Benini et al., Doroud et al.] Check of dualities and AdS/CFT
- Taking $M_d = M_{d-p} \times \tilde{M}_p$ leads to new dualities $T_{d-p} \leftrightarrow \tilde{T}_p$ [Alday-Gaiotto-Tachikawa, Gadde-Pomini-Rastelli-Razamat, Dimofte-Gaiotto-Gukov, \cdots]
- Compactification leads to large classes of SCFTs from higher dimensions [Maldacena-Nüñez, Bershadsky-Johansen-Sadov-Vafa, Galotto, Bah et al., Crichigno-Benini-Bobev,...]
- Usually, behavior depends on specifics of theories considered.
- In this talk, we are mostly interested in *universal properties*.

- Recently, great interest in QFTs on M_d
- Exact results by localization in various dimensions [Pestun, Kapustin et al., Benini et al., Doroud et al.] Check of dualities and AdS/CFT
- Taking $M_d = M_{d-p} \times M_p$ leads to new dualities $T_{d-p} \leftrightarrow T_p$ [Alday-Gaiotto-Tachikawa, Gadde-Pomini-Rastelli-Razamat, Dimofte-Gaiotto-Gukov, \cdots]
- Compactification leads to large classes of SCFTs from higher dimensions [Maldacena-Nuñez, Bershadsky-Johansen-Sadov-Vafa, Gaiotto, Bah et al., Crichigno-Benini-Bobev,...]
- Usually, behavior depends on specifics of theories considered.
- In this talk, we are mostly interested in *universal properties*.

- Recently, great interest in QFTs on M_d
- Exact results by localization in various dimensions [Pestun, Kapustin et al., Benini et al., Doroud et al.] Check of dualities and AdS/CFT
- Taking $M_d = M_{d-p} \times \tilde{M}_p$ leads to new dualities $T_{d-p} \leftrightarrow \tilde{T}_p$ [Alday-Gaiotto-Tachikawa, Gadde-Pomini-Rastelli-Razamat, Dimofte-Gaiotto-Gukov, ...]
- Compactification leads to large classes of SCFTs from higher dimensions [Maldacena-Nuñez, Bershadsky-Johansen-Sadov-Vafa, Gaiotto, Bah et al., Crichigno-Benini-Bobev,...]
- Usually, behavior depends on specifics of theories considered.
- In this talk, we are mostly interested in *universal properties*.

- Recently, great interest in QFTs on M_d
- Exact results by localization in various dimensions [Pestun, Kapustin et al., Benini et al., Doroud et al.] Check of dualities and AdS/CFT
- Taking $M_d = M_{d-p} \times \tilde{M}_p$ leads to new dualities $T_{d-p} \leftrightarrow \tilde{T}_p$ [Alday-Gaiotto-Tachikawa, Gadde-Pomini-Rastelli-Razamat, Dimofte-Gaiotto-Gukov, ...]
- Compactification leads to large classes of SCFTs from higher dimensions [Maldacena-Núñez, Bershadsky-Johansen-Sadov-Vafa, Gaiotto, Bah et al., Crichigno-Benini-Bobev,...]
- Usually, behavior depends on specifics of theories considered.
- In this talk, we are mostly interested in *universal properties*.

- Recently, great interest in QFTs on M_d
- Exact results by localization in various dimensions [Pestun, Kapustin et al., Benini et al., Doroud et al.] Check of dualities and AdS/CFT
- Taking $M_d = M_{d-p} \times \tilde{M}_p$ leads to new dualities $T_{d-p} \leftrightarrow \tilde{T}_p$ [Alday-Gaiotto-Tachikawa, Gadde-Pomini-Rastelli-Razamat, Dimofte-Gaiotto-Gukov, ...]
- Compactification leads to large classes of SCFTs from higher dimensions [Maldacena-Núñez, Bershadsky-Johansen-Sadov-Vafa, Gaiotto, Bah et al., Crichigno-Benini-Bobev,...]
- Usually, behavior depends on specifics of theories considered.
- In this talk, we are mostly interested in *universal properties*.

- Recently, great interest in QFTs on M_d
- Exact results by localization in various dimensions [Pestun, Kapustin et al., Benini et al., Doroud et al.] Check of dualities and AdS/CFT
- Taking $M_d = M_{d-p} \times \tilde{M}_p$ leads to new dualities $T_{d-p} \leftrightarrow \tilde{T}_p$ [Alday-Gaiotto-Tachikawa, Gadde-Pomini-Rastelli-Razamat, Dimofte-Gaiotto-Gukov, ...]
- Compactification leads to large classes of SCFTs from higher dimensions [Maldacena-Núñez, Bershadsky-Johansen-Sadov-Vafa, Gaiotto, Bah et al., Crichigno-Benini-Bobev,...]
- Usually, behavior depends on specifics of theories considered.
- In this talk, we are mostly interested in *universal properties*.

What do we mean by "universal"?

• Prototypical example of a $(4d \rightarrow 4d)$ universal flow:

- First found for $\mathcal{N} = 4 \rightarrow \mathcal{N} = 1$ flow [Anselmi-Freedman et al. 1997]
- Later proven in more generality for $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ flows [Tachikawa-Wecht 2009]

Universal flows across (even) dimensions

Universal flows across (even) dimensions

Universal flows across (odd) dimensions

• In even *d* anomalies nicely behaved under RG, but more general story:

$$\frac{F_{\rm IR}}{F_{\rm UV}} = (g-1)$$

• Many more universal relations predicted by holography

Universal flows across (odd) dimensions

• In even *d* anomalies nicely behaved under RG, but more general story:

$$\frac{F_{\rm IR}}{F_{\rm UV}} = (g-1)$$

• Many more universal relations predicted by holography

Review tools

To preserve SUSY on M_d :

$$(\partial_{\mu} + \omega_{\mu})\epsilon = 0$$

Generically, no solutions. But, if global R-symmetry, turn background on:

$$(\partial_{\mu} + \omega_{\mu} + A_{\mu}^{back})\epsilon = 0 \qquad \xrightarrow{A_{\mu}^{back} = -\omega_{\mu}} \quad \partial_{\mu}\epsilon = 0$$

