Entwicklung und Beamtestergebnisse eines GEM-basierten TPC-Auslesesystems

Development and Beam-Test Results of a GEM based TPC Readout.

Paul Malek LCTPC-Deutschland Kollaboration DPG Frühjahrstagung, Münster 28.03.2017

International Linear Collider

- ILC is a planned linear e⁺e⁻ collider.
- > 250-500 GeV collision energy (1 TeV extension).
- > Two detectors to be used alternating.
- > Under political consideration in Japan.

- Developed for precision measurements at ILC.
 - Reconstruction of each particle with the best suited subdetector.
- Time Projection Chamber (TPC) as central tracking detector.
 - Tracking efficiency near 100% even for low momentum particles.
 - Minimal material budget: 5% X₀ barrel, 25% X₀ end plates.
 - 1,8 m outer radius, ~200 track points
 - 3,5 T solenoid field

υн

Universität Hamburg

Required momentum resolution (TPC only) $\sigma_{1/p_{T}} < 10^{-4} \, \mathrm{GeV^{-1}}$

→ point resolution in r $\phi \sigma_{r\phi}$ < 100 µm (compare ALICE: 400-800 µm)

 Readout with Micropattern Gas Detectors (MPGD): Micromegas or GEMs

DESY GridGEM Module

- Triple-GEM module with integrated support structure.
- GEMs mounted on thin, self supporting alumina-ceramic (Al₂O₃) frames.
 - high stiffness

UΗ

- minimal inactive area and material
- ~5000 readout pads in 28 rows
 - 1.26 x 5.85 mm² pad pitch

DESY GridGEM Module

- Triple-GEM module with integrated support structure.
- GEMs mounted on thin, self supporting alumina-ceramic (Al₂O₃) frames.
 - high stiffness

υн

- minimal inactive area and material
- ~5000 readout pads in 28 rows
 - 1.26 x 5.85 mm² pad pitch

Revised GEM Framing Process

- New tool to join GEM and frame during gluing has been commissioned.
- > Previously: Manual GEM stretching and mounting.
- > Now: Reliable, controlled foil mounting ensuring a consistent high quality.

Gas Amplification with GEMs

UН

- Thin insulator copper coated on both sides.
- ➤ Moderate voltages between copper surfaces lead to strong fields inside GEM holes → gas amplification.
- Electron capture / extraction efficiencies depend on ratio of the external to hole field strength.
- Effective GEM gain modified by changes in external fields.

Impact of GEM Deflections on dE/dx Resolution

cathode				cathode
CEMI			\frown	CEMI
GEM I	1.5 kV/cm	transfer field	1.3 kV/cm 1.8 kV	//cm
GEM II	1.5137/		1.413	GEM II
	1.5 KV/cm	transfer field	1.5 kV/cm 1.4 kV	//cm
GEM III 🛛 🗕	3 kV/cm	transfer field induction field	1.5 kV/cm 1.4 kV 3.1 kV/cm 3.2 kV	//cm GEM III //cm

- Deflections of GEMs locally change electrical fields between GEMs.
- > GEM distances: O(mm); GEM deflections: O(100µm) → regional gain changes of a few percent
 - Potential to create regional / angular bias on dE/dx.

UН

- Statistical fluctuations of gas amplification and electronics gain differences are also in this range, each.
- dE/dx resolution dominated by uncertainty on primary ionization

Impact of GEM Deflections on Point Resolution

- > Deflection of GEMs \rightarrow drift field inhomogeneities
 - $\Delta E/E > 10^{-4}$ over ~80 mm drift length at the anode
- Degradation of point resolution: ~3%
 - 100µm ILD-TPC design \oplus 25µm from field distortions = 103.1µm
- > Other field distortions add up (i.e. ion back-flow).
- Important to keep all sources in check.

Paul Malek | 28.03.2017 | 10

GEM Flatness Comparison

Last generation height RMS₉₅: 74µm

- 50-90µm single GEM spread
- > New generation RMS₉₅: 33µm
 - 20-50µm single GEM spread
- New generation consistently more flat by about factor two.

GEM Flatness Comparison

Last generation height RMS₉₅: 74µm

- 50-90µm single GEM spread
- > New generation RMS₉₅: 33µm

υн

- 20-50µm single GEM spread
- New generation consistently more flat by about factor two.

Tests at the DESY II Testbeam.

- > 1-6 GeV electron beam
- > 1 T superconducting solenoid (PCMAG)
 - 85 cm diameter bore
 - material budget: 0.2X₀
- Large TPC prototype:
 - 57 cm drift length, 72 cm diameter
 - three rows of modules (7 module slots)

Comparison with previous Data

- Comparing to data from previous beam test.
- Point resolution in row and drift direction similar in old and new data.
- Minor differences at lower drift distances.
- > On average smaller hits. ← lower diffusion

Comparison with previous Data

- Comparing to data from previous beam test.
- Point resolution in row and drift direction similar in old and new data.
- Minor differences at lower drift distances.
- > On average smaller hits. ← lower diffusion

Summary

- An improved process for mounting GEMs to ceramic frames was successfully applied.
- Sophisticated tooling replaces manual GEM mounting → ensures reliable, controlled mounting and consistent high quality.
- First analysis results from a beam test with newly constructed readout modules are consistent with data from a previous beam test.
- Data analysis is ongoing:
 - Establish double hit and dE/dx resolution based on the new data.

Calculated Gain Deviation

- > Calculated gain distribution for triple GEM stacks from measured GEMs.
- > Gain RMS of combined distribution for last generation: 8.8%
- Combined gain RMS for new generation GEMs: 4.2%

Calculated Gain Deviation

- > Calculated gain distribution for triple GEM stacks from measured GEMs.
- > Gain RMS of combined distribution for last generation: 8.8%
- Combined gain RMS for new generation GEMs: 4.2%

Number of Pulses in a Hit

- Used as a data quality check.
- ► Lower Diffusion in the GEM stack → On average smaller hits in new data.
- Explains differences in resolution in both directions.

Diffusion

> March 2013:

- $\sigma_{0, PRF} = 690.3 \pm 2.6 \ \mu m$
- = $D_t = 0.1032 \pm 0.0004 \text{ mm}/\sqrt{\text{cm}}$
- > December 2016
 - $\sigma_{0,PRF} = 648.0 \pm 2.9 \ \mu m$
 - $D_t = 0.0976 \pm 0.0008 \text{ mm}/\sqrt{\text{cm}}$

GEM Stack Height

- Height comparison of new (left) and old (right) module.
- Stack of the new module is ~0.5mm higher.
 - Including PCB and aluminium back-frame.

Hit Charge

- Find charge pulses in raw data.
- Build hits out of neighboring pulses in a pad row.
- Find tracks in hits & fit the found tracks.
- > Calculate distortions in $r\phi$ and z-direction based on track residuals.
- > Apply calculated distortion corrections to hits.
- Find and fit tracks again.

Distortion Correction

- Distortions are calculated from the mean of the track residuals.
- Hits in each row are then shifted by the calculated amount.
- Tracks are refitted afterwards.

Distortion Comparison

LCTPC

> DESY

- GEM-Stapel mit 3 GEMs, Pads (1.26 x 5.85 mm²), ALTRO Readout
- Japan
 - GEM-Stapel mit 2 GEMs, Pads, ALTRO Readout

Saclay

Micromegas, Pads (3 x 7 mm²) + resistive Beschichtung, AFTER Readout

Bonn, NIKHEF, Freiburg

- Micromegas direkt auf Timepix Chip \rightarrow InGrid
- Tests mit GEMs + Timepix

