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Basic Setup

Consider a QFT on Md = Rp ×Md−p and flow to IR:

Md−p

Rp

QFTd

RG

QFTp

Questions:

1) What are properties of such RG flows?
2) What is the IR theory?
3) What is the holographic description?
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Motivation

Recently, great interest in QFTs on Md

Exact results by localization in various dimensions [Pestun, Kapustin et

al., Benini et al., Doroud et al.] Check of dualities and AdS/CFT
Taking Md = Md−p × M̃p leads to new dualities Td−p ↔ T̃p
[Alday-Gaiotto-Tachikawa, Gadde-Pomini-Rastelli-Razamat, Dimofte-Gaiotto-Gukov,

· · · ]

Compactification leads to large classes of SCFTs from higher
dimensions [Maldacena-Núñez, Bershadsky-Johansen-Sadov-Vafa, Gaiotto, Bah et

al., Crichigno-Benini-Bobev,· · · ]

Usually, behavior depends on specifics of theories considered.
In this talk, we are mostly interested in universal properties.
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What do we mean by “universal”?

Prototypical example of a (4d→4d) universal flow:

4d N = 2

4d N = 1

Pilch-Warner

aN=1

aN=2

' 27

32

First found for N = 4→ N = 1 flow [Anselmi-Freedman et al. 1997]

Later proven in more generality for N = 2→ N = 1 flows
[Tachikawa-Wecht 2009]
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Universal flows across (even) dimensions

4d N = 2
4d N = 1

2d (0; 2)2d (2; 2)

6d (2; 0)

2d (0; 4)
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Universal flows across (even) dimensions

4d N = 2
4d N = 1

2d (0; 2)2d (2; 2)

6d (2; 0)

2d (0; 4)

(ap,~cp) = U (ad,~cd)
(

21 −6
14 −2

)

(
2 −1
0 1

)(
2 −1
2 −1

) (
5 −3
2 0

)

(
63 −27
35 −11

)
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Universal flows across (odd) dimensions

In even d anomalies nicely behaved under RG, but more general
story:

3d N = 2 on Σg

1d SUSY QM

FIR
FUV

= (g − 1)

Many more universal relations predicted by holography
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Review tools



Tool 1: Topological twist [Witten 1988]

To preserve SUSY on Md:

(∂µ + ωµ)ε = 0

Generically, no solutions. But, if global R-symmetry, turn
background on:

(∂µ + ωµ +Abackµ )ε = 0
Abackµ =−ωµ
=======⇒ ∂µε = 0

Comments:

SUSY only partially preserved
Spin of fields shifted: (∂µ + (s− q)ωµ)φ

If Md = Rp ×Md−p twist only alongMd−p
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Tool 1: Topological twist [Witten 1988]

In other words:

Global symmetry S ×GR (Lorentz×R-symmetry)

Twist amounts to choosing embedding

S ⊂ GR

Different embeddings ⇒ different # of SUSYs preserved
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Tool 2: Anomalies

Anomalies are robust nonperturbative observables. Interested in two
kinds of anomalies:

’t Hooft R-symmetry anomalies 〈∂µjµR〉 6= 0. In 4d and 2d:

kRRR, kRR, · · ·

Weyl Anomalies
〈Tµµ 〉Md

∼ aE + ciWi

If SUSY ⇒ {Tµν , jµR} ⇒

(a, ci) related to k′s

Downside: Only available in even dimensions
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Field Theory



4d N = 1 on Σg>1

2d N = (0, 2)
��



Universal relation [Benini-Bobev-MC 2015]

To establish relation among central charges, 3 simple steps:
1) R-symmetry is U(1)R. Assume no Abelian flavor symmetry:

I6 =
kRRR

6
c1(R)3 − kR

24
c1(R) p1(T4)

2) Twist on Σg: U(1)Σ ⊂ U(1)R ⇒

c1(R) → c1(R) +
1

2
dVol(Σg)

3) Integrate
∫

Σg
I6 and compare to

I4 =
kRR

2
c1(R)2 − k

24
p1(T2)
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This leads to (anomaly matching)

kRR = (g − 1)kRRR , k = (g − 1)kR

Assuming fixed point in UV and IR: (Ward identities)

4d : a4d =
9

32
kRRR −

3

32
kR , c4d =

9

32
kRRR −

5

32
kR

2d : cr = 3kRR , cr − cl = k

gives: (
cr
cl

)
=

16(g − 1)

3

(
5 −3
2 0

)(
a4d

c4d

)

True also for compactification of N = 2, 4.
In the large–N limit:

cr ' cl '
32

3
(g − 1)a4d
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4d N = 2 on Σg>1

2d N = (2, 2)
��



R-symmetry is now SU(2)× U(1)r. Thus, more twists are possible:

Pick U(1)Σ ⊂ U(1)R3︸ ︷︷ ︸
α

× U(1)r︸ ︷︷ ︸
β

[Kapustin 2006]