- SUSY only partially preserved
- Spin of fields *shifted*: $(\partial_{\mu} + (s q) \omega_{\mu})\phi$
- If $M_d = \mathbb{R}^p \times \mathcal{M}_{d-p}$ twist only along \mathcal{M}_{d-p}

To preserve SUSY on M_d :

$$(\partial_{\mu} + \omega_{\mu})\epsilon = 0$$

Generically, no solutions. But, if global R-symmetry, turn background on:

$$(\partial_{\mu} + \omega_{\mu} + A_{\mu}^{back})\epsilon = 0 \qquad \xrightarrow{A_{\mu}^{back} = -\omega_{\mu}} \quad \partial_{\mu}\epsilon = 0$$

- SUSY only partially preserved
- Spin of fields *shifted*: $(\partial_{\mu} + (s q) \omega_{\mu})\phi$
- If $M_d = \mathbb{R}^p \times \mathcal{M}_{d-p}$ twist only along \mathcal{M}_{d-p}

To preserve SUSY on M_d :

$$(\partial_{\mu} + \omega_{\mu})\epsilon = 0$$

Generically, no solutions. But, if global R-symmetry, turn background on:

$$(\partial_{\mu} + \omega_{\mu} + A_{\mu}^{back})\epsilon = 0 \qquad \xrightarrow{A_{\mu}^{back} = -\omega_{\mu}} \quad \partial_{\mu}\epsilon = 0$$

- SUSY only partially preserved
- Spin of fields *shifted*: $(\partial_{\mu} + (s q) \omega_{\mu})\phi$
- If $M_d = \mathbb{R}^p \times \mathcal{M}_{d-p}$ twist only along \mathcal{M}_{d-p}

To preserve SUSY on M_d :

$$(\partial_{\mu} + \omega_{\mu})\epsilon = 0$$

Generically, no solutions. But, if global R-symmetry, turn background on:

$$(\partial_{\mu} + \omega_{\mu} + A_{\mu}^{back})\epsilon = 0 \qquad \xrightarrow{A_{\mu}^{back} = -\omega_{\mu}} \quad \partial_{\mu}\epsilon = 0$$

- SUSY only partially preserved
- Spin of fields *shifted*: $(\partial_{\mu} + (s q) \omega_{\mu})\phi$
- If $M_d = \mathbb{R}^p \times \mathcal{M}_{d-p}$ twist only along \mathcal{M}_{d-p}

In other words:

- Global symmetry $S \times G_R$ (Lorentz×R-symmetry)
- Twist amounts to choosing embedding

 $S \subset G_R$

• Different embeddings \Rightarrow different # of SUSYs preserved

In other words:

- Global symmetry $S \times G_R$ (Lorentz×R-symmetry)
- Twist amounts to choosing embedding

 $S \subset G_R$

• Different embeddings \Rightarrow different # of SUSYs preserved

In other words:

- Global symmetry $S \times G_R$ (Lorentz×R-symmetry)
- Twist amounts to choosing embedding

 $S \subset G_R$

• Different embeddings \Rightarrow different # of SUSYs preserved

Anomalies are robust nonperturbative observables. Interested in two kinds of anomalies:

• 't Hooft R-symmetry anomalies $\langle \partial_{\mu} j_{R}^{\mu} \rangle \neq 0$. In 4d and 2d:

 k_{RRR}, k_{RR}, \cdots

• Weyl Anomalies

 $\langle T^{\mu}_{\mu} \rangle_{M_d} \sim aE + c_i W_i$

• If SUSY $\Rightarrow \{T_{\mu\nu}, j_R^{\mu}\} \Rightarrow$

 (a, c_i) related to k's

Anomalies are robust nonperturbative observables. Interested in two kinds of anomalies:

• 't Hooft R-symmetry anomalies $\langle \partial_{\mu} j_{R}^{\mu} \rangle \neq 0$. In 4d and 2d:

 k_{RRR}, k_{RR}, \cdots

• Weyl Anomalies

 $\langle T^{\mu}_{\mu} \rangle_{M_d} \sim aE + c_i W_i$

• If SUSY $\Rightarrow \{T_{\mu\nu}, j_R^{\mu}\} \Rightarrow$ $(a, c_i) \qquad \text{related to}$

Anomalies are robust nonperturbative observables. Interested in two kinds of anomalies:

• 't Hooft R-symmetry anomalies $\langle \partial_{\mu} j_{R}^{\mu} \rangle \neq 0$. In 4d and 2d:

 k_{RRR}, k_{RR}, \cdots

• Weyl Anomalies

$$\langle T^{\mu}_{\mu} \rangle_{M_d} \sim aE + c_i W_i$$

• If SUSY
$$\Rightarrow \{T_{\mu\nu}, j_R^{\mu}\} \Rightarrow$$

(*a*, *c_i*) related to *k's*

Anomalies are robust nonperturbative observables. Interested in two kinds of anomalies:

• 't Hooft R-symmetry anomalies $\langle \partial_{\mu} j_{R}^{\mu} \rangle \neq 0$. In 4d and 2d:

 k_{RRR}, k_{RR}, \cdots

• Weyl Anomalies

$$\langle T^{\mu}_{\mu} \rangle_{M_d} \sim aE + c_i W_i$$

• If SUSY
$$\Rightarrow \{T_{\mu\nu}, j_R^{\mu}\} \Rightarrow$$

(*a*, *c_i*) related to *k's*

Field Theory

To establish relation among central charges, 3 simple steps: 1) R-symmetry is $U(1)_R$. Assume no Abelian flavor symmetry:

$$I_6 = \frac{k_{RRR}}{6} c_1(R)^3 - \frac{k_R}{24} c_1(R) \, p_1(T_4)$$

2) Twist on $\Sigma_{\mathfrak{g}}$: $U(1)_{\Sigma} \subset U(1)_R \Rightarrow$

$$c_1(R) \to c_1(R) + \frac{1}{2} \mathrm{dVol}(\Sigma_g)$$

3) Integrate $\int_{\Sigma_{\sigma}} I_6$ and compare to

$$I_4 = \frac{k_{RR}}{2}c_1(R)^2 - \frac{k}{24}p_1(T_2)$$

To establish relation among central charges, 3 simple steps:

1) R-symmetry is $U(1)_R$. Assume no Abelian flavor symmetry:

$$I_6 = \frac{k_{RRR}}{6} c_1(R)^3 - \frac{k_R}{24} c_1(R) p_1(T_4)$$

2) Twist on $\Sigma_{\mathfrak{g}}$: $U(1)_{\Sigma} \subset U(1)_{R} \Rightarrow$

$$c_1(R) \to c_1(R) + \frac{1}{2} \mathrm{dVol}(\Sigma_g)$$

3) Integrate $\int_{\Sigma_a} I_6$ and compare to

$$I_4 = \frac{k_{RR}}{2}c_1(R)^2 - \frac{k}{24}p_1(T_2)$$

To establish relation among central charges, 3 simple steps:

1) R-symmetry is $U(1)_R$. Assume no Abelian flavor symmetry:

$$I_6 = \frac{k_{RRR}}{6}c_1(R)^3 - \frac{k_R}{24}c_1(R)\,p_1(T_4)$$

2) Twist on $\Sigma_{\mathfrak{g}}: U(1)_{\Sigma} \subset U(1)_{R} \Rightarrow$

$$c_1(R) \to c_1(R) + \frac{1}{2} \mathrm{dVol}(\Sigma_g)$$

3) Integrate $\int_{\Sigma_{\sigma}} I_6$ and compare to

$$I_4 = \frac{k_{RR}}{2}c_1(R)^2 - \frac{k}{24}p_1(T_2)$$

To establish relation among central charges, 3 simple steps:

1) R-symmetry is $U(1)_R$. Assume no Abelian flavor symmetry:

$$I_6 = \frac{k_{RRR}}{6}c_1(R)^3 - \frac{k_R}{24}c_1(R)\,p_1(T_4)$$

2) Twist on $\Sigma_{\mathfrak{g}}: U(1)_{\Sigma} \subset U(1)_{R} \Rightarrow$

$$c_1(R) \to c_1(R) + \frac{1}{2} \mathrm{dVol}(\Sigma_g)$$

3) Integrate $\int_{\Sigma_q} I_6$ and compare to

$$I_4 = \frac{k_{RR}}{2}c_1(R)^2 - \frac{k}{24}p_1(T_2)$$

$$k_{RR} = (g-1)k_{RRR}, \qquad k = (g-1)k_R$$

Assuming fixed point in UV and IR: (Ward identities)

4d:
$$a_{4d} = \frac{9}{32}k_{RRR} - \frac{3}{32}k_R$$
, $c_{4d} = \frac{9}{32}k_{RRR} - \frac{5}{32}k_R$
2d: $c_r = 3k_{RR}$, $c_r - c_l = k$

gives:

$$\begin{pmatrix} c_r \\ c_l \end{pmatrix} = \frac{16(g-1)}{3} \begin{pmatrix} 5 & -3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$$

True also for compactification of N = 2, 4.
In the large-N limit:

$$c_r \simeq c_l \simeq \frac{32}{3}(g-1)a_{4c}$$

$$k_{RR} = (g-1)k_{RRR}, \qquad k = (g-1)k_R$$

Assuming fixed point in UV and IR: (Ward identities)

$$\begin{array}{ll} \mbox{4d}: & a_{4d} = \frac{9}{32} k_{RRR} - \frac{3}{32} k_R \; , & c_{4d} = \frac{9}{32} k_{RRR} - \frac{5}{32} k_R \\ \mbox{2d}: & c_r = 3 k_{RR} \; , & c_r - c_l = k \end{array}$$

gives:

$$\begin{pmatrix} c_r \\ c_l \end{pmatrix} = \frac{16(g-1)}{3} \begin{pmatrix} 5 & -3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$$

- True also for compactification of $\mathcal{N} = 2, 4$.
- In the large–N limit:

$$c_r \simeq c_l \simeq \frac{32}{3}(g-1)a_{4d}$$

$$k_{RR} = (g-1)k_{RRR}, \qquad k = (g-1)k_R$$

Assuming fixed point in UV and IR: (Ward identities)

$$\begin{array}{ll} \text{4d}: & a_{4d} = \frac{9}{32} k_{RRR} - \frac{3}{32} k_R \; , \qquad c_{4d} = \frac{9}{32} k_{RRR} - \frac{5}{32} k_R \\ \text{2d}: & c_r = 3 k_{RR} \; , \qquad c_r - c_l = k \end{array}$$

gives:

$$\left(\begin{array}{c} c_r \\ c_l \end{array}\right) = \frac{16(g-1)}{3} \left(\begin{array}{c} 5 & -3 \\ 2 & 0 \end{array}\right) \left(\begin{array}{c} a_{4d} \\ c_{4d} \end{array}\right)$$

- True also for compactification of $\mathcal{N}=2,4$.
- In the large–N limit:

$$c_r \simeq c_l \simeq \frac{32}{3}(g-1)a_{4d}$$

$$k_{RR} = (g-1)k_{RRR}, \qquad k = (g-1)k_R$$

Assuming fixed point in UV and IR: (Ward identities)

$$\begin{array}{ll} \mathrm{4d}: & a_{4d} = \frac{9}{32} k_{RRR} - \frac{3}{32} k_R \; , \qquad c_{4d} = \frac{9}{32} k_{RRR} - \frac{5}{32} k_R \\ \mathrm{2d}: & c_r = 3 k_{RR} \; , \qquad c_r - c_l = k \end{array}$$

gives:

$$\begin{pmatrix} c_r \\ c_l \end{pmatrix} = \frac{16(g-1)}{3} \begin{pmatrix} 5 & -3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$$

- True also for compactification of $\mathcal{N} = 2, 4$.
- In the large–N limit:

$$c_r \simeq c_l \simeq \frac{32}{3}(g-1)a_{4d}$$

[Kapustin 2006]

Assuming IR fixed point one shows: [Bobev-MC 2017

• For α -twist:

2d
$$\mathcal{N} = (2,2)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 12(g-1)\begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

Note $c_r = c_l = 3(g-1)d_G$ with $d_G \equiv 4(2a_{4d} - c_{4d})$ dim. of Coulomb branch of 4d theory [Shapere-Tachikawa 2008]

• For β -twist:

2d
$$\mathcal{N} = (0,4)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 24 \left(g-1\right) \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

• $\frac{1}{3}\alpha + \frac{4}{3}\beta$ -twist equals $\mathcal{N} = 1$ twist

Assuming IR fixed point one shows: [Bobev-MC 2017]

• For α -twist:

2d
$$\mathcal{N} = (2,2)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 12(g-1)\begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

Note $c_r = c_l = 3(g-1)d_G$ with $d_G \equiv 4(2a_{4d} - c_{4d})$ dim. of Coulomb branch of 4d theory [Shapere-Tachikawa 2008]

• For β -twist:

2d
$$\mathcal{N} = (0,4)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 24 \left(g-1\right) \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

• $\frac{1}{3}\alpha + \frac{4}{3}\beta$ -twist equals $\mathcal{N} = 1$ twist

Assuming IR fixed point one shows: [Bobev-MC 2017]

• For α -twist:

2d
$$\mathcal{N} = (2,2)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 12(g-1)\begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

Note $c_r = c_l = 3(g-1)d_G$ with $d_G \equiv 4(2a_{4d} - c_{4d})$ dim. of Coulomb branch of 4d theory [Shapere-Tachikawa 2008]

• For β -twist:

2d
$$\mathcal{N} = (0,4)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 24 \left(g-1\right) \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

• $\frac{1}{3}\alpha + \frac{4}{3}\beta$ -twist equals $\mathcal{N} = 1$ twist

Assuming IR fixed point one shows: [Bobev-MC 2017]

• For α -twist:

2d
$$\mathcal{N} = (2,2)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 12(g-1)\begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

Note $c_r = c_l = 3(g-1)d_G$ with $d_G \equiv 4(2a_{4d} - c_{4d})$ dim. of Coulomb branch of 4d theory [Shapere-Tachikawa 2008]

• For β -twist:

2d
$$\mathcal{N} = (0,4)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = 24 \left(g-1\right) \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix}$

•
$$\frac{1}{3}\alpha + \frac{4}{3}\beta$$
-twist equals $\mathcal{N} = 1$ twist

$6d \rightarrow 4d$ and $6d \rightarrow 2d$

Pick $SO(2)_{\Sigma} \subset SO(2) \times SO(2) \subset SO(5)_R$

4d
$$\mathcal{N} = 2$$
: $\begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix} = \frac{(g-1)}{72} \begin{pmatrix} 21 & -6 \\ 14 & -2 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

4d
$$\mathcal{N} = 1$$
: $\begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix} = \frac{(g-1)}{384} \begin{pmatrix} 105 & -33 \\ 49 & -1 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

Similarly, compactifying on Kähler M_4 :

2d
$$\mathcal{N} = (0, 2)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = \frac{(P_1 + 2\chi)}{96} \begin{pmatrix} 63 & -27 \\ 35 & -11 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

$6d \rightarrow 4d$ and $6d \rightarrow 2d$

Pick $SO(2)_{\Sigma} \subset SO(2) \times SO(2) \subset SO(5)_R$

4d
$$\mathcal{N} = 2$$
: $\begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix} = \frac{(g-1)}{72} \begin{pmatrix} 21 & -6 \\ 14 & -2 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

4d
$$\mathcal{N} = 1$$
: $\begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix} = \frac{(g-1)}{384} \begin{pmatrix} 105 & -33 \\ 49 & -1 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

Similarly, compactifying on Kähler M_4 :

2d
$$\mathcal{N} = (0,2)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = \frac{(P_1 + 2\chi)}{96} \begin{pmatrix} 63 & -27 \\ 35 & -11 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

$6d \rightarrow 4d$ and $6d \rightarrow 2d$

Pick $SO(2)_{\Sigma} \subset SO(2) \times SO(2) \subset SO(5)_R$

4d
$$\mathcal{N} = 2$$
: $\begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix} = \frac{(g-1)}{72} \begin{pmatrix} 21 & -6 \\ 14 & -2 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

4d
$$\mathcal{N} = 1$$
: $\begin{pmatrix} a_{4d} \\ c_{4d} \end{pmatrix} = \frac{(g-1)}{384} \begin{pmatrix} 105 & -33 \\ 49 & -1 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

Similarly, compactifying on Kähler M_4 :

2d
$$\mathcal{N} = (0,2)$$
: $\begin{pmatrix} c_r \\ c_l \end{pmatrix} = \frac{(P_1 + 2\chi)}{96} \begin{pmatrix} 63 & -27 \\ 35 & -11 \end{pmatrix} \begin{pmatrix} a_{6d} \\ c_{6d} \end{pmatrix}$

Comment: Hofman-Maldacena Bounds

These are 4d bounds on $\frac{a_{4d}}{c_{4d}}$ from energy positivity [Hofman-Maldacena '08, '16]

Universal flows map 4d values to (interesting?) values in 6d and 2d

Consider theories with flavor symmetries G_F with generators F_i • Infinite family of twists:

$$T_{back} = T_R^{\text{conf.}} + b_i F_i$$

• Complication: *Mixing* of flavor and R-symmetry along flow:

$$R_{\rm IR} = R_{UV} + \epsilon_i(b)F_i$$
, $\epsilon_i = ?$

Generically ε_i ≠ 0 for b_i ≠ 0
Resulting 2d theories labelled by b_i ⇒ families of 2d SCFTs

Consider theories with flavor symmetries G_F with generators F_i • Infinite family of twists:

$$T_{back} = T_R^{\text{conf.}} + b_i F_i$$

• Complication: *Mixing* of flavor and R-symmetry along flow:

$$R_{\rm IR} = R_{UV} + \epsilon_i(b)F_i$$
, $\epsilon_i = ?$

Generically ε_i ≠ 0 for b_i ≠ 0
Resulting 2d theories labelled by b_i ⇒ families of 2d SCFTs

Consider theories with flavor symmetries G_F with generators F_i • Infinite family of twists:

$$T_{back} = T_R^{\text{conf.}} + b_i F_i$$

• Complication: *Mixing* of flavor and R-symmetry along flow:

 $R_{\rm IR} = R_{UV} + \epsilon_i(b)F_i, \qquad \epsilon_i = ?$

Generically ε_i ≠ 0 for b_i ≠ 0
Resulting 2d theories labelled by b_i ⇒ families of 2

Consider theories with flavor symmetries G_F with generators F_i • Infinite family of twists:

$$T_{back} = T_R^{\text{conf.}} + b_i F_i$$

• Complication: *Mixing* of flavor and R-symmetry along flow:

$$R_{\rm IR} = R_{UV} + \epsilon_i(b)F_i, \qquad \epsilon_i = ?$$

- Generically $\epsilon_i \neq 0$ for $b_i \neq 0$
- Resulting 2d theories labelled by $b_i \Rightarrow$ families of 2d SCFTs.

