The Trigonometric Quantum Spectral Curve

Solving the spectral problem of the η -deformed superstring theory

Rob Klabbers

September 27, 2017

Based on work with Stijn van Tongeren arXiv: 1708 02894

Desy Theory workshop 2017

Lifting energy degeneracies

Goal: understanding a quantum mechanical system through its spectrum

- Coinciding energy eigenvalues often signal the presence of symmetry
- Lifting the degeneracy can help discover new symmetries/features

Example: Heisenberg XXX spin chain

Problem: Finding the precise relation between energies and solutions to its

Bethe equations

$$H_{XXX} = -J \sum_{i=1}^{L} \left(\sigma_{j}^{x} \sigma_{j+1}^{x} + \sigma_{j}^{y} \sigma_{j+1}^{y} + \sigma_{j}^{z} \sigma_{j+1}^{z} \right)$$

Lifting energy degeneracies

Goal: understanding a quantum mechanical system through its spectrum

- Coinciding energy eigenvalues often signal the presence of symmetry
- Lifting the degeneracy can help discover new symmetries/features

Example: Heisenberg XXZ spin chain

Problem: Finding the precise relation between energies and solutions to its

Bethe equations

$$H_{\text{XXZ}} = -J \sum_{j=1}^{L} \left(\sigma_{j}^{\text{X}} \sigma_{j+1}^{\text{X}} + \sigma_{j}^{\text{Y}} \sigma_{j+1}^{\text{Y}} + \Delta \sigma_{j}^{\text{Z}} \sigma_{j+1}^{\text{Z}} \right)$$

Studying deformations proved very useful

Motivation: AdS/CFT correspondence

free type IIB superstring theory on $AdS_5 \times S^5$

planar $\mathcal{N}=4$ SU(N) super Yang-Mills theory

[Maldacena 1999]

- strong/weak duality
- To test the hypothesis one can study the spectral problem

string energies \iff scaling dimensions

very accessible due to integrability

Timeline of the spectral problem for $\mathcal{N}=4$ -SYM-theory

The quantum spectral curve

- reduces the problem to a simple set of equations
- allows to analyze the complete spectrum perturbatively up to very high order (14 loops)

Quantum Spectral Curve

Unknown functions: P_a , P^a , $\mu_{ab} = -\mu_{ba}$, $a, b = 1, \dots, 4$.

 ${f P}\mu$ -system:

$$\begin{split} \tilde{\mu}_{ab} - \mu_{ab} &= \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \\ \tilde{\mathbf{P}}_a &= \mu_{ab} \mathbf{P}^b, \\ \mathbf{P}_a \mathbf{P}^a &= 0, \quad \mathsf{Pf}(\mu) = 1. \end{split}$$

The 6 charges parametrizing PSU(2, 2|4) multiplets occur in the asymptotics: as (for $u \in \mathbb{R}$) $u \to \infty$

$$\mathbf{P}_a \simeq A_a u^{-\hat{\lambda}_a},$$

 $\mu_{12} \simeq u^{\Delta - J}.$

adapted from

[Gromov, Kazakov, Leurent, Volin 2014]

Quantum Spectral Curve

Triumphs:

- ullet Perturbative analytical and numerical solution of the spectrum of ${\cal N}=4$ [Marboe, Volin 2014-2017], [Gromov, Levkovich-Maslyuk, Sizov 2015]
- Access to QCD pomeron [Gromov, Levkovich-Maslyuk, 2014], [Alfimov, Gromov, Kazakov 2015]

Questions:

- How does the quantum spectral curve fit into the integrability framework?
- Is there any hidden structure present in the resulting anomalous dimensions?
- Can we use the quantum spectral curve for different observables or theories? Other (non-local) field theories, non-commutative geometries, etc.?

Table of contents

- **1** Introducing the η -deformation
- Oerive the QSC
 - Thermodynamic Bethe ansatz
 - Analytic Y system
 - Analytic T system
 - \bullet η -deformed quantum spectral curve
- Conclusions and future directions

Integrable super string deformations

Integrable super string deformations

Properties

This model

- ullet reduces to the famous Ad $S_5 imes S^5$ model as $\eta o 0$
- remains to be classically integrable [Delduc, Magrot and Vicedo, 2013]
- is not supersymmetric
- has κ symmetry, but does not admit embedding in a consistent supergravity theory [Arutyunov, Frolov, Hoare, Roiban, Tseytlin, 2015][Arutyunov, Borsato, Frolov, 2016]

