Polarization Measurement at the ILC

Robert Karl^{1,2} Jenny List 1

¹DESY

²Universität Hamburg

28.03.2017

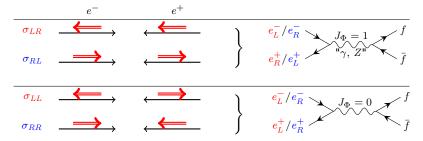
PIER Helmholtz A Graduate Education Program Graduate School

Polarization at an e^-e^+ Collider

Consider only one electron positron pair:

- Helicity is the projection of the spin vector on the direction of motion
- In case of massless particles, helicity is equal to chirality (left and right handedness)

If
$$E_{kin} \gg E_0 \longrightarrow m_e \approx 0$$
 e.g. ILC: $E_{kin}/E_0 \approx \mathcal{O}\left(10^5 - 10^6\right)$



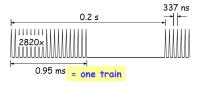
▶ For a bunch of particles the polarization *P* is defined as:

$$P := \frac{N_R - N_L}{N_R + N_L} \qquad \begin{cases} N_R : & \text{The number of right-handed particles} \\ N_L : & \text{The number of left-handed particles} \end{cases}$$

The International Linear Collider (ILC)



- Future linear e^+e^- Collider: $\sqrt{s} \rightarrow 500 \text{ GeV}$ (possible upgrade 1 TeV)
- Proposed in the Kitakami region, Prefecture Iwate, Japan
- ▶ e^+e^- collide in *trains* consisting of $\approx \mathcal{O}(10^3)$ bunches
- One *bunch* consists of $2 \cdot 10^{10}$ particles

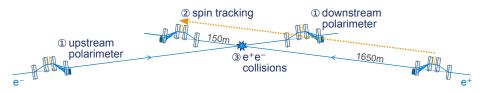


Advantages of Polarized Beams

- International Linear Collider (ILC)
 - e^-e^+ beams are polarized to |80%| and |30%|, respectively
 - Switch of polarization sign (helicity reversal) \longrightarrow choice of spin configuration
- Advantages:
 - Sensitive to additional observables (e.g. left-right-asymmetry)
 - Reduction of background processes and simultaneously increase of signal processes
 - Deep insights into the chiral structure of the weak-interaction for known and unknown particle

- ⇒ All event rates depend linearly on the polarization!
- ⇒ Has to be known as precisely as the luminosity!
- ⇒ Requirement for a permille-level precision of the luminosity-weighed average polarization

ILC Polarimetry Concept for Permille-Level Polarization Precision



The time-resolved beam polarization:

- Measured with 2 laser-Compton polarimeters before and after the e^-e^+ IP
- ▶ Polarimeter precision $\Delta P/P = 0.25\%$ from the start
- Extrapolated to the e^-e^+ IP via spin tracking

The luminosity-weighed averaged polarization:

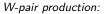
- Calculated from collision data at the IP
- Using the cross section measurement of well known standard model processes
- \blacktriangleright Precision $\Delta P/P=0.1\%$ after ≈ 3 years of data taking
- \Rightarrow Focused on in the following

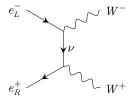
Physics Processes for Polarization Measurement

- Unpolarized cross section $\sigma_0 := \frac{1}{4} \sum \sigma$
 - Higher σ_0 increases the event rate
 - \Rightarrow Increase of statistical polarization precision
- Left-right-asymmetry $A_{\mathsf{RL}}^{\mathsf{LR}} := \frac{\sigma_{LR} \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}}$
 - Sensitivity to the chiral structure
 - There are no ν_R and $\bar{\nu}_L$
 - \Rightarrow Process including a W^{\pm} yields high asymmetries

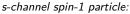
Examples:

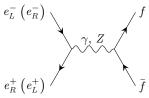
Process	$A_{\rm RL}^{\rm LR}$	$\sigma_0[{\sf pb}]$
WW	0.991	4.52
Z	0.26	15.1
ZZWWMix	0.973	1.83
ZZ	0.386	0.486
	:	





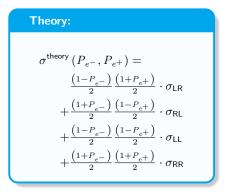
 $\sigma_{\rm LL}=\sigma_{\rm RR}=\sigma_{\rm RL}=0$





 $\sigma_{\rm LL} = \sigma_{\rm RR} = 0 \label{eq:scalar}$ Robert Karl | Polarimetry | 28.03.2017 | 6/10

Polarized Cross Section Calculation: Basic Concept



Experiment:

$$\sigma^{\mathsf{data}}\left(\boldsymbol{P}_{e^-},\boldsymbol{P}_{e^+}\right) = \frac{N\left(\boldsymbol{P}_{e^-},\boldsymbol{P}_{e^+}\right)}{\mathcal{L}\left(\boldsymbol{P}_{e^-},\boldsymbol{P}_{e^+}\right)}$$

N: number of events \mathcal{L} : integrated luminosity Uncertainty via propagation of errors

$$\Delta \sigma^{2} = \underbrace{\left(\frac{\partial \sigma}{\partial N} \Delta N\right)^{2}}_{} + \underbrace{\left(\frac{\partial \sigma}{\partial \mathcal{L}} \Delta \mathcal{L}\right)^{2}}_{}$$

statistical uncertainty systematical uncertainty

Nominal ILC Polarization values

"left"-handed e^- -beam

"right"-handed e^- -beam

$$P_{e^+}^- = -30\%,$$

"left"-handed e^+ -beam

The 4 ILC polarization configurations

$$\begin{aligned} \sigma_{-+} &:= \sigma \left(P_{e^-}^-, P_{e^+}^+ \right) & \sigma_{+-} &:= \sigma \left(P_{e^-}^+, P_{e^+}^- \right) \\ \sigma_{--} &:= \sigma \left(P_{e^-}^-, P_{e^+}^- \right) & \sigma_{++} &:= \sigma \left(P_{e^-}^+, P_{e^+}^+ \right) \end{aligned}$$