Assuming IR fixed point one shows: [Bobev-MC 2017]

For α–twist:

2d N = (2, 2):
(
cr
cl

)
= 12 (g − 1)

(
2 −1
2 −1

)(
a4d

c4d

)
Note cr = cl = 3(g − 1)dG with dG ≡ 4(2a4d − c4d) dim. of
Coulomb branch of 4d theory [Shapere-Tachikawa 2008]

For β–twist:

2d N = (0, 4):
(
cr
cl

)
= 24 (g − 1)

(
2 −1
0 1

)(
a4d

c4d

)

1
3α+ 4

3β–twist equals N = 1 twist

13 / 27
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6d N = (2, 0) on Σg>1

4d N = 1 4d N = 2
�� ��



6d→4d and 6d→2d

Pick SO(2)Σ ⊂ SO(2)× SO(2) ⊂ SO(5)R

4d N = 2:
(
a4d

c4d

)
=

(g − 1)

72

(
21 −6
14 −2

)(
a6d

c6d

)

4d N = 1:
(
a4d

c4d

)
=

(g − 1)

384

(
105 −33
49 −1

)(
a6d

c6d

)
Similarly, compactifying on Kähler M4:

2d N = (0, 2):
(
cr
cl

)
=

(P1 + 2χ)

96

(
63 −27
35 −11

)(
a6d

c6d

)
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Comment: Hofman-Maldacena Bounds

These are 4d bounds on a4d
c4d

from energy positivity [Hofman-Maldacena ’08,

’16]

3
7

4
7

1

1
2

3
5 1 3

2

0

a6d

c6d

a4d

c4d

cr

5

14

4

7
1

1

2
1

5

4

0

a
6d

c
6d

a
4d

c
4d

cr

Universal flows map 4d values to (interesting?) values in 6d and 2d
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Which flows are not universal?

Consider theories with flavor symmetries GF with generators Fi
Infinite family of twists:

Tback = T conf.
R + biFi

Complication: Mixing of flavor and R-symmetry along flow:

SCFTUV

SCFTIR

RIR = RUV + εi(b)Fi , εi = ?

Generically εi 6= 0 for bi 6= 0

Resulting 2d theories labelled by bi ⇒ families of 2d SCFTs.
16 / 27



Which flows are not universal?

Consider theories with flavor symmetries GF with generators Fi
Infinite family of twists:

Tback = T conf.
R + biFi

Complication: Mixing of flavor and R-symmetry along flow:

SCFTUV

SCFTIR

RIR = RUV + εi(b)Fi , εi = ?

Generically εi 6= 0 for bi 6= 0

Resulting 2d theories labelled by bi ⇒ families of 2d SCFTs.
16 / 27



Which flows are not universal?

Consider theories with flavor symmetries GF with generators Fi
Infinite family of twists:

Tback = T conf.
R + biFi

Complication: Mixing of flavor and R-symmetry along flow:

SCFTUV

SCFTIR

RIR = RUV + εi(b)Fi , εi = ?

Generically εi 6= 0 for bi 6= 0

Resulting 2d theories labelled by bi ⇒ families of 2d SCFTs.
16 / 27



Which flows are not universal?

Consider theories with flavor symmetries GF with generators Fi
Infinite family of twists:

Tback = T conf.
R + biFi

Complication: Mixing of flavor and R-symmetry along flow:

SCFTUV

SCFTIR

RIR = RUV + εi(b)Fi , εi = ?

Generically εi 6= 0 for bi 6= 0

Resulting 2d theories labelled by bi ⇒ families of 2d SCFTs.
16 / 27



Example: Y p,q Quivers on R2 × Σg [Benini, Bobev, MC 2015]

Global symmetry SU(2)1 × U(1)2 × U(1)B × U(1)R

General twist:

Tback = T conf.
R + b1T1 + b2T2 + bTB;

b1, b2, b flavor fluxes through Σg

SU(2)1 → U(1)1 broken by flux, thus:

Ttrial = T conf.
R + ε1T1 + ε2T2 + εBTB

Extremization principle:

ctrr = 3kRR = −6(g − 1)
∑

σ∈Weyl

mσ t
back
σ (qσtr(ε))

2

17 / 27
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Thus, 2d SCFTs labelled by (p, q; g; b1, b2, b) and central charges:

cIRl,r = ctrl,r(ε
∗) = cuniv

l,r + fgp,q(b1, b2, b)

Theories unitary (cl,r > 0) only in regions of parameter space:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Regions in b1,2 plane (b = 0) where cR > 0 (for κ = {1, 0,−1})

Important features:
For b1 = b2 = b = 0 ⇒ ε1 = ε2 = ε = 0 ⇒ cl,r = cuniv

l,r

Generically ε 6= 0 ⇒ Mixing of R-symmetry with baryonic
symmetry!
New phenomenon: mixing of “geometry” with “topology”
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Holography



