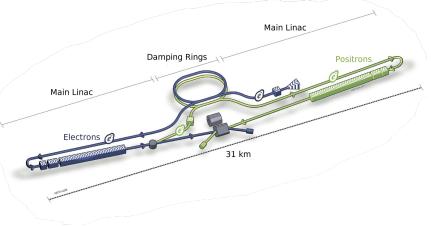
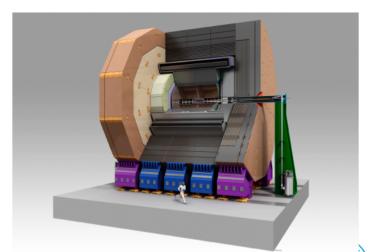
Hadron Production in Photon-Photon Processes at the International Linear Collider

DPG Spring Conference 2017

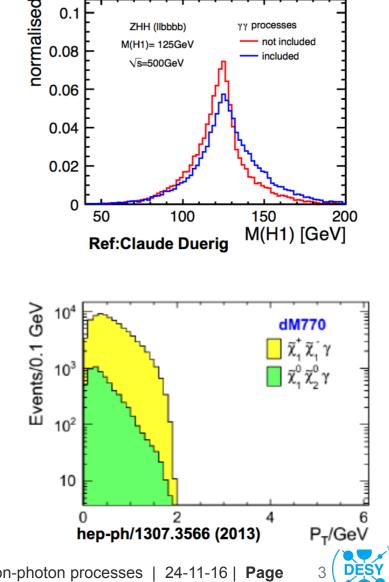
Swathi Sasikumar 27th March 2017





Introduction

- The International Linear Collider (ILC) is a proposed e⁺e⁻ collider
 - ♦Tunable \sqrt{s} = 250 500 GeV
 - Clean experimental environment
- International Large detector proposed detector for ILC
- > $\gamma\gamma \rightarrow$ low Pt hadron backgrounds an issue
 - Approximately 1.2 photon-photon events per bunch crossing
 - Overlay of low Pt hadrons



Motivation

- Overlay of soft hadrons affects a few specific but important cases e.g. :
 - Measurement of Higgs self coupling from double-Higgs production - rare process
 - Overlay degrades the mass resolution
 - Signals of new particles with small mass differences (dark matter candidates)
 - Visible decay products very soft and thus similar to hadron overlay

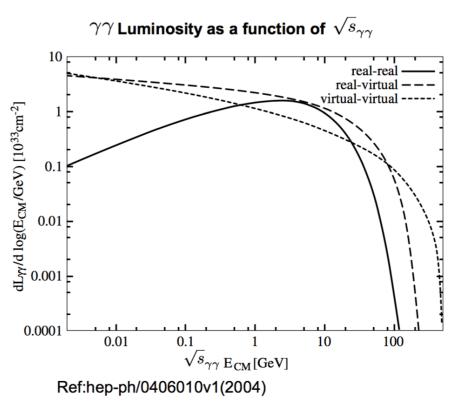
Need more differential methods to remove gamma-gamma background

 Identify gamma-gamma collision products by explicit reconstruction

Very important to have detailed simulation

Photon Sources

> e⁺ e⁻ beams are accompanied by :

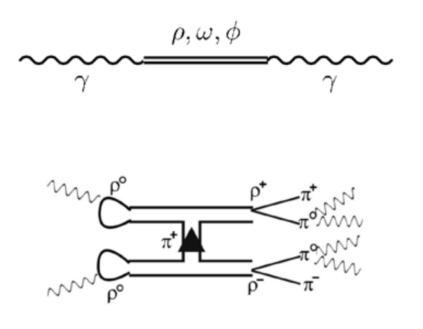

> Real photons fr(x):

 Beamstrahlung - emission of real photons in high electrical field of oncoming bunch

> Virtual photons f_v(x):

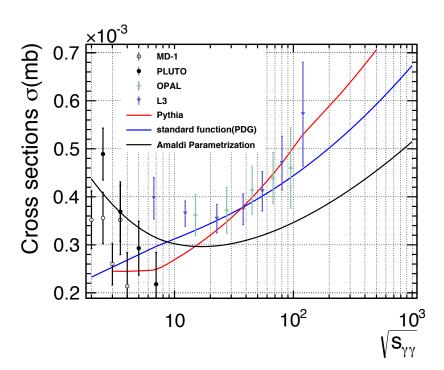
 Weizsaecker-Williams process - emission of virtual photons which can interact with an oncoming photon or an electron