• Defining χ^2 function:

$$\chi^2 := \sum_{\text{processes}} \sum_{i,k} \left(\frac{\sigma_{i,k}^{\text{data}} - \sigma_{i,k}^{\text{theory}} \left(P_{e^-}^i, \ P_{e^+}^k \right)}{\Delta \sigma_{i,k}} \right)^2 \qquad i,k \in \{+,-\}$$

- Determine the polarization:
 - ▶ Use $P_{e^-}^-$, $P_{e^-}^+$, $P_{e^+}^+$, $P_{e^+}^+$ as 4 independent parameters

Find
$$P_{e^-}^-$$
, $P_{e^-}^+$, $P_{e^+}^-$, $P_{e^+}^+$ that minimizes χ^2

Parameter uncertainties provides also the polarization uncertainties:

$$\Delta P_{e^-}^-$$
, $\Delta P_{e^-}^+$, $\Delta P_{e^+}^-$, $\Delta P_{e^+}^+$

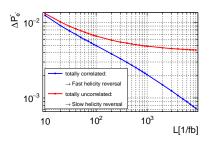
Robert Karl | Polarimetry | 28.03.2017 |

8/10

Systematic Uncertainties and their Correlations

- Systematic Uncertainties are influenced by
 - Detector calibration and alignment
 - Machine performance
 - ...

⇒ Time dependent uncertainties



- Data set are taken one at a time:
 - Slow frequency of helicity reversals:
 \$\mathcal{O}\$ (weeks to months)
 - Data sets are independent
 - \rightarrow Completely uncorrelated
 - X Lead to saturation at systematic precision
- Data sets taken concurrently:
 - Fast frequency of helicity reversals:
 \$\mathcal{O}\$ (train-by-train)
 - \rightarrow Faster than changes in calibration/alignment
 - \rightarrow Generate correlations
 - ✓ Lead to cancellation of systematic uncertainties

Conclusions

- Polarization provides a deep insight in the chiral structure of the standard model and beyond
 - $\Rightarrow\,$ A permille-level precision of the luminosity-weighted average polarization at the IP is required

Concept for Permille-Level Polarization Precision at the ILC

- The time-resolved beam polarization:
 - ▶ Measured with 2 laser-Compton polarimeters before and after the e^-e^+ IP
 - ▶ Precision of $\Delta P/P = 0.25\%$ from the start
- The luminosity-weighed averaged polarization:
 - Calculated from cross section measurements of well known standard model processes
 - ▶ Precision of $\Delta P/P = 0.1\%$ after ≈ 3 years of data taking
- Impact of time-dependent systematic uncertainties can be reduced due to a fast helicity reversal

Backup Slides

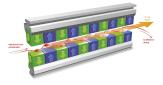
Production of Polarized Beams

Electron beam:

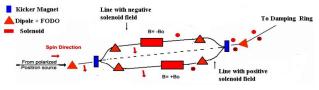
- Shooting of a circular polarized laser on a photocathode
- Switch between polarization signs (helicity reversal)
 - \Rightarrow Switch between signs of the laser polarization

Positron beam:

- Production of circular polarized γ's from e⁻-beam propagating through a helical undulator
 - $\Rightarrow~e^+$ obtained via pair-production of the $\gamma{'}{\rm s}$
- Helicity reversal
 - ⇒ Switch between two beam lines



www.xfel.eu/ueberblick/funktionsweise/



Laser-Compton Polarimeters

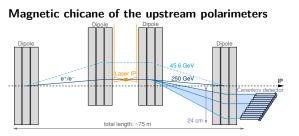
Spin Tracking

Collision Data

Improvement by Constraints from Polarimeter Measurement

Outlook

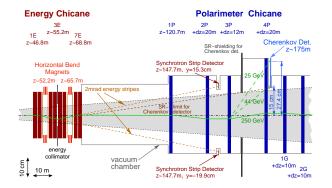
Laser-Compton Polarimeters



- Compton scattering of the beam with a polarized Laser
- $\mathcal{O}(10^3)$ particles per bunch $(2 \cdot 10^{10})$ are scattered
- Magnetic chicane: energy spectrum ⇒ spatial distribution

- Energy spectrum measurement:
 - \Rightarrow Counting the scattered particles at different positions
- Design of the magnetic Chicane:
 - Laser-bunch interaction point moves with beam energy
 position of the Compton edge stays the same
 - Orbit of the non-scattered particles is unaffected by the magnetic chicane

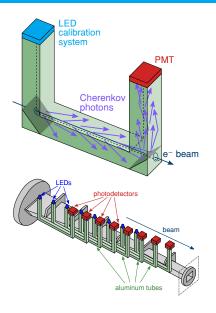
Downstream Polarimeter



Difference to Upstream Polarimeter due to a large disturbed beam

- Stronger banding of the beam after γ-IP
- > 2 additional magnets to restore the beam orbit
- Measuring one bunch per train

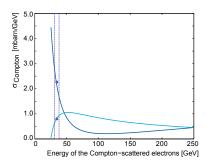
Cherenkov Detectors: Basic Concept



- U-shape channels filled with gas: e.g. perfluorobutane
- Concept
 - Scattered particles propagates through the bottom
 - Produced Cherenkov light is reflected to one end of the channel
 - Light measurement with photomultiplier tube (PMT)
- At the other end: LED for PMT calibration
- Sampling of the energy distribution \rightarrow Number of Cherenkov detector
- \blacktriangleright Energy resolution \rightarrow Thickness of a Cherenkov detector
- Quartz Cherenkov detector concept: Ref.: Theses Annika Vauth

http://bib-pubdb1.desy.de/record/171400

Differential Compton Cross Section



Energy dependence:

$$\frac{\mathsf{d}\sigma_C}{\mathsf{d}y_C} = \frac{2\pi r_e^2}{x_C} \left(a_C + \lambda \mathcal{P} \cdot b_C \right); \quad y_C := 1 - \frac{E'}{E}$$

 e^- Polarization: \mathcal{P} ; Laser Polarization: λ DarkBlue: $\lambda \mathcal{P} = +1$