Example: $Y^{p,q}$ Quivers on $\mathbb{R}^2 \times \Sigma_q$ [Benini, Bobev, MC 2015]

Global symmetry $SU(2)_1 \times U(1)_2 \times U(1)_B \times U(1)_R$

• General twist:

$$T_{back} = T_R^{\text{conf.}} + b_1 T_1 + b_2 T_2 + b T_B;$$

 b_1, b_2, b flavor fluxes through Σ_g • $SU(2)_1 → U(1)_1$ broken by flux, thus:

 $T_{trial} = T_R^{\text{conf.}} + \epsilon_1 T_1 + \epsilon_2 T_2 + \epsilon_B T_B$

• Extremization principle:

$$c_r^{tr} = 3k^{RR} = -6(g-1)\sum_{\sigma \in \text{Weyl}} m_\sigma t_\sigma^{back} \left(q_{tr}^\sigma(\epsilon)\right)^2$$

Example: $Y^{p,q}$ Quivers on $\mathbb{R}^2 \times \Sigma_q$ [Benini, Bobev, MC 2015]

Global symmetry $SU(2)_1 \times U(1)_2 \times U(1)_B \times U(1)_R$

• General twist:

$$T_{back} = T_R^{\text{conf.}} + b_1 T_1 + b_2 T_2 + b T_B;$$

 b_1, b_2, b flavor fluxes through Σ_g

• $SU(2)_1 \rightarrow U(1)_1$ broken by flux, thus:

 $T_{trial} = T_R^{\text{conf.}} + \epsilon_1 T_1 + \epsilon_2 T_2 + \epsilon_B T_B$

• Extremization principle:

$$c_r^{tr} = 3k^{RR} = -6(g-1)\sum_{\sigma \in \text{Weyl}} m_\sigma t_\sigma^{back} \left(q_{tr}^\sigma(\epsilon)\right)^2$$

Example: $Y^{p,q}$ Quivers on $\mathbb{R}^2 \times \Sigma_q$ [Benini, Bobev, MC 2015]

Global symmetry $SU(2)_1 \times U(1)_2 \times U(1)_B \times U(1)_R$

• General twist:

$$T_{back} = T_R^{\text{conf.}} + b_1 T_1 + b_2 T_2 + b T_B;$$

 b_1, b_2, b flavor fluxes through Σ_g

• $SU(2)_1 \rightarrow U(1)_1$ broken by flux, thus:

$$T_{trial} = T_R^{\text{conf.}} + \epsilon_1 T_1 + \epsilon_2 T_2 + \epsilon_B T_B$$

• Extremization principle:

$$c_r^{tr} = 3k^{RR} = -6(g-1)\sum_{\sigma \in \text{Weyl}} m_\sigma t_\sigma^{back} \left(q_{tr}^\sigma(\epsilon)\right)^2$$

Thus, 2d SCFTs labelled by $(p,q;g;b_1,b_2,b)$ and central charges:

$$c_{l,r}^{IR} = c_{l,r}^{tr}(\epsilon^*) = c_{l,r}^{univ} + f_{p,q}^g(b_1, b_2, b)$$

Theories unitary $(c_{l,r} > 0)$ only in regions of parameter space:

Regions in $b_{1,2}$ plane (b = 0) where $c_R > 0$ (for $\kappa = \{1, 0, -1\}$)

Important features:

- For $b_1 = b_2 = b = 0 \Rightarrow \epsilon_1 = \epsilon_2 = \epsilon = 0 \Rightarrow c_{l,r} = c_{l,r}^{\text{univ}}$
- Generically $\epsilon \neq 0 \Rightarrow$ Mixing of R-symmetry with baryonic symmetry!
- New phenomenon: mixing of "geometry" with "topology"

Thus, 2d SCFTs labelled by $(p,q;g;b_1,b_2,b)$ and central charges:

$$c_{l,r}^{IR} = c_{l,r}^{tr}(\epsilon^*) = c_{l,r}^{univ} + f_{p,q}^g(b_1, b_2, b)$$

Theories unitary $(c_{l,r} > 0)$ only in regions of parameter space:

Regions in $b_{1,2}$ plane (b = 0) where $c_R > 0$ (for $\kappa = \{1, 0, -1\}$)

Important features:

- For $b_1 = b_2 = b = 0 \Rightarrow \epsilon_1 = \epsilon_2 = \epsilon = 0 \Rightarrow c_{l,r} = c_{l,r}^{\text{univ}}$
- Generically $\epsilon \neq 0 \Rightarrow$ Mixing of R-symmetry with baryonic symmetry!
- New phenomenon: mixing of "geometry" with "topology"

Holography

Two reasons for holography:

1) Establish *existence* of RG flows (at large N)

2) When anomalies not available, holography predicts

 $F_{IR} = u F_{UV}$

Nontrivial predictions for Matrix models!

Two reasons for holography:

1) Establish existence of RG flows (at large N)

2) When anomalies not available, holography predicts

 $F_{IR} = u F_{UV}$

Nontrivial predictions for Matrix models!

Two reasons for holography:

1) Establish *existence* of RG flows (at large N)

2) When anomalies not available, holography predicts

 $F_{IR} = \mathbf{u} F_{UV}$

Nontrivial predictions for Matrix models!

Holographic Description

• Because univ. twist $\{T_{\mu\nu}, j^R_{\mu}\}$ minimal gauged SUGRA is enough

- *p*-branes *magnetically* charged
- All sols. admit *uplift* to string/M-theory. Different uplifts \Rightarrow different CFT duals.