 γ^*

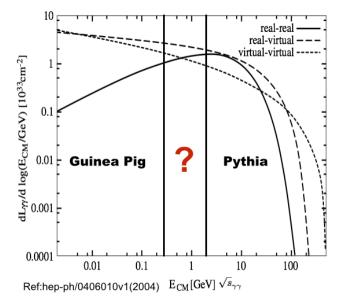

 $L_{\gamma\gamma} = f_v(x_1)f_v(x_2) + [f_v(x_1)f_r(x_2) + f_r(x_1)f_v(x_2) + f_r(x_1)f_r(x_2) + f$

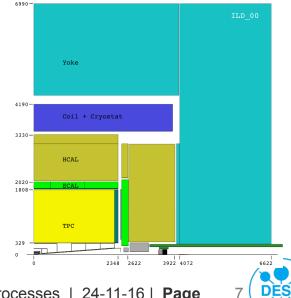
Swathi Sasikumar | Hadron Production in photon-photon processes | 24-11-16 | Page

Photon-Photon Interactions

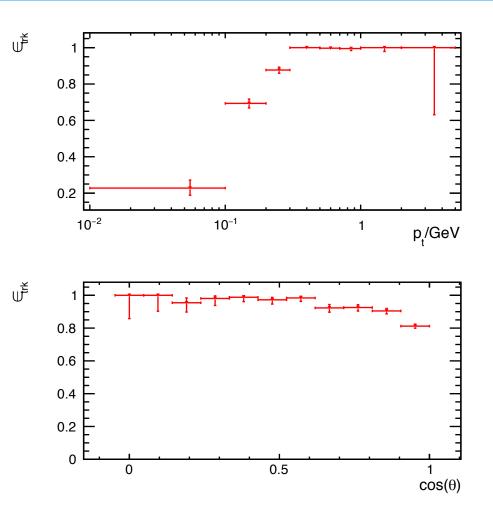

- > Photons interact in different ways
- Vector meson dominance -Most dominating subprocess
- > What are vector mesons? $\rho, \omega, \phi, J/\psi, \Upsilon$
- Photon fluctuates into a vector meson since it has got the same quantum properties
- Photon is a hadron 1/400 of the time
- > Highest probability to fluctuate into rho meson
- Production of huge amount of low Pt hadrons

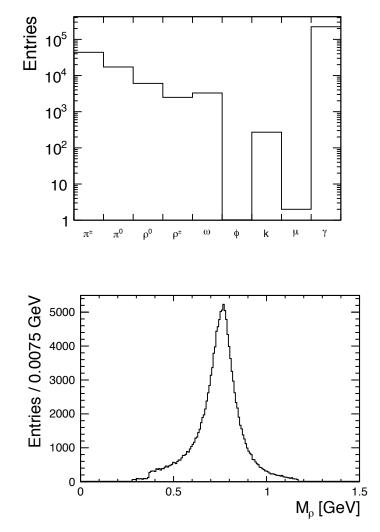
Monte-Carlo generator for $\gamma\gamma \rightarrow \text{low Pt}$ hadron processes


- > Important to develop an efficient MC generator for $\gamma\gamma \rightarrow$ low Pt hadron processes
- > Pythia 6.4 maybe a good choice
- ➤ Comparison of γγ → low Pt hadron process cross sections from Pythia with PDG, Amaldi et.al(hep-ph/9305247) and data from LEP,PETRA and VEPP
- > $\sqrt{s_{\gamma\gamma}}$ > 10 GeV : Good description of LEP data with Pythia
- > $\sqrt{s_{\gamma\gamma}}$ < 10 GeV: Measurements have large uncertainties and widespread
- > Detailed study of event properties of Pythia can be used $\sqrt{S\gamma\gamma}$ > 2 GeV



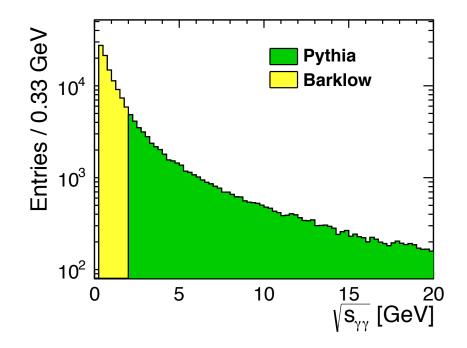
A dedicated event generator for $\gamma\gamma$ processes


- > For $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia 6 used to simulate $\gamma\gamma \rightarrow \text{ low pT hadron processes}$
- Below 2\(\pi_m\) pure QED beam-beam interactions modeled by dedicated programs -Guinea Pig
- Need to evaluate the impact of uncovered region - how can it be modeled?
- Dedicated generator developed in ILC community to study low energy region by Tim Barklow
- > The particles below 2 GeV Very low Pt
- Could these particles be observed in the detector?
- > How important is it to model this area?