Cyan: $\lambda \mathcal{P} = -1$

Calculating \mathcal{P}_i of the *i*-th channel with asymmetry A_i , analysing power Π_i

$$A_i := \frac{N_i^- - N_i^+}{N_i^- + N_i^+}; \qquad \Pi_i = \frac{\mathcal{I}_i^- - \mathcal{I}_i^+}{\mathcal{I}_i^- + \mathcal{I}_i^+}; \qquad \mathcal{I}_i^{\pm} := \int\limits_{E_i - \Delta/2}^{E_i + \Delta/2} \frac{\mathrm{d}\sigma_C}{\mathrm{d}y_C} \bigg|_{\lambda \mathcal{P} = \pm 1} \, \mathrm{d}y_C$$

 $N^{\pm} := \#e_{\text{Compton}} \text{ for } \lambda \mathcal{P} = \pm 1; \quad E_i : \text{energy of } i\text{-th channel}; \quad \Delta : \text{energy width}$ $\Rightarrow \quad \lambda \mathcal{P}_i = \frac{A_i}{\Pi_i} \quad \Rightarrow \quad \mathcal{P} = \langle \mathcal{P}_i \rangle$

Compton Scattering Cross Section: Formulary

$$\frac{d\sigma}{dy_C} = \frac{2\pi r_e^2}{x_C} \left(a_C + \lambda \mathcal{P} \cdot b_C \right)$$
$$y_C := 1 - \frac{E_{\gamma}'}{E}; \quad x_C := \frac{4EE_{\gamma}}{m_e^2} \cos^2\left(\frac{\vartheta_0}{2}\right)$$
$$r_C := \frac{y_C}{x_C \left(1 - y_C\right)}$$

$$a_C := (1 - y_C)^{-1} + 1 - y_C$$

- $4r_C (1 - r_C)$

$$b_C := r_C x_C (1 - 2r_C) (2 - y_C)$$

Characteristic Point:

$$E'_{\rm crossover} = \frac{E}{1 + x_C/2},$$

- $\begin{array}{rcl} E, \ E_{\gamma}: & e^-, \gamma \ \text{energy before} \\ & & \text{Compton scattering} \end{array}$
- $\begin{array}{rl} E', \ E'_{\gamma} \hbox{:} & e^-, \gamma \ \text{energy after} \\ & \text{Compton scattering} \end{array}$
- m_e, r_e : mass, classical radius of $e^$
 - $artheta_0$: crossing angle between e^-,γ
 - ${\cal P}:~$ longitudinal polarization of e^-
 - λ : circular polarization of γ_{Laser}

$$E'_{\text{ComptonEdge}} = E'_{\text{min}} = \frac{E}{1 + x_C}$$

Laser-Compton Polarimeters

Spin Tracking

Collision Data

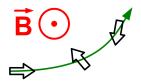
Improvement by Constraints from Polarimeter Measurement

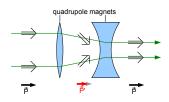
Outlook

DESY

Spin Tracking

Spin Precession





- Polarimeters are 1.65 km and 150 m away from IP
 - \rightarrow Particles propagate through magnets
 - $\rightarrow~$ Magnets influence the spin, as well
 - $\rightarrow\,$ Described by Thomas precession

• if
$$\vec{B}_{\parallel} = \vec{E} = 0$$
:

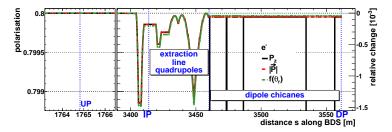
$$\frac{\mathsf{d}}{\mathsf{d}t}\vec{S} = -\frac{q}{m\gamma}\left(\left(1+a\gamma\right)\vec{B}_{\perp}\right)\times\vec{S}$$

- Effects from focusing and defocusing can cancel
- For a series of quadrupole magnets

 P described by the angular divergence θ_r

$$f(\theta_r) = |\vec{\mathcal{P}}|_{\max} \cdot \cos\left((1 + a\gamma) \cdot \theta_r\right)$$

Spin Tracking



Further causes of longitudinal beam polarization change:

- ► Bremsstrahlung: Deceleration by passing through matter → negligible for colliders
- Beamstrahlung: Deflection by the em-field of the oncoming bunch during collision
- Synchrotron radiation: Deflection by the em-field of accelerator magnets

Systematic Polarization Uncertainty

contribution	uncertainty $\left[10^{-3}\right]$
Beam and polarization alignment at polarimeters and IP ($\Delta \vartheta_{\rm bunch}=50\mu{\rm rad},\Delta \vartheta_{\rm pol}=25{\rm mrad}$)	0.72
Variation in beam parameters (10 $\%$ in the emittances)	0.03
Bunch rotation to compensate the beam crossing angle	< 0.01
Longitudinal precession in detector magnets	0.01
Emission of synchrotron radiation	0.005
Misalignments (10 μ) without collision effects	0.43
Total (quadratic sum)	0.85
Collision effects in absence of misalignments	< 2.2

[Ref.:] Thesis Moritz Beckmann (http://bib-pubdb1.desy.de/record/155874)

Laser-Compton Polarimeters

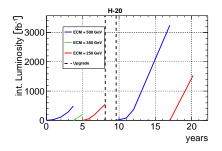
Spin Tracking

Collision Data Consider Angular Information by Using differential Cross Section

Improvement by Constraints from Polarimeter Measurement

Outlook

Reference ILC Running Scenario: H-20



- Each run have its own polarization measurement
- \Rightarrow H-20: 5 polarization measurements
 - All plots will refer to ILC nominal energy of 500 GeV

\sqrt{s}	(-,+)	(+,-)	(-,-)	(+, +)	$\int L dt$
GeV	[%]	[%]	[%]	[%]	$\left[fb^{-1} ight]$
250	67.5	22.5	5	5	2000
350	67.5	22.5	5	5	200
500	40	40	10	10	4000

Special Case: The Modified Blondel Scheme (MBS)

