Loop effects in QED in space with a black hole

Slava Emelyanov

Institute of Theoretical Physics Karlsruhe Institute of Technology viacheslav.emelyanov@kit.edu

DESY Theory Workshop Hamburg, 28th September 2017

Overview

Schwarzschild black hole with quantum fields

- ▶ Fermion- and vector-field propagator

Radiative corrections in QED

- ▷ Photon self-energy
- ▷ Electron/positron self-energy

One-loop effects induced by small black holes

- ▶ How small?
- \triangleright Reminder: Hot neutral e^-e^+ plasma
- Debye-like screening
- ▶ Modified photon dispersion relation
- ▶ Modified electron dispersion relation

Concluding remarks

▶ Sketch of Schwarzschild-black-hole evaporation

W.G. Unruh, Phys. Rev. D**15**, 365 (1977) P. Candelas, Phys. Rev. D**21**, 2185 (1980) S.B. Giddings, Phys. Lett. B**754**, 39 (2016)

> Fermion- and vector-field propagator

Black hole evaporate through quantum fields

Field propagators get a correction describing the energy flux

> Fermion- and vector-field propagator: Electron/positron field

Under the gravitational collapse

fermion propagator in near- & far-horizon region becomes

$$\underbrace{\frac{\textit{i}(\not p+\textit{m})}{p^2-\textit{m}^2+\textit{i}\varepsilon}}_{\text{empty space}} \implies \underbrace{\frac{\textit{i}(\not p+\textit{m})}{p^2-\textit{m}^2+\textit{i}\varepsilon}-4\pi^2g_R\frac{|\mathbf{p}|(\not p+\textit{m})}{e^{\beta|p_0|}+1}\,\delta\big(\mathbf{p}-(p_0^2-\textit{m}^2)^{\frac{1}{2}}\mathbf{n}\big)}_{\text{space with a black hole}}$$

> Fermion- and vector-field propagator: Photon field

Under the gravitational collapse

photon propagator in near- & far-horizon region becomes

$$\underbrace{\frac{-i\eta_{\mu\nu}}{k^2+i\varepsilon}}_{\text{empty space}} \implies \underbrace{\frac{-i\eta_{\mu\nu}}{k^2+i\varepsilon} - 4\pi^2 g_R \frac{|\mathbf{k}|\eta_{\mu\nu}}{e^{\beta|k_0|} - 1} \delta(\mathbf{k} - k_0\mathbf{n})}_{\text{space with a black hole}}$$

 \triangleright Fermion- and vector-field propagator: Parameters g_R and β

The parameters g_R and β can be shown to be given by

$$g_R \approx \frac{27 r_H^2}{16} \left\{ \begin{array}{ll} +1/R^2 \, , & R \gg r_H \, , \\ -4/r_H^2 \, , & R \sim r_H \, , \end{array} \right.$$

and

$$\beta = \frac{1}{T_H} \left\{ \begin{array}{l} 1, & R \gg r_H, \\ 2, & R \sim r_H, \end{array} \right.$$

where T_H is the Hawking temperature parameter.

▶ Vacuum polarization tensor

The classical Maxwell equation changes due to radiative corrections. In momentum space, it reads

$$[k^2 \eta^{\mu\nu} - k^{\mu} k^{\nu} + \Pi^{\mu\nu}(k)] A_{\nu}(k) = 0,$$

where vacuum polarization tensor is pictorially given by

▶ Vacuum polarization tensor

The classical Maxwell equation changes due to radiative corrections. In momentum space, it reads

$$[k^2 \eta^{\mu\nu} - k^{\mu} k^{\nu} + \Pi^{\mu\nu}(k)] A_{\nu}(k) = 0,$$

where vacuum polarization tensor is pictorially given by

$$i\Pi^{\mu\nu}(k) = \frac{\mu}{k} + 2 \frac{\mu}{k} + O(\alpha^2)$$

▶ Vacuum polarization tensor

The vacuum polarization tensor can be represented as follows:

$$\Pi^{\mu\nu}(k) = \pi_T(k_0,\mathbf{k})P^{\mu\nu} + \pi_L(k_0,\mathbf{k})Q^{\mu\nu},$$

where $P^{\mu\nu}$ & $Q^{\mu\nu}$ are projections being orthogonal to each other. The photon propagator then aquires the following form:

$$G_{\mu\nu}(k_0,\mathbf{k}) = \frac{-iP_{\mu\nu}}{k^2 - \pi_T(k_0,\mathbf{k}) + i\varepsilon} + \frac{-iQ_{\mu\nu}}{k^2 - \pi_L(k_0,\mathbf{k}) + i\varepsilon}$$