Roadmap: building the η -deformed QSC

Algebraic simplifications of the spectral problem

• TBA equations: infinitely many coupled integral equations for unknown periodic functions $Y_{a,s}$

$$\log(Y_{\bullet}) = \sum_{(a,s)} \log(1 + Y_{a,s}^{m_{\bullet}}) \star K^{\bullet,(a,s)}$$

Y system: infinitely many finite-difference equations

$$Y_{a,s}^{+}Y_{a,s}^{-} = \frac{(1+Y_{a,s+1})(1+Y_{a,s-1})}{(1+1/Y_{a+1,s})(1+1/Y_{a-1,s})}, \quad f^{\pm}(u) := f(u \pm icn)$$

T system/Hirota equation:

$$T_{a,s}^+ T_{a,s}^- = T_{a-1,s} T_{a+1,s} + T_{a,s-1} T_{a,s+1}$$

by reparametrizing

$$Y_{a,s} = \frac{T_{a,s+1}T_{a,s-1}}{T_{a+1}T_{a-1}T_{a-1}}$$

Transferring analytic properties

- A string energy corresponds to a particular solution of the equations
- Specify this solution by a set of analyticity data

Analyticity data:

- TBA equations: driving terms, difficult to construct
- Y/T system: discontinuity relations and asymptotics

$\mathbf{P}\mu$ system

Algebraically

$$\begin{split} \hat{\mathbb{T}}_{1,s} &= \mathbf{P}_1^{[+s]} \mathbf{P}_2^{[-s]} - \mathbf{P}_1^{[-s]} \mathbf{P}_2^{[+s]} & \text{for } s > 0, \\ \hat{\mathbb{T}}_{1,s} &= \mathbf{P}^{4[+s]} \mathbf{P}^{3[-s]} - \mathbf{P}^{4[-s]} \mathbf{P}^{3[+s]} & \text{for } s < 0. \end{split}$$

and $\mu_{12} := \mathbf{T}_{0,1}^{1/2}$ parametrize all T functions.

Nicely repackaging the analyticity data by introducing more μ_{ab} and \mathbf{P}_a , \mathbf{P}^a , leads to the $\mathbf{P}\mu$ -system: for $a,b=1,\cdots,4$

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

with all functions 2π (anti-)periodic.

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

Undeformed case:

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathrm{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

Deformed case?:

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathrm{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

How can we check this?

- Undeformed limit is ambiguous
- But we can compare with the TBA-equations

Deformed case?:

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

How can we check this?

- Undeformed limit is ambiguous
- But we can compare with the TBA-equations

$$\frac{\mu_{12}^{[+2]}}{\mu_{12}} = \frac{\hat{\mathbb{T}}_{10}\hat{\mathbb{T}}_{23}}{\hat{\mathbb{T}}_{01}\hat{\mathbb{T}}_{32}}$$

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

How can we check this?

- Undeformed limit is ambiguous
- But we can compare with the TBA-equations

$$\frac{\mu_{12}^{[+2]}}{\mu_{12}} = Y_{1,1}Y_{2,2}$$

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathsf{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

How can we check this?

- Undeformed limit is ambiguous
- But we can compare with the TBA-equations

$$\frac{\mu_{12}^{\left[+2\right]}}{\mu_{12}} = \exp\left(\log\left(1 + \mathit{Y}_{P,0}\right) \star \mathit{K}^{P\mathit{y}}\right)$$

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \quad \tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b, \quad \mathbf{P}_a \mathbf{P}^a = 0, \quad \mathrm{Pf}(\mu) = 1$$

Which solutions should we pick?

ullet Look at asymptotics of ${f P}$ and μ_{ab}

How can we check this?

- Undeformed limit is ambiguous
- But we can compare with the TBA-equations

$$egin{aligned} rac{\mu_{12}^{\left[+2
ight]}}{\mu_{12}} &= \exp\left(\log\left(1+Y_{P,0}
ight)\star K^{Py}
ight) \\ &\simeq \exp\left(cE+\mathcal{O}\left(e^{iu}
ight)
ight) \end{aligned}$$

 $\mu_{12} \simeq e^{-iurac{E}{2}}$ as $u
ightarrow i\infty,$ with $heta < |{
m Re}(u)| < \pi$

Deformed case?:

P_a -asymptotics

Postulating

$$\mathbf{P}_a \simeq A_a e^{iu\tilde{M}_a/2}$$
 as $u \to i\infty$, with $\theta < |\text{Re}(u)| < \pi$

we use

- ullet consistency of the ${f P}\mu$ -system
- weak coupling comparison

to constrain the \tilde{M}_a and A_a :

$$\tilde{M} = \frac{1}{2} \{ J_1 + J_2 - J_3 + 2, J_1 - J_2 + J_3, -J_1 + J_2 + J_3, -J_1 - J_2 - J_3 - 2 \}$$

 A_a depend on all 6 charges

P_a -asymptotics

Postulating

$$\mathbf{P}_a \simeq A_a e^{iu\tilde{M}_a/2}$$
 as $u \to i\infty$, with $\theta < |\text{Re}(u)| < \pi$

we use

- ullet consistency of the ${f P}\mu$ -system
- weak coupling comparison

to constrain the \tilde{M}_a and A_a :

$$\tilde{M} = \frac{1}{2} \{ J_1 + J_2 - J_3 + 2, J_1 - J_2 + J_3, -J_1 + J_2 + J_3, -J_1 - J_2 - J_3 - 2 \}$$

 A_a depend on all 6 charges

Sidenote:

- Deriving the dual $\mathbf{Q}\omega$ -system is straightforward
- The Q carry the other 3 quantum numbers in their asymptotics
- These can be embedded in the GL(4|4)-QQ-system

η -deformed Quantum Spectral Curve

P
$$\mu$$
-system: for $a,b=1,\cdots,4$

$$\begin{split} \tilde{\mu}_{ab} - \mu_{ab} &= \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a, \\ \tilde{\mathbf{P}}_a &= \mu_{ab} \mathbf{P}^b, \\ \mathbf{P}_a \mathbf{P}^a &= 0, \quad \mathsf{Pf}(\mu) = 1. \end{split}$$

The 6 charges parametrising $PSU_q(2, 2|4)$ -multiplets occur in the asymptotics: as $z = e^{-iu/2} \rightarrow \infty$

$$\mathbf{P}_a \simeq A_a z^{-\tilde{M}_a},$$
 $\mu_{12} \simeq z^E.$

Conclusions

We have constructed a trigonometric QSC!

- Algebraically it is identical to the undeformed QSC
- But its analytical properties are very different

So we see that

the rational-to-trigonometric concept applies to the QSC

Conclusions

We have constructed a trigonometric QSC!

- Algebraically it is identical to the undeformed QSC
- But its analytical properties are very different
- the rational-to-trigonometric concept applies to the QSC

Future directions:

- Generalize the analytic perturbative algorithm to the trigonometric case
- Compute energies, e.g. "q-deformed Konishi"
- Use mirror duality to analyze the relationship between spectral data and thermodynamics
- Thermodynamics of the $AdS_5 \times S^5$ -string
- Treat the root-of-unity case
- Find an elliptic QSC?

The $AdS_5 \times S^5$ world-sheet theory

Let $\mathfrak{g} \in SU(2,2|4)$ and define the current

$$A_{\alpha} = -\mathfrak{g}^{-1}\partial_{\alpha}\mathfrak{g} = A_{\alpha}^{(0)} + A_{\alpha}^{(2)} + A_{\alpha}^{(1)} + A_{\alpha}^{(3)}$$

with a decomposition under the \mathbb{Z}_4 -grading of $\mathfrak{su}(2,2|4)$.

Langrangian density [Metsaev and Tseytlin, 1998][Bena et al., 2003]]

$$\begin{split} \mathcal{L} &= -g(\gamma^{\alpha\beta} - \epsilon^{\alpha\beta}) \text{str}\left(A_{\alpha} \text{d}A_{\beta}\right) \\ &= -\frac{g}{2} \left(\underbrace{\gamma^{\alpha\beta} \text{str}\left(A_{\alpha}^{(2)} A_{\beta}^{(2)}\right)}_{\text{kinetic term}} + \underbrace{\kappa \epsilon^{\alpha\beta} \text{str}\left(A_{\alpha}^{(1)} A_{\beta}^{(3)}\right)}_{\text{Wess-Zumino term}}\right) \end{split}$$

$$\gamma^{\alpha\beta} = h^{\alpha\beta}\sqrt{-h}, \quad d = P_1 + 2P_2 - P_3$$

Symmetry algebra: centrally extended psu(2,2|4)