Two reasons for holography:

1) Establish existence of RG flows (at large N)

2) When anomalies not available, holography predicts

FIR = uFUV

Nontrivial predictions for Matrix models!
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Holographic Description

AdSd+1

AdSp+1

Because univ. twist {Tµν , jRµ } minimal gauged SUGRA is enough
p-branes magnetically charged
All sols. admit uplift to string/M-theory. Different uplifts ⇒
different CFT duals.
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Black strings in AdS5

5d N = 2 minimal gauged SUGRA (gµν , Aµ). Ansatz:

ds2
5 =e2f(r)(−dt2 + dz2 + dr2) + e2g(r)ds2

Σg>1

F =dA = −1

3
dVolΣg>1

AdS3 fixed point: e2f = 1
r2
e2f0 , e2g = e2g0 . Central charge:

[Brown-Henneaux]

cR ' cL '
3LAdS3

2G
(3)
N

' 32

3
(g − 1)a4d !

(used holographic relations a4d ' c4d ' π

8G
(5)
N

)

Also solution to N = 4 and N = 8 SUGRA and can uplift to IIB
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Odd dimensions: Black Holes in AdS4

Black holes in AdS4 describe flows from 3d N = 2 to 1d SUSY QM
[Benini-Hristov-Zaffaroni 2015]

4d N = 2 (8 supercharges) gauged supergravity: (gµν , Aµ)

ds2
4 = e2f(r)(−dt2 + dr2) + e2g(r)ds2

Σg>1
, F =

1

2
√

2
dvolΣg>1

At AdS2 fixed point: [Azzurli, Bobev, MC, Min, Zaffaroni, in progress]

Fsugra =
πL2

AdS2

2G
(2)
N

= (g − 1)FS3

Universal flow ⇒ uplifted to M-theory or massive IIA
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Uplifts

In M-theory: [Gauntlett-Kim-Waldram 2007]

ds2
11 = L2

(
ds2

4 + 16 ds2
SE7

)
,

with ds2
4 = −

(
ρ− 1

2ρ

)2
dt2 +

(
ρ− 1

2ρ

)−2
dρ2 + ρ2ds2

Σg
and G(4) 6= 0.

In massive IIA, new solution:

ds2
10 = e2λL2

(
ds2

4 + ds2
6

)
and (A1, A2, A3) 6= 0 and

ds2
6 = ω2

0

[
eϕ−2φX−1dα2 + sin2(α)(∆−1

1 ds2
KE4

+X−1∆−1
2 η2)

]
e2λ ≡ (cos(2α) + 3)1/2(cos(2α) + 5)1/8 ,

L, ω0 constants.
New massive IIA vacua with CFT duals
FS3 computes entropy of these BHs
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The power of the universal flow

Uplifting to either M-theory or massive IIA, dual CFT3’s very different:

M-theory: FS3 ∼ N3/2 massive IIA: FS3 ∼ N5/3

Universal flow predicts: FS1×Σg/FS3 ' (g − 1).
Nontrivial prediction of holography for corresponding Matrix
Models!
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Matrix Models

Can we test this in field theory?
Localization on S3: [Kapustin-Willett-Yaakov 2009]

ZS3 =

∫
due−ikπTra2

∏
α

2 sinh(πα(a))
∏
ρ∈R

1

cosh(πρ(a))

where a = u+ i(∆− 1/2).
Localization on S1 × Σg [Benini-Zaffaroni 2016]

ZS1×Σg
=
∑
m

∮
JK

dx

2πix
xkm

∏
α

(1− xα)1−g
∏
ρ∈R

(
xρ/2y

1− xρy

)ρ(m)+γ(n)−(g−1)

with x, y fugacities ei(At+βσ) and m, n fluxes
∫

Σ F for gauge and
global symmetries.
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At large N : [Morteza-Zaffaroni 2016]

FS1×Σg
(∆I , nI) = (g− 1)FS3 (∆I/π) +

∑
I

(
nI

1− g
− ∆I

π

)
π

2

∂

∂∆I
FS3 (∆I/π)

Universal twist amounts to: nI = (1− g)∆I/π ⇒

FS1×Σg
= (g− 1)FS3

Perfect match! [Azzurli-Bobev-MC-Min–Zaffaroni 2017 ]

Microscopic derivation of entropy of new BH in massive IIA
Deformations by adding flavor/baryonic fluxes possible (in
progress)
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Summary & Outlook



Summary and Outlook

Existence of Universal RG flows across (even) dimensions (exact,
finite N)
Strong evidence across odd dimensions (large N for now)
Holography predicts nontrivial matrix model relations
Large number of new AdS2 M-theory/massive IIA backgrounds
with CFT duals
5d → 3d, 1d? New relations among matrix models? FS5/FΣg×S3?
Flows between even-odd dimensions? FIR ∝ aUV ?
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THANK YOU!