Holographic Description

- Because univ. twist $\{T_{\mu\nu}, j^R_{\mu}\}$ minimal gauged SUGRA is enough
- *p*-branes *magnetically* charged
- All sols. admit *uplift* to string/M-theory. Different uplifts \Rightarrow different CFT duals.

Holographic Description

- Because univ. twist $\{T_{\mu\nu}, j^R_{\mu}\}$ minimal gauged SUGRA is enough
- *p*-branes *magnetically* charged
- All sols. admit *uplift* to string/M-theory. Different uplifts \Rightarrow different CFT duals.

Black strings in AdS_5

5d $\mathcal{N} = 2$ minimal gauged SUGRA $(g_{\mu\nu}, A_{\mu})$. Ansatz:

$$\begin{split} ds_5^2 = & e^{2f(r)}(-dt^2 + dz^2 + dr^2) + e^{2g(r)}ds_{\Sigma_{g>1}}^2 \\ & \mathbf{F} = & d\mathbf{A} = -\frac{1}{3} \mathrm{dVol}_{\Sigma_{g>1}} \end{split}$$

AdS₃ fixed point: $e^{2f} = \frac{1}{r^2}e^{2f_0}$, $e^{2g} = e^{2g_0}$. Central charge: Brown-Henneaux]

$$c_R \simeq c_L \simeq \frac{3L_{\text{AdS}_3}}{2G_N^{(3)}} \simeq \frac{32}{3}(g-1)a_{4d}!$$

(used holographic relations $a_{4d} \simeq c_{4d} \simeq \frac{\pi}{8G_{*}^{(5)}}$

• Also solution to $\mathcal{N} = 4$ and $\mathcal{N} = 8$ SUGRA and can uplift to IIB

Black strings in AdS_5

5d $\mathcal{N} = 2$ minimal gauged SUGRA $(g_{\mu\nu}, A_{\mu})$. Ansatz:

$$\begin{split} ds_5^2 = & e^{2f(r)}(-dt^2 + dz^2 + dr^2) + e^{2g(r)}ds_{\Sigma_{g>1}}^2 \\ & \mathbf{F} = & dA = -\frac{1}{3} \mathrm{dVol}_{\Sigma_{g>1}} \end{split}$$

AdS₃ fixed point: $e^{2f} = \frac{1}{r^2}e^{2f_0}$, $e^{2g} = e^{2g_0}$. Central charge: [Brown-Henneaux]

$$c_R \simeq c_L \simeq \frac{3L_{\text{AdS}_3}}{2G_N^{(3)}} \simeq \frac{32}{3}(g-1)a_{4d}!$$

(used holographic relations $a_{4d} \simeq c_{4d} \simeq \frac{\pi}{8G_N^{(5)}}$)

• Also solution to $\mathcal{N} = 4$ and $\mathcal{N} = 8$ SUGRA and can uplift to IIB

Black strings in AdS_5

5d $\mathcal{N} = 2$ minimal gauged SUGRA $(g_{\mu\nu}, A_{\mu})$. Ansatz:

$$\begin{split} ds_5^2 = & e^{2f(r)}(-dt^2 + dz^2 + dr^2) + e^{2g(r)}ds_{\Sigma_{g>1}}^2 \\ & \mathbf{F} = & dA = -\frac{1}{3} \mathrm{dVol}_{\Sigma_{g>1}} \end{split}$$

AdS₃ fixed point: $e^{2f} = \frac{1}{r^2}e^{2f_0}$, $e^{2g} = e^{2g_0}$. Central charge: [Brown-Henneaux]

$$c_R \simeq c_L \simeq \frac{3L_{\text{AdS}_3}}{2G_N^{(3)}} \simeq \frac{32}{3}(g-1)a_{4d}!$$

(used holographic relations $a_{4d} \simeq c_{4d} \simeq \frac{\pi}{8G_N^{(5)}}$)

• Also solution to $\mathcal{N} = 4$ and $\mathcal{N} = 8$ SUGRA and can uplift to IIB

Odd dimensions: Black Holes in AdS_4

Black holes in AdS_4 describe flows from 3d $\mathcal{N} = 2$ to 1d SUSY QM [Benini-Hristov-Zaffaroni 2015]

4d $\mathcal{N} = 2$ (8 supercharges) gauged supergravity: $(g_{\mu\nu}, A_{\mu})$

$$ds_4^2 = e^{2f(r)}(-dt^2 + dr^2) + e^{2g(r)}ds_{\Sigma_{g>1}}^2, \qquad F = \frac{1}{2\sqrt{2}} \operatorname{dvol}_{\Sigma_{g>1}}$$

 ${
m At}\;{
m AdS}_2\;{
m fixed}\;{
m point:}\;$ [Azzurli, Bobev, MC, Min, Zaffaroni, in progress]

$$F_{\text{sugra}} = \frac{\pi L_{\text{AdS}_2}^2}{2G_N^{(2)}} = (g-1)F_{S^3}$$

• Universal flow \Rightarrow uplifted to M-theory or massive IIA

Odd dimensions: Black Holes in AdS_4

Black holes in AdS_4 describe flows from 3d $\mathcal{N} = 2$ to 1d SUSY QM [Benini-Hristov-Zaffaroni 2015]

4d $\mathcal{N} = 2$ (8 supercharges) gauged supergravity: $(g_{\mu\nu}, A_{\mu})$

$$ds_4^2 = e^{2f(r)}(-dt^2 + dr^2) + e^{2g(r)}ds_{\Sigma_{g>1}}^2, \qquad \mathbf{F} = \frac{1}{2\sqrt{2}} \operatorname{dvol}_{\Sigma_{g>1}}$$

 $\operatorname{At}\operatorname{AdS}_2$ fixed point: [Azzurli, Bobev, MC, Min, Zaffaroni, in progress]

$$F_{\text{sugra}} = \frac{\pi L_{\text{AdS}_2}^2}{2G_N^{(2)}} = (g-1)F_S^2$$

• Universal flow \Rightarrow uplifted to M-theory or massive IIA

Odd dimensions: Black Holes in AdS_4

Black holes in AdS_4 describe flows from 3d $\mathcal{N} = 2$ to 1d SUSY QM [Benini-Hristov-Zaffaroni 2015]