The $AdS_5 \times S^5$ world-sheet theory

Bosonic Polyakov action of the NLSM: with $\gamma^{\alpha\beta}=h^{\alpha\beta}\sqrt{-h}$

$$S^{b}=-\frac{1}{2}g\int d\sigma d\tau \gamma^{\alpha\beta}\partial_{\alpha}X^{M}\partial_{\beta}X^{N}G_{MN}$$

Target space metric:

$$egin{aligned} ds^2_{\mathsf{AdS}_5} &= -\left(1 +
ho^2
ight) dt^2 + rac{d
ho^2}{\left(1 +
ho^2
ight)} \ &+
ho^2 \left(d\zeta^2 + \cos^2\zeta d\psi_1^2
ight) +
ho^2 \sin^2\zeta d\psi_2^2 \ ds^2_{\mathsf{S}^5} &= \left(1 - r^2
ight) d\phi^2 + rac{dr^2}{\left(1 - r^2
ight)} \ &+ r^2 \left(d\xi^2 + \cos^2\xi d\phi_1^2
ight) + r^2 \sin^2\xi d\phi_2^2 \end{aligned}$$

The $\left(\mathsf{AdS}_5 \times S^5\right)_\eta$ world-sheet theory

Bosonic Polyakov action of the NLSM: with $\gamma^{\alpha\beta}=h^{\alpha\beta}\sqrt{-h}$

$$S^{b} = -\frac{1}{2} \left(\frac{1 + \eta^{2}}{1 - \eta^{2}} g \right) \int d\sigma d\tau \left(\gamma^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN} - \epsilon^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} B_{MN} \right)$$

[Delduc, Magrot and Vicedo, 2013]

Target space metric:

$$\begin{split} ds_{(\text{AdS}_5)_{\eta}}^2 &= -\frac{1+\rho^2}{1-\varkappa^2\rho^2} dt^2 + \frac{d\rho^2}{(1+\rho^2)(1-\varkappa^2\rho^2)} \\ &\quad + \frac{\rho^2}{1+\varkappa^2\rho^4\sin^2\zeta} \left(d\zeta^2 + \cos^2\zeta d\psi_1^2\right) + \rho^2\sin^2\zeta d\psi_2^2 \\ ds_{(\text{S}^5)_{\eta}}^2 &= \frac{1-r^2}{1+\varkappa^2\rho^2} d\phi^2 + \frac{dr^2}{(1-r^2)(1+\varkappa^2r^2)} \\ &\quad + \frac{r^2}{1+\varkappa^2r^4\sin^2\xi} \left(d\xi^2 + \cos^2\xi d\phi_1^2\right) + r^2\sin^2\xi d\phi_2^2 \end{split}$$

with $\varkappa = \frac{2\eta}{1-\eta^2}$ and $\eta \in [0,1[$.

η -deforming the AdS₅ imes S⁵ world-sheet theory

Let $\mathfrak{g} \in SU(2,2|4)$ and define the current

$$A_{\alpha} = -\mathfrak{g}^{-1}\partial_{\alpha}\mathfrak{g} = A_{\alpha}^{(0)} + A_{\alpha}^{(2)} + A_{\alpha}^{(1)} + A_{\alpha}^{(3)}$$

with a decomposition under the \mathbb{Z}_4 -grading of $\mathfrak{su}(2,2|4)$.

Langrangian density [Delduc, Magrot and Vicedo, 2013]

$$\mathcal{L} = -\frac{g}{4}(1+\eta^2)(\gamma^{\alpha\beta} - \epsilon^{\alpha\beta})\operatorname{str}\left(A_{\alpha}\mathsf{d}_{\eta} \circ \frac{1}{1-\eta R_{\mathfrak{g}} \circ \mathsf{d}_{\eta}}A_{\beta}\right)$$

$$\gamma^{lphaeta}=h^{lphaeta}\sqrt{-h},\quad \mathsf{d}_{\eta}=P_1+rac{2}{1-\eta^2}P_2-P_3$$

Symmetry algebra: centrally extended $U_{q(\eta)}$ (psu(2,2|4))

 $R_{\mathfrak{g}}(M) = \mathfrak{g}^{-1}R\left(\mathfrak{g}M\mathfrak{g}^{-1}\right)\mathfrak{g}$ where R solves the modified classical Yang-Baxter equation:

[R(M), R(N)] - R([R(M), N] + [M, R(N)]) = [M, N] for all $M, N \in SU(2, 2|4)$

Polyakov action

When restricted to the bosonic sector, the Polyakov action becomes

$$\begin{split} S^{\rm b} &= -\frac{1}{2} \left(\frac{1+\eta^2}{1-\eta^2} g \right) \int d\sigma d\tau \left(\gamma^{\alpha\beta} \partial_{\alpha} X^M \partial_{\beta} X^N G_{MN} - \epsilon^{\alpha\beta} \partial_{\alpha} X^M \partial_{\beta} X^N B_{MN} \right), \\ \text{with } & (\varkappa = \frac{2\eta}{1-\eta^2}) \\ ds^2_{(\mathrm{AdS}_5)_{\eta}} &= -\frac{1+\rho^2}{1-\varkappa^2 \rho^2} dt^2 + \frac{d\rho^2}{(1+\rho^2)(1-\varkappa^2 \rho^2)} \\ &\quad + \frac{\rho^2}{1+\varkappa^2 \rho^4 \sin^2 \zeta} \left(d\zeta^2 + \cos^2 \zeta d\psi_1^2 \right) + \rho^2 \sin^2 \zeta d\psi_2^2 \\ ds^2_{(S^5)_{\eta}} &= \frac{1-r^2}{1+\varkappa^2 \rho^2} d\phi^2 + \frac{dr^2}{(1-r^2)(1+\varkappa^2 r^2)} \\ &\quad + \frac{r^2}{1+\varkappa^2 r^4 \sin^2 \xi} \left(d\xi^2 + \cos^2 \xi d\phi_1^2 \right) + r^2 \sin^2 \xi d\phi_2^2 \end{split}$$

Taking $\eta \to 0$ reduces to the undeformed action and target space metric.

Discontinuity relations

$$\begin{split} \left[\log Y_{1|w}^{(\alpha)}\right]_{\pm 1}(u) &= \left[L_{-}^{(\alpha)}\right]_{0}(u) \qquad L_{\chi} = \log(1+1/Y_{\chi}), \\ \left[\log Y_{1|vw}^{(\alpha)}\right]_{\pm 1}(u) &= \left[\Lambda_{-}^{(\alpha)}\right]_{0}(u), \qquad \Lambda_{\chi} = \log(1+Y_{\chi}), \\ \left[\log \frac{Y_{-}}{Y_{+}}\right]_{\pm 2N}(u) &= -\sum_{P=1}^{N} \left[\Lambda_{P}\right]_{\pm (2N-P)}(u) \text{ for } N \geq 1 \\ \left[\Delta\right]_{\pm 2N}(u) &= \pm \sum_{\alpha} \left(\left[L_{\mp}^{(\alpha)}\right]_{\pm 2N}(u) + \sum_{M=1}^{N} \left[L_{M|w}^{(\alpha)}\right]_{\pm (2N-M)}(u) + \left[\log Y_{-}^{(\alpha)}\right]_{0}(u)\right), \end{split}$$

where

$$\Delta(u) = \begin{cases} \check{\Delta}(u) & \text{if } \mathsf{Im}(u) > 0 \\ \check{\Delta}(u) & \text{if } \mathsf{Im}(u) < 0 \end{cases}$$
$$\check{\Delta}(u) := [\log Y_1](u)$$
$$\Delta(iu + \epsilon) - \Delta(iu - \epsilon) = 2\pi Li, \text{ for } u \in \mathbb{R}$$

Properties of the undeformed S-matrix

One can find the S-matrix from symmetry assuming integrability on the quantum level

- parametrized by shifts of the Zhukovsky coordinate $x^{\pm}(u) = x (u \pm i/g)$.
- The branch point locations ± 2

Properties of the η -deformed S-matrix

One can find the S-matrix from symmetry assuming integrability on the quantum level [Beisert, Koroteev, 2008]:

- parametrized by shifts of the Zhukovsky coordinate $x^{\pm}(u) = x (u \pm ic(\eta, g)).$
- The branch point locations $\pm \theta$ depend on η and g
- exhibits mirror duality
- Undeformed limit:

$$\lim_{c\to 0} x(gcu) = x_{\mathsf{und}}(u)$$

Building the η -deformed QSC

"Going from rational to trigonometric"

Short representations of $\mathfrak{psu}(2|2)^{\oplus 2}$ are parametrized via $x^{\pm}:=x(u\pm i/2)$ with

$$x(u) = \frac{1}{2} \left(\frac{u}{g} + i \sqrt{4 - \frac{u^2}{g^2}} \right)$$

solves Zhukovsky identity

$$\frac{u}{g} = x + \frac{1}{x}$$

- 1 square root branch cut between $\pm 2g$
- behaves as $x(u) \simeq u$ as $u \to \infty$.

