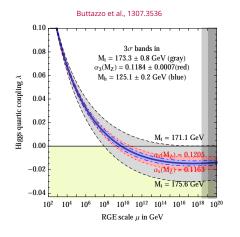
Higgs Dynamics During And After Inflation

Marco Zatta

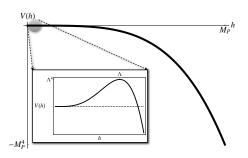
University of Helsinki


DESY Theory Workshop 28.09.17

Work done in collaboration with: Y. Ema, K. Engvist, C. Gross, M. Karciauskas, O. Lebedev, S. Rusak.

UNIVERSITY OF HEI SINKI

Running of the Higgs self coupling


Main contribution at one loop

$$\frac{\mathrm{d}\lambda}{\mathrm{d}\ln\mu}\propto\alpha m_H^4-\beta m_t^4$$

 λ turns negative at $\sim 10^{10} GeV$

True vacuum at higher values of the Higgs field!

The SM Higgs potential

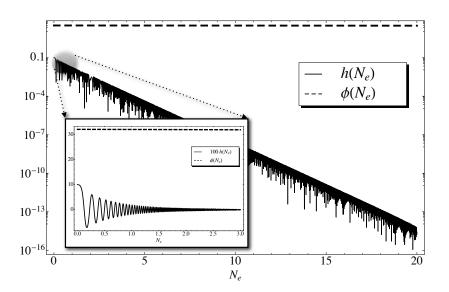
Cosmological puzzles:

- What put the Higgs in the EW vacuum?
- Why it remained there during inflation?

Possible solutions

Introduce the couplings

- $ightharpoonup \frac{1}{2} \lambda_{h\phi} h^2 \phi^2$
- $ightharpoonup rac{1}{2}\xi h^2R$


Lebedev & Westphal, 1210.6987

Espinosa, Giudice, Riotto, 1210.6987

Can give a mass for the Higgs that makes it roll towards the origin

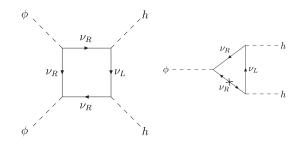
$$h \sim h(0) e^{-3Ht/2}$$

Higgs evolution during inflation

The Higgs-inflaton couplings and reheating

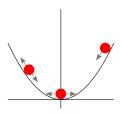
The couplings $\lambda_{h\phi}$ and ξ

- are generated via loops
- are often required by renormalizability



C. Gross,O. Lebedev, MZ, 1506.05106

Example: reheating through right-handed neutrinos

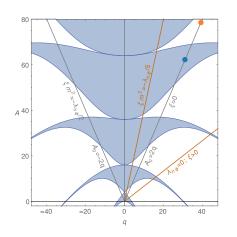

$$\Delta \mathcal{L} = \lambda_{\nu} \, \phi \, \nu_R \nu_R / 2 + y_{\nu} \, h \, \nu_R \nu_L$$

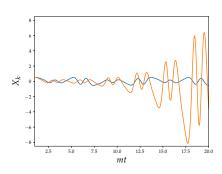
At one-loop

Need to add the counterterms in the lagrangian

After inflation the inflaton oscillates around its minimum

$$V(\phi) = \frac{1}{2}m^2\phi^2$$


 $\phi \simeq \Phi \cos mt \quad {\rm with} \quad \Phi \sim \Phi_0 \, a^{-3/2} \label{eq:phi}$


Periodic mass leads to effective production of Higgs particles

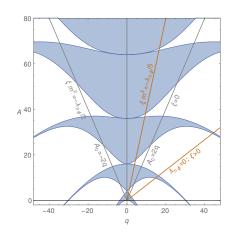
 $\langle h^2
angle \propto$ Number of Higgs quanta

Mode EoM for the Higgs ($\sigma \sim 0$)

Mathieu Equation:
$$X_k'' + (A_k + 2q\cos 4z) X_k = 0$$
 $z = mt/2$

Preheating with $\sigma \sim 0$

Mathieu Equation:
$$X_k'' + (A_k + 2q\cos 4z) X_k = 0$$
 $z = mt/2$

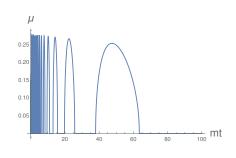

with

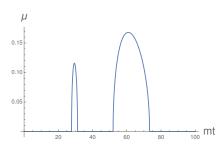
$$A_k = \left(\frac{k}{ma}\right)^2 + 2\left(\lambda_{h\phi} + \xi m^2\right) \frac{\Phi^2}{m^2}$$
$$q = \left(\lambda_{h\phi} + 3\xi m^2\right) \frac{\Phi^2}{m^2}$$

Strength of the resonance:

ightharpoonup Determined by A/q

Ema. Karciauskas, Lebedev, MZ, 1703.04681

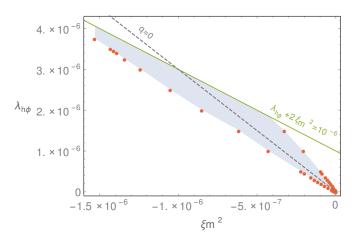

Preheating with $\sigma \sim 0$


When the mode \boldsymbol{k} is in the white region its amplitude grows as

$$X_k \propto e^{\,\mu\,\Delta mt}$$

$$A_0 = 2q$$

$$A_0 = 3q$$



Ema, Karciauskas, Lebedev, MZ, 1703.04681

Lattice results

Stable region in parameter space

Ema, Karciauskas, Lebedev, MZ, 1703.04681

Conclusions

The couplings ξ and $\lambda_{h\phi}$ can affect dramatically the Higgs dynamics

In particular they:

- can explain how the universe ended up in the EW vacuum
- are generated by quantum effects
- must not destabilize the vacuum during preheating

THANK YOU