4d $\mathcal{N} = 2$ (8 supercharges) gauged supergravity: $(g_{\mu\nu}, A_{\mu})$

$$ds_4^2 = e^{2f(r)}(-dt^2 + dr^2) + e^{2g(r)}ds_{\Sigma_{g>1}}^2, \qquad \mathbf{F} = \frac{1}{2\sqrt{2}} \operatorname{dvol}_{\Sigma_{g>1}}$$

At AdS₂ fixed point: [Azzurli, Bobev, MC, Min, Zaffaroni, in progress]

$$F_{\text{sugra}} = \frac{\pi L_{\text{AdS}_2}^2}{2G_N^{(2)}} = (g-1)F_{S^3}$$

• Universal flow \Rightarrow uplifted to M-theory or massive IIA

Uplifts

In M-theory: [Gauntlett-Kim-Waldram 2007]

$$\label{eq:s11} \begin{split} ds_{11}^2 &= L^2 \left(ds_4^2 + 16 \, ds_{\rm SE_7}^2 \right) \,, \\ {\rm with} \ ds_4^2 &= - \left(\rho - \frac{1}{2\rho} \right)^2 dt^2 + \left(\rho - \frac{1}{2\rho} \right)^{-2} d\rho^2 + \rho^2 ds_{\Sigma_{\mathfrak{g}}}^2 \,\, {\rm and} \,\, G_{(4)} \neq 0. \end{split}$$

In massive IIA, new solution:

$$ds_{10}^2 = e^{2\lambda} L^2 \left(ds_4^2 + ds_6^2 \right)$$

and $(A_1, A_2, A_3) \neq 0$ and

$$ds_6^2 = \omega_0^2 \left[e^{\varphi - 2\phi} X^{-1} d\alpha^2 + \sin^2(\alpha) (\Delta_1^{-1} ds_{\text{KE}_4}^2 + X^{-1} \Delta_2^{-1} \eta^2) \right]$$
$$e^{2\lambda} \equiv (\cos(2\alpha) + 3)^{1/2} (\cos(2\alpha) + 5)^{1/8} ,$$

 L, ω_0 constants.

- New massive IIA vacua with CFT duals
- F_{S^3} computes entropy of these BHs

Uplifts

In M-theory: [Gauntlett-Kim-Waldram 2007]

$$ds_{11}^2 = L^2 \left(ds_4^2 + 16 \, ds_{\text{SE}_7}^2 \right) \,,$$
 with $ds_4^2 = -\left(\rho - \frac{1}{2\rho} \right)^2 dt^2 + \left(\rho - \frac{1}{2\rho} \right)^{-2} d\rho^2 + \rho^2 ds_{\Sigma_{\mathfrak{g}}}^2 \text{ and } G_{(4)} \neq 0.$

In massive IIA, new solution:

$$ds_{10}^2 = e^{2\lambda} L^2 \left(ds_4^2 + ds_6^2 \right)$$

and $(A_1, A_2, A_3) \neq 0$ and

$$ds_6^2 = \omega_0^2 \left[e^{\varphi - 2\phi} X^{-1} d\alpha^2 + \sin^2(\alpha) (\Delta_1^{-1} ds_{\text{KE}_4}^2 + X^{-1} \Delta_2^{-1} \eta^2) \right]$$
$$e^{2\lambda} \equiv (\cos(2\alpha) + 3)^{1/2} (\cos(2\alpha) + 5)^{1/8} ,$$

 L, ω_0 constants.

- New massive IIA vacua with CFT duals
- F_{S^3} computes entropy of these BHs

The power of the universal flow

Uplifting to either M-theory or massive IIA, dual CFT₃'s very different:

M-theory: $F_{S^3} \sim N^{3/2}$ massive IIA: $F_{S^3} \sim N^{5/3}$

- Universal flow predicts: $F_{S^1 \times \Sigma_g} / F_{S^3} \simeq (g-1)$.
- Nontrivial prediction of holography for corresponding Matrix Models!

The power of the universal flow

Uplifting to either M-theory or massive IIA, dual CFT₃'s very different:

- Universal flow predicts: $F_{S^1 \times \Sigma_g} / F_{S^3} \simeq (g-1)$.
- Nontrivial prediction of holography for corresponding Matrix Models!
The power of the universal flow

Uplifting to either M-theory or massive IIA, dual CFT₃'s very different:

M-theory: $F_{S^3} \sim N^{3/2}$ massive IIA: $F_{S^3} \sim N^{5/3}$

- Universal flow predicts: $F_{S^1 \times \Sigma_g} / F_{S^3} \simeq (g-1)$.
- Nontrivial prediction of holography for corresponding Matrix Models!

Matrix Models

Can we test this in field theory?

• Localization on S^3 : [Kapustin-Willett-Yaakov 2009]

$$Z_{S^3} = \int du e^{-ik\pi \operatorname{Tr} a^2} \prod_{\alpha} 2\sinh(\pi\alpha(a)) \prod_{\rho \in \mathcal{R}} \frac{1}{\cosh(\pi\rho(a))}$$

where $a = u + i(\Delta - 1/2)$.

• Localization on $S^1 imes \Sigma_{m{g}}$ [Benini-Zaffaroni 2016]

$$Z_{S^1 \times \Sigma_{\mathfrak{g}}} = \sum_{\mathfrak{m}} \oint_{\mathrm{JK}} \frac{dx}{2\pi i x} x^{k\mathfrak{m}} \prod_{\alpha} (1 - x^{\alpha})^{1 - \mathfrak{g}} \prod_{\rho \in \mathcal{R}} \left(\frac{x^{\rho/2} y}{1 - x^{\rho} y} \right)^{\rho(\mathfrak{m}) + \gamma(\mathfrak{n}) - (\mathfrak{g} - 1)}$$

with x, y fugacities $e^{i(A_t+\beta\sigma)}$ and $\mathfrak{m}, \mathfrak{n}$ fluxes $\int_{\Sigma} F$ for gauge and global symmetries.

Matrix Models

Can we test this in field theory?