Reconstruction efficiency for tracks

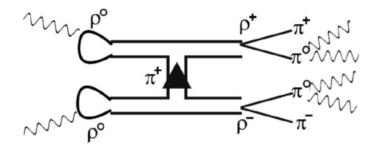
- Tracking Efficiency of the detector studied
- > $\gamma\gamma \rightarrow$ low pT hadron events simulated using GEANT4 detector simulation
- > Momentum efficiency > 65%
- > Angular efficiency > 80 %
- The events below 2 GeV need to be modeled

Barklow Generator for $\sqrt{s_{\gamma\gamma}}$ < 2 GeV

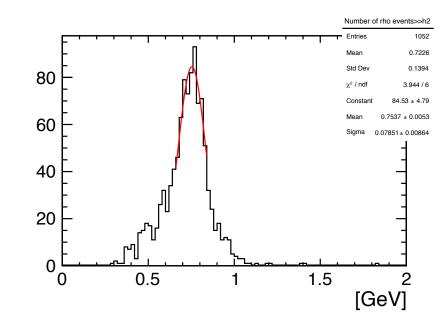

- > Barklow Generator good choice for $\sqrt{s_{\gamma\gamma}}$ < 2 GeV
- > The Barklow generator produces different events like $\gamma\gamma \rightarrow \pi^0\pi^0, \pi^{\pm}, \rho^0\rho^0, \rho^{\pm}, \omega$
- > The cross-sections for producing ρ^0 is greater than that for ρ^{\pm}
- > Until recently a much simpler version of Barklow generator used produced ρ^{\pm} without width and produced no ρ^{0} s
- Corrections were implemented and a better version of generator was developed

$\gamma\gamma ightarrow$ low pT hadron event generator

- > The low and high energy regime for $\gamma\gamma \rightarrow$ low pT hadron events modeled
- > The events from Pythia and Barklow generator integrated into Whizard to give $\gamma\gamma \rightarrow \text{low pT}$ hadron events
- > The improved generator produces events:
 - $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia
 - $\sqrt{s_{\gamma\gamma}}$ < 2 GeV Barklow Generator


An efficient generator for simulating $\gamma\gamma \rightarrow {\rm low} \ {\rm pT} \ {\rm hadron} \ {\rm processes}$ developed

Method Development to remove backgrounds


- The invariant mass of decay products of rho meson gives rho mass
- > Rho meson used as a tag to remove $\gamma\gamma$ events
- > Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices
- > Primary step separating events as

$$\begin{array}{ll} \gamma\gamma \rightarrow \pi^{+}\pi^{-} & \textbf{34\%} \\ \gamma\gamma \rightarrow \pi^{0}\pi^{0} & \textbf{6\%} \\ \gamma\gamma \rightarrow \rho^{+}\rho^{-} & \textbf{2\%} \\ \gamma\gamma \rightarrow \rho^{0}\rho^{0} & \textbf{3\%} \\ \gamma\gamma \rightarrow \rho^{0}\omega & \textbf{1\%} \end{array}$$

- > $\gamma\gamma \to \rho^0\rho^0\,$ events rho meson decay to two π^+ and two π^-
- Events with exact 2 +ve and 2 -ve tracks selected
- Invariant mass calculated and the mass closest to rho meson chosen
- > $\gamma\gamma \to \pi^+\pi^-$ and $\gamma\gamma \to \pi^0\pi^0$ have invariant mass $2m_\pi$
- > Applying cut on $2m_{\pi}$ invariant mass removes overlay for such events
- > Work in progress

Conclusion and Outlook

- > Although physics environment at ILC is very clean $\gamma\gamma$ backgrounds is still an issue
- > The impact of this overlay is found on a very few specific but important events
- > The existing generators could cover the impact only partially
- > With the study of the $\gamma\gamma \rightarrow$ low Pt hadron processes and the event properties of generators which could produce such events an efficient generator to study $\gamma\gamma \rightarrow$ low Pt hadron processes developed

> OUTLOOK:

- With the generator developed events are studied better
- The events could be reconstructed from the low Pt hadrons and could be found if they come from a photon-photon process
- The method developed will be applied on Higgsino analysis

