Belle-II sensitivity for axion-like particles.

Felix Kahlhoefer

Theory workshop 26-29 September 2017 DESY Hamburg

Based on arXiv:1709.00009 with Matthew J. Dolan, Torben Ferber, Christopher Hearty and Kai Schmidt-Hoberg

Motivation for axion-like particles

- Axions and axion-like particles (ALPs) occur in many SM extensions
 - Solutions to the strong CP problem
 Hook, arXiv:1411.3325; Fukuda et al., arXiv:1504.06084
 - String compactifications Arvanitaki et al., arXiv:0905.4720, Cicoli et al., arXiv:1206.0819,
 - Supersymmetry breaking
 Bellazzini et al., arXiv:1702.02152
- As Pseudo-Nambu-Goldstone bosons they are naturally light and weakly coupled
 - Difficult to detect at the LHC

Mimasu & Sanz, arXiv:1409.4792 Jaeckel & Spannowsky, arXiv:1509.00476

ALP with mass below the MeV scale: strongly constrained by astrophysics

Cadamuro & Redondo, arXiv:1110.2895

Boehm et al., arXiv:1401.6458

- ALPs in the GeV mass range: interesting implications for particle physics
 - > Muon q-2

 Marciano et al. arViv:1607.01022: Payor et al. ar
 - Marciano et al., arXiv:1607.01022; Bauer et al., arXiv:1704.08207

 Relaxion mechanism

 Marciano et al., arXiv:1607.01022; Bauer et al., arXiv:1704.08207

 Flacke et al., arXiv:1610.02025
 - > Mediator of dark matter interactions

ALPs coupled to gauge bosons

Let's focus on the following interactions:

Brivio et al., arXiv:1701.05379; Izaguirre et al., arXiv:1611.09355; Bauer et al., arXiv:1708.00443

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} a \, \partial_{\mu} a - \frac{1}{2} m_a^2 \, a^2 - \frac{c_B}{4 \, f_a} \, a \, B^{\mu\nu} \tilde{B}_{\mu\nu} - \frac{c_W}{4 \, f_a} \, a \, W^{i,\mu\nu} \tilde{W}^{i}_{\mu\nu}$$

- > Such interactions arise e.g. from new heavy non-coloured fermions
- > After electroweak symmetry breaking, this becomes

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{g_{a\gamma Z}}{4} a F_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{g_{aZZ}}{4} a Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{g_{aWW}}{4} a W_{\mu\nu} \tilde{W}^{\mu\nu}$$

> Two interesting cases:

- $c_B \sim c_W$: $g_{avZ} << g_{avv}$ (photon couplings)
- $c_B >> c_W$: $g_{avz} \sim -g_{avv}$ (hypercharge couplings)
- In general, there may also be couplings to SM fermions, gluons and the Higgs boson, but these are strongly constrained

Dolan, FK et al., arXiv:1412.5174

ALPs as dark mediators

In addition to the couplings to gauge bosons, ALPs can also couple to DM:

$$\mathcal{L}_{\rm DM} = g_{a\chi\chi} \,\bar{\chi} \gamma^{\mu} \gamma^5 \chi \,\partial_{\mu} a$$

- Crucially, such derivative couplings are suppressed in the non-relativistic limit
- Light pseudoscalars can therefore communicate the interactions of DM particles with SM states without conflicting with direct detection experiments
- The observed DM relic abundance can be easily reproduced if annihilations in the early Universe are resonantly enhanced
- > For $m_x \sim m_a/2$ this requires approximately $g_{ayy} \sim (10^{-5} 10^{-4})$ GeV⁻¹
- Can we test such couplings in the laboratory?

Single-photon searches at e⁺e⁻ colliders

- For invisibly decaying ALPs a promising experimental signature is obtained if the ALP is emitted from a SM gauge boson
- > One then obtains a high- p_{T} photon in association with missing energy.
- This signature has been searches for (e.g. in the context of hidden photons) at LEP and BaBar

- Significant improvements of sensitivity expected for Belle II.
 - Integrated luminosity of up to 50 ab⁻¹ with a trigger on $E_{\nu} > 1.8$ GeV.
 - Dominant background from QED processes with undetected photons
 - Depends sensitively on detector geometry, which will be improved significantly in Belle II (more homogeneous calorimeter)

Belle II sensitivity for invisibly decaying ALPs

- LEP bound from a reanalysis of a mono-photon search at DELPHI
- BaBar bound from a reanalysis of a search for hidden photons

BaBar collaboration, arXiv:1702.03327

SN 1987A bound from the length of the neutrino signal (bound on exotic energy loss mechanisms)

Jaeckel et al., arXiv:1702.02964

Belle II has a unique potential to probe the parameter regions of particular interest

What about visibly decaying ALPs?

The answer depends on the ALP decay length relative to the size of the detector

- If the ALPs escape from the detector without decaying, the signature is identical to the case of invisible decays
- More interesting signatures can occur of the ALPs decay promptly or from a displaced vertex

Remainder of this talk: Searches for visibly decaying ALPs

Existing constraints: Beam-dump experiments

- If the ALP decay length is of order of a few meters, interesting constraints come from
 - Proton beam dump experiments (CHARM, NuCal)
 - Electron beam dump experiments (E137, E141)
- Dominant production mode: Primakoff process

Döbrich, FK et al., arXiv:1512.03069

Izaguirre et al., arXiv:1307.6554 Batell et al., arXiv:1406.2698

Significant progress expected from the planned SHiP facility

Existing constraints: LEP, Tevatron and LHC

- Highly boosted ALPs with a short lifetime decay into a pair of highly collimated photons, which may mimic a single photon in the detector
- > This signature may for example mimic the forbidden process $Z \rightarrow \gamma \gamma$

- Relevant constraints from LEP and Tevatron
- Significant improvements expected from future LHC searches

Bauer et al., arXiv:1708.00443

Existing constraints: Summary

(These plots update the constraints from Masso & Toldra, arXiv:hep-ph/9503293, arXiv:hep-ph/9702275)

Belle II sensitivity for visibly decaying ALPs

Belle II ideally suited for exploring resolved regime (all three photons reconstructed)

- To resolve the two photons from the ALP decay, we require a separation of at least two crystal in the electromagnetic calorimeter
- This yields a good selection efficiency for ALP masses above 200 MeV
- Discrimination from the dominant QED backgrounds can be achieved by searching for a peak in the di-photon invariant mass

Projected sensitivities: Summary

Important complementarity between Belle II, LHC and SHiP, as well as between visible and invisible decay modes!

Conclusions

- Searches for axion-like particles in the MeV to GeV range are a promising and exciting new direction for particle physics
- Single-photon searches at Belle II can explore both invisibly decaying ALPs (e.g. DM mediators) and long-lived ALPs
- Belle II searches for three resolved photons can cover wide ranges of new ALP parameter space
- > Initial data sets (20 fb⁻¹) will already be sufficient to set world-leading limits in both cases
- Let's go and discover ALPs!