• Localization on S^3 : [Kapustin-Willett-Yaakov 2009]

$$Z_{S^3} = \int du e^{-ik\pi \operatorname{Tr} a^2} \prod_{\alpha} 2\sinh(\pi\alpha(a)) \prod_{\rho \in \mathcal{R}} \frac{1}{\cosh(\pi\rho(a))}$$

where $a = u + i(\Delta - 1/2)$.

• Localization on $S^1 imes \Sigma_{rak{g}}$ [Benini-Zaffaroni 2016]

$$Z_{S^1 \times \Sigma_{\mathfrak{g}}} = \sum_{\mathfrak{m}} \oint_{\mathrm{JK}} \frac{dx}{2\pi i x} x^{k\mathfrak{m}} \prod_{\alpha} (1 - x^{\alpha})^{1 - \mathfrak{g}} \prod_{\rho \in \mathcal{R}} \left(\frac{x^{\rho/2} y}{1 - x^{\rho} y} \right)^{\rho(\mathfrak{m}) + \gamma(\mathfrak{n}) - (\mathfrak{g} - 1)}$$

with x, y fugacities $e^{i(A_t + \beta \sigma)}$ and $\mathfrak{m}, \mathfrak{n}$ fluxes $\int_{\Sigma} F$ for gauge and global symmetries.

Matrix Models

Can we test this in field theory?

• Localization on S^3 : [Kapustin-Willett-Yaakov 2009]

$$Z_{S^3} = \int du e^{-ik\pi \operatorname{Tr} a^2} \prod_{\alpha} 2\sinh(\pi\alpha(a)) \prod_{\rho \in \mathcal{R}} \frac{1}{\cosh(\pi\rho(a))}$$

where
$$a = u + i(\Delta - 1/2)$$
.

• Localization on $S^1 \times \Sigma_{\mathfrak{g}}$ [Benini-Zaffaroni 2016]

$$Z_{S^1 \times \Sigma_{\mathfrak{g}}} = \sum_{\mathfrak{m}} \oint_{\mathrm{JK}} \frac{dx}{2\pi i x} x^{k\mathfrak{m}} \prod_{\alpha} (1 - x^{\alpha})^{1 - \mathfrak{g}} \prod_{\rho \in \mathcal{R}} \left(\frac{x^{\rho/2} y}{1 - x^{\rho} y} \right)^{\rho(\mathfrak{m}) + \gamma(\mathfrak{n}) - (\mathfrak{g} - 1)}$$

with x, y fugacities $e^{i(A_t + \beta \sigma)}$ and $\mathfrak{m}, \mathfrak{n}$ fluxes $\int_{\Sigma} F$ for gauge and global symmetries.

At large N: [Morteza-Zaffaroni 2016]

$$F_{S^1 \times \Sigma_{\mathfrak{g}}}(\Delta_I, \mathfrak{n}_I) = (\mathfrak{g} - 1)F_{S^3}(\Delta_I/\pi) + \sum_I \left(\frac{\mathfrak{n}_I}{1 - \mathfrak{g}} - \frac{\Delta_I}{\pi}\right) \frac{\pi}{2} \frac{\partial}{\partial \Delta_I} F_{S^3}(\Delta_I/\pi)$$

Universal twist amounts to: $\mathfrak{n}_I = (1 - \mathfrak{g})\Delta_I/\pi \Rightarrow$

$$F_{S^1 \times \Sigma_{\mathfrak{g}}} = (\mathfrak{g} - 1) F_{S^3}$$

Perfect match! [Azzurli-Bobev-MC-Min–Zaffaroni 2017]

- Microscopic derivation of entropy of new BH in massive IIA
- Deformations by adding flavor/baryonic fluxes possible (in progress)

At large N: [Morteza-Zaffaroni 2016]

$$F_{S^1 \times \Sigma_{\mathfrak{g}}}(\Delta_I, \mathfrak{n}_I) = (\mathfrak{g} - 1)F_{S^3}(\Delta_I/\pi) + \sum_I \left(\frac{\mathfrak{n}_I}{1 - \mathfrak{g}} - \frac{\Delta_I}{\pi}\right) \frac{\pi}{2} \frac{\partial}{\partial \Delta_I} F_{S^3}(\Delta_I/\pi)$$

Universal twist amounts to: $\mathfrak{n}_I = (1 - \mathfrak{g})\Delta_I/\pi \Rightarrow$

$$F_{S^1 \times \Sigma_{\mathfrak{g}}} = (\mathfrak{g} - 1) F_{S^3}$$

Perfect match! [Azzurli-Bobev-MC-Min–Zaffaroni 2017]

Microscopic derivation of entropy of new BH in massive IIA
Deformations by adding flavor/baryonic fluxes possible (in progress)

At large N: [Morteza-Zaffaroni 2016]

$$F_{S^1 \times \Sigma_{\mathfrak{g}}}(\Delta_I, \mathfrak{n}_I) = (\mathfrak{g} - 1)F_{S^3}(\Delta_I/\pi) + \sum_I \left(\frac{\mathfrak{n}_I}{1 - \mathfrak{g}} - \frac{\Delta_I}{\pi}\right) \frac{\pi}{2} \frac{\partial}{\partial \Delta_I} F_{S^3}(\Delta_I/\pi)$$

Universal twist amounts to: $\mathfrak{n}_I = (1 - \mathfrak{g})\Delta_I/\pi \Rightarrow$

$$F_{S^1 \times \Sigma_{\mathfrak{g}}} = (\mathfrak{g} - 1)F_{S^3}$$

Perfect match! [Azzurli-Bobev-MC-Min–Zaffaroni 2017]

- Microscopic derivation of entropy of new BH in massive IIA
- Deformations by adding flavor/baryonic fluxes possible (in progress)

Summary & Outlook

- Existence of \mathcal{U} niversal RG flows across (even) dimensions (exact, finite N)
- Strong evidence across odd dimensions (large N for now)
- Holography predicts nontrivial matrix model relations
- $\bullet~{\rm Large~number~of~new~AdS_2~M-theory/massive~IIA~backgrounds with CFT duals$
- 5d \rightarrow 3d, 1d? New relations among matrix models? $F_{S^5}/F_{\Sigma_a \times S^3}$?
- Flows between even-odd dimensions? $F_{IR} \propto a_{UV}$?

THANK YOU!