H.A. Weldon, Phys. Rev. D26, 1394 (1982)

▷ Electron/positron self-energy

Loop diagrams in case of the fermion propagator leads to

$$\frac{i}{\not p - m + i\varepsilon} \implies \frac{i}{\not p - m - \Sigma(\not p) + i\varepsilon},$$

where, at the leading order of the approximation, it holds that

$$-i\Sigma(p) = p + O(\alpha^2)$$

M.E. Peskin & D.V. Schroeder, Introduction to QFT (1995)

▶ How small?

A black hole is said to be small if

$$T_H \gg m_e$$

In this case, the electron/positron field can be considered as being effectively massless (hard-thermal-loop approximation).

In other words, small black holes have a mass in the following range:

$$10^{10}\,\mathrm{g}~\lesssim~M~\ll~10^{16}\,\mathrm{g}\,,$$

where the lower bound is to have a quasi-equilibrium approximation.

 \triangleright Reminder: Isotropic neutral electron-positron plasma at $T\gg m_{\rm e}$

M. Le Bellac, Thermal Field Theory (1996)

> Debye-like screening: Spacetime with an evaporating black hole

> Debye-like screening: Spacetime with an evaporating black hole

Detector

Debye-like screening: Spacetime with an evaporating black hole

Debye-like screening: Spacetime with an evaporating black hole

In the <u>far-from-horizon</u> region, a point-like charge q at rest has the following (modified due to $\pi_L(0, \mathbf{k}) \neq 0$) electrostatic potential:

$$\phi(r) \approx \frac{q}{4\pi r} e^{-r/r_D} \quad \text{with} \quad r_D \equiv \frac{2}{\pi m_{\gamma}},$$

where

$$m_{\gamma}^2 \equiv \frac{1}{6} e^2 T_L^2 \sim \alpha T_H^2 \left(\frac{r_H}{R}\right)^2 \sim \frac{\alpha}{R^2}.$$

V.A. Emelyanov, Nucl. Phys. B**919**, 110 (2017) Nucl. Phys. B**921**, 796 (2017)

▶ Modified photon dispersion relation

▶ Modified photon dispersion relation

Due to $\pi_T(k_0, \mathbf{k}) \neq 0$ in the limit $|\mathbf{k}| \to k_0$, the photon propagator gets its pole shifted, namely

$$k_0^2 - \mathbf{k}^2 = m_\gamma^2 \approx \frac{9\alpha}{128\pi} \times \left\{ \begin{array}{l} +1/R^2 \, , \quad R \gg r_H \, , \\ -1/r_H^2 \, , \quad R \sim r_H \, , \end{array} \right.$$

where R is a distance to the black-hole centre.

V.A. Emelyanov, Nucl. Phys. B**919**, 110 (2017) Nucl. Phys. B**921**, 796 (2017) arXiv:hep-th/1703.05078

▶ Modified electron dispersion relation

The pole structure of the electron propagator is also modified:

$$p_0^2 - \mathbf{p}^2 \approx m_e^2 + \frac{27\alpha}{256\pi} \times \left\{ \begin{array}{ll} +1/R^2 \, , & R \gg r_H \, , \\ -1/r_H^2 \, , & R \sim r_H \, , \end{array} \right.$$

where R is a distance to the black-hole centre.

Concluding remarks

Is the Debye-like screening effect testable?

There are two problems:

- It is far from clear whether small black holes exist in nature.
- \bullet If existent, it is unclear how long one needs to wait to have at least one of these in the neighbourhood of earth at the distance not larger than roughly 10^3 km.

Concluding remarks

Is the Einstein causality violated in the near-horizon region?

In general, a negative mass-squared term implies either instability or causality violation.

The instability is caused by modes with $|\mathbf{k}| \leq m_{\gamma} \ll 1/r_{H}$, but our approximation holds only for modes with $|\mathbf{k}| \gg 1/r_{H}$.

It means that there is a natural IR cutoff being of order $1/r_H$. A posteriori we know that modes with momentum higher or equal than local space-time curvature is immaterial for particle physics.

Thus, it seems that <u>locality is violated</u> near the event horizon of evaporating black holes.