- Constraints for the Modified Blondel Scheme:
 - ▶ Process must fulfill: $\sigma_{LL} \equiv \sigma_{RR} \equiv 0$
 - Perfect helicity reversal: $+|P| \leftrightarrow -|P| \Rightarrow |P| \equiv \text{const.}$
- Unique solution:
 - 4 possible cross section measurements: $\sigma_{-+}, \sigma_{+-}, \sigma_{--}, \sigma_{++}$

Maximal 4 unknown guantities:

$$\sigma_{\mathrm{LR}},~\sigma_{\mathrm{RL}},~|P_{e^-}|\,,~|P_{e^+}|$$

▶ Solve for $|P_{e^{\mp}}|$:

$$\sigma_{\pm\pm} = \frac{\left(1\pm \left|P_{e^{-}}\right|\right)}{2} \frac{\left(1\mp \left|P_{e^{+}}\right|\right)}{2} \cdot \sigma_{RL} + \frac{\left(1\mp \left|P_{e^{-}}\right|\right)}{2} \frac{\left(1\pm \left|P_{e^{+}}\right|\right)}{2} \cdot \sigma_{LR}$$

Modified Blondel-Scheme:

$$|P_{e^{\mp}}| = \sqrt{\frac{(\sigma_{-+} + \sigma_{+-} - \sigma_{--} - \sigma_{++}) \left(\pm \sigma_{-+} \mp \sigma_{+-} + \sigma_{--} - \sigma_{++}\right)}{(\sigma_{-+} + \sigma_{+-} + \sigma_{--} + \sigma_{++}) \left(\pm \sigma_{-+} \mp \sigma_{+-} - \sigma_{--} + \sigma_{++}\right)}}$$

Uncertainties are calculated via analytic error propagation

Previous W-Pair Study by Ivan Marchesini

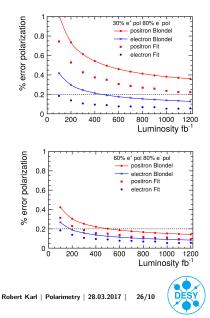
W-Pair Production:

- ▶ Using $e^-e^+ \rightarrow W^+W^- \rightarrow q\bar{q}l\nu$
- Statistical uncertainties only
- Consider equal absolute polarizations
- Including full background study

Analyses techniques: (overview)

- Modified Blondel Scheme
- Angular Fit:
 - ▶ Using a χ²-minimization
 - Considering the production at different angles
 - Studied effects on deviations of the absolute polarization value
 - Measurement of triple gauge couplings

Ref.: Theses Ivan Marchesini (http://pubdb.xfel.eu/record/94888)



Previous Single W^{\pm} , Z, γ Study by Graham W. Wilson

 $\delta_{e^{-}}$

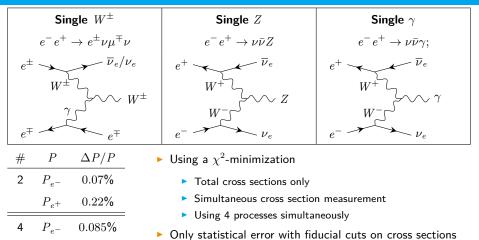
 P_{e^+}

 δ_{e^+}

0.12%

0.22%

0.32%



Measuring absolute polarization deviation

Ref.: Talk Graham W. Wilson (https://agenda.linearcollider. org/event/5468/contributions/24027/) Robert Karl | Polarimetry | 28.03.2017 | 27/10

Current Work on the Determination of the Polarization from Collision Data

Goal:

General strategy for the polarization determination which yields the best precision per measurement time

- General and flexible method combining all relevant processes
- Including all uncertainties and their correlations
- Compensating for a non-perfect helicity reversal
- Considering the additional information from the angular distributions
- Using constraints from the polarimeter measurement for further improvement

Expected Polarized Cross Section

Theoretical polarized cross section in general:

$$\begin{split} \sigma_{\text{theory}}\left(P_{e^{-}},P_{e^{+}}\right) &= \frac{\left(1-P_{e^{-}}\right)}{2}\frac{\left(1-P_{e^{+}}\right)}{2} \cdot \sigma_{\text{LL}} + \frac{\left(1+P_{e^{-}}\right)}{2}\frac{\left(1+P_{e^{+}}\right)}{2} \cdot \sigma_{\text{RR}} \\ &+ \frac{\left(1-P_{e^{-}}\right)}{2}\frac{\left(1+P_{e^{+}}\right)}{2} \cdot \sigma_{\text{LR}} + \frac{\left(1+P_{e^{-}}\right)}{2}\frac{\left(1-P_{e^{+}}\right)}{2} \cdot \sigma_{\text{RL}} \end{split}$$

Nominal ILC Polarization values

Cross section of the 4 polarization configurations

$$\begin{split} \sigma_{--} &:= \sigma \left(P_{e^-}^-, P_{e^+}^- \right) & \sigma_{++} &:= \sigma \left(P_{e^-}^+, P_{e^+}^+ \right) \\ \sigma_{-+} &:= \sigma \left(P_{e^-}^-, P_{e^+}^+ \right) & \sigma_{+-} &:= \sigma \left(P_{e^-}^+, P_{e^+}^- \right) \end{split}$$

Polarized Cross Section Measurement

Measured polarized cross section:

$$\sigma_{\mathsf{data}} = \frac{D - \mathfrak{B}}{\varepsilon \cdot \mathcal{L}}$$

- D: Number of the measured signal events
- \mathfrak{B} : Background expectation value
- ε : Selection efficiency of the detector
- \mathcal{L} : Integrated luminosity provided by the accelerator

Remark: All of them can variate between the different data sets $(\sigma_{--}, \sigma_{++}, \sigma_{-+}, \sigma_{+-})$

Uncertainty of the polarized cross section calculated via error propagation

$$\Delta\sigma^{2} = \left(\frac{\partial\sigma}{\partial D}\Delta D\right)^{2} + \left(\frac{\partial\sigma}{\partial\mathfrak{B}}\Delta\mathfrak{B}\right)^{2} + \left(\frac{\partial\sigma}{\partial\varepsilon}\Delta\varepsilon\right)^{2} + \left(\frac{\partial\sigma}{\partial\mathcal{L}}\Delta\mathcal{L}\right)^{2}$$

Statistical uncertainty: $\Delta D = \sqrt{D}$ due to Poisson fluctuations Systematical uncertainty: $\Delta \mathfrak{B}$, $\Delta \varepsilon$, $\Delta \mathcal{L}$ Robert Karl | Polarimetry | 28.03.2017

30/10

Comparison to Previous Analyses (Statistical Uncertainty Only)

E	500	250
\mathcal{L}	3500	1500
$P_{e^{-}}^{-}$	0.08	0.09
$P_{e^{-}}^{+}$	0.02	0.02
$P_{e^+}^-$	0.04	0.04
$P_{e^+}^+$	0.08	0.08

E	500	350	250
\mathcal{L}	500	200	500
$P_{e^-}^-$	0.2	0.3	0.1
$P_{e^{-}}^{+}$	0.05	0.06	0.03
$P_{e^+}^-$	0.1	0.1	0.06
$P_{e^+}^+$	0.2	0.3	0.1

Single boson:

- $\mathcal{L} = 2000 \text{ fb}^{-1}, \ E = 500 \ GeV$
- No background estimation
- Fiducial cross section cuts
- Limitation on δ : $\Delta \delta < 10^{-3}$

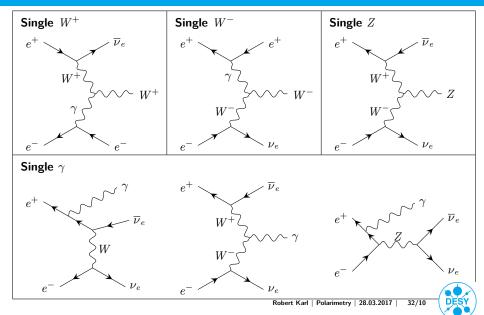
$P_{e^-}: 0.085\%$	$\delta_{e^-}: 0.12\%$
$P_{e^+}:0.22\%$	$\delta_{e^+}: 0.32\%$

W-pairs:

- $\mathcal{L} = 500 \, \text{fb}^{-1}, \ E = 500 \, GeV$
- Full background estimation
- Differential cross section (angular fit)
- Only using 2 free parameters

$$P_{e^-}: 0.08\%$$
 $P_{e^+}: 0.34\%$

Previous Single W^{\pm} , Z, γ Study: Leading Diagrams



Comparison to the Previous W-Pair Study

Study by Ivan Marchesini:

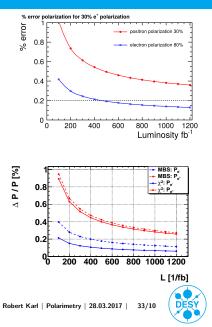
- Using $e^-e^+ \rightarrow W^+W^- \rightarrow q \bar{q} l \nu$
- Statistical uncertainties only
- Consider equal absolute polarizations (MBS)
- Including full background study

Adjustment of the current study:

- \blacktriangleright Limited to $e^- e^+ \rightarrow \, W^+ \, W^- \rightarrow q \bar{q} l \nu$
- Forced equal absolute polarizations $(|P^L| \equiv |P^R|)$
- Including same background estimation and selection efficiency

Comparison:

 $\Rightarrow \chi^2\text{-method}$ yields better precision under same conditions than the MBS



Comparison to Previous Single W^{\pm} , γ , Z Study

Study by Graham W. Wilson

Using 4 Processes simultaneously:

 $\begin{array}{ll} e^- e^+ \rightarrow \nu \bar{\nu} \gamma; & e^- e^+ \rightarrow \nu \bar{\nu} Z \\ e^- e^+ \rightarrow e^+ \nu W^- \rightarrow e^+ \nu \mu^- \bar{\nu} \\ e^- e^+ \rightarrow e^- \bar{\nu} W^+ \rightarrow e^- \bar{\nu} \mu^+ \nu \end{array}$

- ► Consider equal absolute polarizations 2 Parameters: P_{e^-}, P_{e^+}
- Consider deviations: 4 Parameters

$$\begin{split} P^L_{e^\pm} &= -\left|P_{e^\pm}\right| + \frac{1}{2}\delta_\pm \\ P^R_{e^\pm} &= \quad \left|P_{e^\pm}\right| + \frac{1}{2}\delta_\pm \end{split}$$

Comparison to Current analysis

Differences:

parameters		$\Delta P/P, \ \mathcal{L} = 2ab^{-1}$		
#	P	Previous	Current	
2	P_{e^-}	0.07%	0.051%	
	\boldsymbol{P}_{e^+}	0.22%	0.21%	
4	$P_{e^{-}}$	0.085%	0.088%	
	δ_{e^-}	0.12%	0.19%	
	$\boldsymbol{P_{e^+}}$	0.22%	0.23%	
	δ_{e^+}	0.32%	0.56%	

 \mathcal{L} equally distributed between $\sigma_{\pm\pm}$ Statistical precision only

 \blacktriangleright Very similar precision even without additional constraint on δ

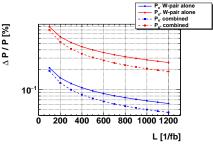
Combining W-Pair + Single W, Z, γ

Combined vs. W-Pairs alone

- ► W-Pair yields only enough information for 2 parameter fit P_e-, P_e+
- ► Large improvement → due to additional processes
- ► Combined: fit of 4 parameters is possible P^L_e, P^R_e, P^L_e, P^R_e
- ⇒ Compensation for a non-perfect helicity reversal

Combined vs. Single Boson

- The 4 processes Single W[±], Single Z, Single γ yields a large analysis power
- Combined precision dominated by single boson processes



$$\Delta P/P, \mathcal{L} = 2\mathsf{a}\mathsf{b}^{-1}$$

single	W,Z,γ	Combined
$P_{e^{-}}$	0.088%	0.079%
$\boldsymbol{\delta}_{e^-}$	0.19%	0.18%
\boldsymbol{P}_{e^+}	0.23%	0.16%
δ_{e^+}	0.56%	0.51%

χ^2 -Minimization

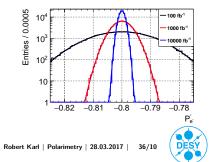
• Defining χ^2 function:

$$\chi^2 := \sum_{\text{process}} \sum_{\pm \pm} \frac{\left(\sigma_{\text{data}} - \sigma_{\text{theory}}\left(P^-_{e^-}, P^+_{e^-}, P^-_{e^+}, P^+_{e^+}\right)\right)^2}{\Delta \sigma^2}$$

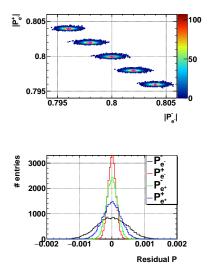
▶ Variating
$$\left(P_{e^-}^-, P_{e^-}^+, P_{e^+}^-, P_{e^+}^+\right) \longrightarrow$$
 Minimizes χ^2

Toy measurement:

- Signal expectation value: $\langle D \rangle = \sigma_{\text{theory}} \cdot \varepsilon \cdot \mathcal{L} + \mathfrak{B}$
- One toy experiment: Random Poisson number around each (D)
- Determine $P_{e^{\pm}}^{\pm}$ by minimizing χ^2
- Simplified case for illustration:
 - $\blacktriangleright \ \mathfrak{B}=0 \text{ and } \varepsilon=1$
 - Statistical uncertainties only
 - Using 10⁵ toy measurements



Testing for a Non-Perfect Helicity Reversal



Variation in the absolute polarization

- Toy Measurement for 5 different polarization discrepancies for both beams
- Nominal initial polarizations: $|P_{e^-}| = 80\%$, $|P_{e^+}| = 30\%$
- Statistical uncertainties only

- Correct determination of the 4 polarization values
- No noticeable impact on polarization precision using total cross sections
- Can compensate for a non-perfect helicity reversal

Theoretical Limit of the Statistical Precision

Consider most relevant processes:

Process	Channel
single W^\pm	$e u l u$, $e u q \overline{q}$
WW	$q \overline{q} q \overline{q}, \ q \overline{q} l u, \ l u l u$
ZZ	$q \overline{q} q \overline{q}, \ q \overline{q} ll, \ llll$
ZZWWMix	$q \overline{q} q \overline{q}, \ l u l u$
Z	$q \overline{q}$, $l l$

- Same processes as for physics analysis (DBD)
- Tree-level cross sections + ISR
- Any combination of processes can be used
- Further process can easily added

Consider best case scenario using σ_{tot} :

- Assumption of a perfect 4π detector
- No background
- No systematic uncertainties
- Using all considered processes

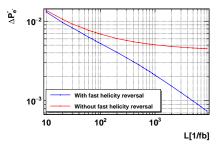
Statistical precision H-20: $\Delta P/P[\%]$

E	500	350	250	500	250
L	500	200	500	3500	1500
$P_{e^-}^-$	0.2	0.3	0.1	0.08	0.09
$P_{e^-}^+$	0.05	0.06	0.03	0.02	0.02
$P_{e^+}^-$	0.1	0.1	0.06	0.04	0.04
$P_{e^+}^+$	0.2	0.3	0.1	0.08	0.08

Systematic Uncertainties and their Correlations

Systematic quantit	related to:	
Integrated luminosity	\mathcal{L}	accelerator
Selection efficiency	ε	detector
	m	

Background estimate $\ \mathfrak{B}$ theory



Remark:

A non-perfect helicity reversal has close to no influence on the precision due to compensation

Uncertainties influenced by

- Detector calibration and alignment
- Machine performance
- $\blacktriangleright \ \mathfrak{B}$ assumed constant and small
- $\Rightarrow \Delta \mathcal{L}$, $\Delta \varepsilon$ are time dependent
- One data set at a time:
 - Data sets are independent
 - Completely uncorrelated
 - ⇒ Lead to saturation at systematic precision

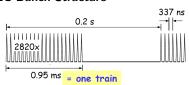
Fast helicity reversal:

- Data sets taken concurrently
- Generate correlations
- ⇒ Lead to cancellation of systematic uncertainties

Generation of Correlated Uncertainties: Fast Helicity Reversal

Generation of Correlated Uncertainties

- ⇒ Change between data sets $(\sigma_{-+}, \sigma_{+-}, \sigma_{--}, \sigma_{++})$ faster than change in detector and accelerator calibration
- \Rightarrow Change between data sets during normal run without additional breaks



ILC Bunch Structure

Two possible frequency:

- bunch-by-bunch: switch between tow bunches
- train-by-train: switch between two trains
- Technical feasibility much easier for train-by-train
- Switch train-by-train should be sufficient for polarization precision
- \Rightarrow Precise correlation coefficient still to do

Implementing Correlated Uncertainties

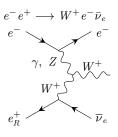
$$\chi^2 = \sum_{\text{process}} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}} \right)^T \Xi^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}} \right); \qquad \vec{\sigma} := \begin{pmatrix} \sigma_{-+} & \sigma_{+-} & \sigma_{-+} \end{pmatrix}^T$$

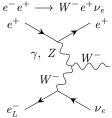
$$\Xi := \Xi_D + \Xi_{\mathfrak{B}} + \Xi_{\varepsilon} + \Xi_{\mathcal{L}}; \qquad \text{e.g.} \ \left(\Xi_{\varepsilon}\right)_{ij} = \operatorname{corr}\left(\vec{\sigma}_i^{\varepsilon}, \ \vec{\sigma}_j^{\varepsilon}\right) \frac{\partial \vec{\sigma}_i}{\partial \varepsilon_i} \frac{\partial \vec{\sigma}_j}{\partial \varepsilon_j} \Delta \varepsilon_i \Delta \varepsilon_j$$

- Using the inverse covariance matrix Ξ^{-1}
- Correlation coefficients:
 - Identical for each process
 - Can be different for each quantity $(\mathfrak{B}, \varepsilon, \mathcal{L})$
 - Statistical uncertainties are always uncorrelated corr $\left(\vec{\sigma}_{i}^{D}, \vec{\sigma}_{j}^{D}\right) = 0 \quad \forall i \neq j$
 - ► Correlation coefficients are no free parameter ⇒ They are an external input parameter

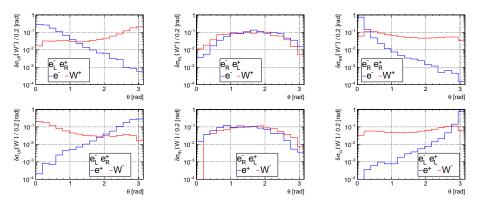
Consideration of the Addition Information from the Angular Distribution

- Total cross section
 - Rely on theoretical calculation
 - \Rightarrow Susceptible to BSM effects
- Differential cross section
 - Additional usage of the angular information
 - \Rightarrow Increase of the robustness against BSM effects
- Starting with Single W Process
 - Angular distribution has a large dependence on the chirality
 - Separated in W^+ and W^- production
 - \Rightarrow Sensitive to individual beam polarization
 - $\blacktriangleright \quad W^+ \colon \text{ only sensitive to } P_{e^+}$
 - W^- : only sensitive to P_e^-
- Further processes can easily be included





Single W^{\pm} : Polar Production Angle Distribution

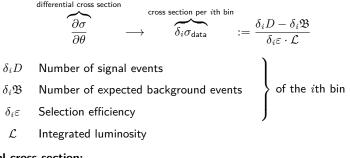


• Single differential cross section: $\partial \sigma / \partial \theta$

- Two independent angles: $\theta_e, \ \theta_W$
- \blacktriangleright For now start with $\theta_e \rightarrow e^\pm$ also needed for separation between W^\pm
- $ightarrow \partial\sigma/\partial heta$ will be calculated via $\Delta\sigma_i/\Delta heta_i$ ("cross section for the *i*-th bin in heta")

Defining Differential Cross Sections

Measured cross section:



Theoretical cross section:

$$\begin{split} \delta_{i}\sigma_{\pm\pm} &= \frac{\left(1\pm\left|P_{e^{+}}^{\pm}\right|\right)\left(1\pm\left|P_{e^{+}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{RR} + \frac{\left(1\pm\left|P_{e^{-}}^{\pm}\right|\right)\left(1\pm\left|P_{e^{+}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{LL} \\ &+ \frac{\left(1\pm\left|P_{e^{-}}^{\pm}\right|\right)}{2}\frac{\left(1\pm\left|P_{e^{+}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{RL} + \frac{\left(1\pm\left|P_{e^{-}}^{\pm}\right|\right)}{2}\frac{\left(1\pm\left|P_{e^{+}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{LR} \\ \delta_{i}\sigma_{\text{theory}} := f\left(\theta_{i}\right)\cdot\sigma_{\text{theory}} \end{split}$$

 $f\left(heta_{i}
ight)$ is directly obtained from the angular distributions Robert Karl | Polarimetry | 28.03.2017 |

44/10

Implementing Differential Cross Sections in the χ^2 Minimization

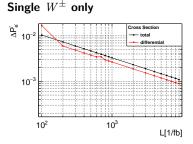
Replacing: $\sigma \longrightarrow \delta_k \sigma$ + Sum over all bins

$$\chi^{2} = \sum_{\text{process}} \sum_{\theta_{k}} \left(\delta_{k} \vec{\sigma}_{\text{data}} - \delta_{k} \vec{\sigma}_{\text{theory}} \right)^{T} \left(\delta_{k} \Xi \right)^{-1} \left(\delta_{k} \vec{\sigma}_{\text{data}} - \delta_{k} \vec{\sigma}_{\text{theory}} \right)$$
$$\delta_{k} \vec{\sigma} := \left(\delta_{k} \sigma_{-+} \quad \delta_{k} \sigma_{+-} \quad \delta_{k} \sigma_{--} \quad \delta_{k} \sigma_{++} \right)^{T}$$
$$\delta_{k} \Xi := \delta_{k} \Xi_{N} + \delta_{k} \Xi_{\mathfrak{B}} + \delta_{k} \Xi_{\varepsilon} + \delta_{k} \Xi_{\mathcal{L}};$$
$$\left(\delta_{k} \Xi_{\varepsilon} \right)_{ij} = \operatorname{corr} \left(\vec{\sigma}_{i}^{\varepsilon}, \ \vec{\sigma}_{j}^{\varepsilon} \right) \frac{\partial \left(\delta_{k} \vec{\sigma}_{i} \right)}{\partial \left(\delta_{k} \varepsilon_{i} \right)} \frac{\partial \left(\delta_{k} \vec{\sigma}_{j} \right)}{\partial \left(\delta_{k} \varepsilon_{j} \right)} \Delta \left(\delta_{k} \varepsilon_{i} \right) \Delta \left(\delta_{k} \varepsilon_{j} \right)$$

Remarks:

- > Due to correlations, the binning in θ has to be equal for all cross sections
- It can differ between processes and decay-channels
- > Range and number of bins of θ can be changed externally for each process

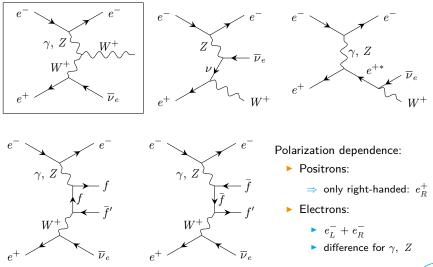
First Toy Measurements: Preliminary Results



Using the following configuration:

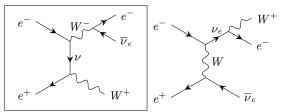
- **>** Using 16 equal bins in a θ range of $[0, \pi]$
- ► Signal determination bin-by-bin: $\langle \delta_k D \rangle = \delta_k \sigma_{\text{theory}} \cdot \delta_k \varepsilon \cdot \mathcal{L} + \delta_k \mathfrak{B}$
- For the start: Statistical error only + no background
- Using H-20 integrated luminosity sharing due to energy
- Differential cross section have a lower statistic uncertainty:
 - Expectation of $\delta_k D$ can be for some bins $\mathcal{O}(1)$
 - Some zero diagonal entries of the covariance matrix ightarrow not invertible
 - \Rightarrow Dropping χ^2 -terms with $\delta_k D = 0$
- Further steps:
 - Optimizing the θ range and binning
 - Including further processes

Contributions to "Actual" Single W Production



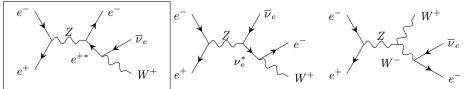
Further Contributions to Single W Production

Contribution from t-channel process:



- t-channel contributions:
 - W-pair production
 - W exchange
- Polarization dependence:
 - $ightarrow \ {
 m only} \ e_R^+ \ + \ {
 m only} \ e_L^-$

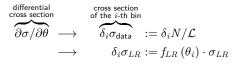
Contribution from s-channel Z process (only for opposite chirality):



Usage of the Differential Polarized Cross Section

- Total cross section
 - Rely on theoretical calculation
 - \Rightarrow Susceptible to BSM effects
- Differential cross section
 - Additional usage of the angular information
 - ⇒ Increase of the robustness against BSM effects

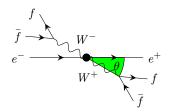
Bin-wise cross section calculation:

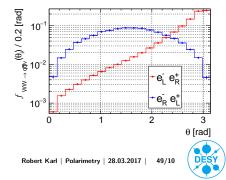


Analog: RL, LL, RR

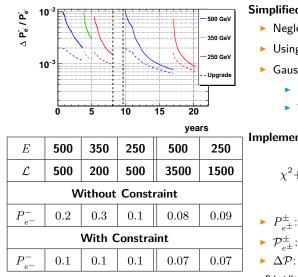
- $\delta_i N$: events of *i*-th bin
- $f(\theta_i)$: fraction of the total cross section

e.g.:
$$e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}l\nu$$





Consider Constraints from the Polarimeter Measurement



Simplified approach: (as a first step)

- Neglect spin transport
- Using $\Delta P/P = 0.25\%$:
- Gaussian distribution
 - Mean: $|P_{e^-}| = 80\%, |P_{e^+}| = 30\%$
 - Width: ΔP

mentation:

$$\chi^{2} + = \sum_{P} \left[\frac{\left(P_{e^{\pm}}^{\pm} - \mathcal{P}_{e^{\pm}}^{\pm} \right)^{2}}{\Delta \mathcal{P}^{2}} \right]$$

- P[±]_{e[±]}: 4 fitted parameters
 P[±]_{e[±]}: Polarimeter measurement
 ΔP: Polarimeter uncertainty
 - Robert Karl | Polarimetry | 28.03.2017 | 50/10

E	500	350	250	500	250
\mathcal{L}	500	200	500	3500	1500
Without Constraint					
$P_{e^{-}}^{-}$	0.2	0.3	0.1	0.08	0.09
$P_{e^{-}}^{+}$	0.05	0.06	0.03	0.02	0.02
$P_{e^+}^-$	0.1	0.1	0.06	0.04	0.04
$P_{e^+}^+$	0.2	0.3	0.1	0.08	0.08
With Constraint					
$P_{e^-}^-$	0.1	0.1	0.1	0.07	0.07
$P_{e^-}^+$	0.04	0.05	0.03	0.02	0.02
$P_{e^+}^-$	0.09	0.09	0.05	0.04	0.03
$P_{e^+}^+$	0.1	0.1	0.09	0.07	0.07

Outlook

Systematic Uncertainty Calculation

Selection Efficiency ε

- \blacktriangleright Realistic values for ε and $\Delta\varepsilon$ still missing
- \triangleright ε values for:
 - W-pair production: Thesis Ivan
 - Single W: Accessible due to the work of our former intern Sebastian Garcia

Expected Background Prediction \mathfrak{B}

- Background estimate $\mathfrak{B} \pm \Delta \mathfrak{B}$ is also missing for each process
- Full background analysis for every process is not feasible
- ▶ $WW \rightarrow qql\nu$: 𝔅 can be taken from Ivan's thesis
 - $\Rightarrow\,$ Assuming similar $\mathfrak B$ for other boson pair

Outlook

Simultaneous Fitting of chiral cross sections

Similar to G. Wilson's single boson study:

σ_{LR}^{γ}	σ^Z_{LR}	σ^{μ}_{LR}	σ^{μ}_{LR}
$\sigma_{RL}^{\tilde{\gamma}}$	0.465	0.066	0.066
0.0	0.0	σ^{μ}_{SS}	0.0
0.0	0.0	0.0	σ^{μ}_{SS} /

Ongoing Work for the current study:

- Implementing of free linear cross section scaling parameters
- Each chiral cross section can be scaled individually or fixed
- Chiral cross section can have the same scaling parameter
- Which cross section is scaled will be changeable

7-parameter single boson fit

 $\begin{array}{l} 2\,\mathrm{ab}^{-1} \,\,\mathrm{equally}\,\,\mathrm{distributed}\\ \mathrm{(statistical errors only)}\\ |P_{e^-}| = 80.000 \pm 0.056\%\\ |P_{e^-}| = 30.000 \pm 0.065\%\\ \sigma_{LR}^{\gamma} = 3098.0 \pm 2.7\,\mathrm{fb}\\ \sigma_{RL}^{\gamma} = 25.3 \pm 1.1\,\mathrm{fb}\\ \sigma_{LR}^{Z} = 159.40 \pm 0.57\,\mathrm{fb}\\ \sigma_{LR}^{\mu} = 580.9 \pm 1.1\,\mathrm{fb}\\ \sigma_{SS}^{\mu} = 657.4 \pm 1.1\,\mathrm{fb} \end{array}$

Beam polarizations correlation:

$$\rho\left(\left|P_{e^{-}}\right|,\left|P_{e^{-}}\right|\right)=14\%$$