Building the η -deformed QSC

"Going from rational to trigonometric"

Short representations of $\mathfrak{psu}_q(2|2)^{\oplus 2}$ are parametrized via $x^\pm=x(u\pm ic)$ with

$$x(u) = -i \csc \theta \left(e^{iu} - \cos \theta + \left(1 + e^{iu} \right) \sqrt{\frac{\cos(u) - \cos(\theta)}{\cos(u) + 1}} \right),$$

with $\theta = 2 \arcsin(h \sinh c)$). Note h = h(g, q) and c = c(g, q).

solves deformed Zhukovsky identity

$$e^{ui} = \frac{x + \frac{1}{x} + \xi + \xi^{-1}}{\xi^{-1} - \xi}$$
 with $\xi = i \tan(\theta/2)$,

- 1 square root branch cut between $\pm \theta$ on the strip with $|\text{Re}(u)| \leq \pi$
- behaves as $x(u) \simeq e^{iu}$ as $u \to -i\infty$.

Solving difference equations: rational case

Let g be upper-half-plane analytic.

Question: solve for f in

$$f^+ - f^- = g.$$

Formal solution:

$$f = \sum_{n=1}^{\infty} g^{[2n-1]}$$

If $\lim_{u\to\infty} g(u) = 0$ in the uhp

$$g(u) = -rac{1}{2\pi i}\int_{\mathbb{R}} dv rac{
ho_g(v)}{u-v}$$
 in the uph,

with spectral density

$$\rho_{g}(u) = 2 \lim_{\epsilon \to 0} \operatorname{Re}(g(u + i\epsilon)).$$

Summing

$$\sum_{n=0}^{\infty} \left(\frac{1}{v + 2icn} - \frac{1}{2ic(n+1)} \right) \sim \psi \left(\frac{iv}{2c} \right)$$

yields the regularized solution:

$$f \sim \int_{\mathbb{R}} extit{d} v \psi^+(v-u)
ho_{ extit{g}}(v)$$
 in the uph

Solving difference equations: periodic case

Let g be upper-half-plane analytic.

Question: solve for f in

$$f^+ - f^- = g.$$

Formal solution:
$$f_F = \sum_{n=1}^{\infty} g^{[2n-1]}$$
.

If $\lim_{u\to i\infty} g(u) \in \mathbb{R}$,

$$g(u) = -rac{1}{2\pi i} \int_{-\pi}^{\pi} dv rac{
ho_g(v)}{ an(u-v)}$$
 in the uhp

with spectral density

$$\rho_g(u) = 2 \lim_{\epsilon \to 0} \text{Re}(g(u + i\epsilon)).$$

In our formal solution:

$$f_{ extsf{F}} \sim \int_{-\pi}^{\pi} dv \sum_{n=1}^{\infty} rac{1}{ an(u-v+2icn)}
ho_{ extsf{g}}(v).$$

Summing

$$\sum_{n=0}^{\infty} \left(\frac{1}{\tan(\textit{v}+2\textit{icn})} - \frac{1}{\tan(2\textit{ic}(\textit{n}+1))} \right) \sim$$

$$\sim \Psi_c :=$$
 combination of \emph{q} -polygammas.

yields the regularized solution:

$$f \sim \int_{-\pi}^{\pi} dv \Psi_c^+(u-v)
ho_g(v)$$
 in the uhp.

$$A_{a_0}A^{a_0} = 2\frac{\prod_{j}\sinh\left(\frac{\tilde{M}_{a_0} - \hat{M}_{j}}{2}\right)}{\prod_{b \neq a_0}\sinh\left(\frac{\tilde{M}_{a_0} - \tilde{M}_{b}}{2}\right)}.$$
 (1)

x-functions

$$x_m(u) = \frac{i}{\csc \theta} \left(e^{-iu} - (1 - e^{-iu}) \sqrt{\frac{\cos u - \cos \theta}{\cos u - 1}} \right)$$
 (2)

Motivation: finding integrability

On the CFT-side:

• $\mathfrak{su}(2)$ subsector:

$$Tr(ZZ\varphi Z\varphi\varphi Z\varphi Z\cdots)$$
 \sim # $\uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \cdots \parallel$ dilatation operator D \sim spin chain hamiltonian

[Minahan, Zarembo 2002]

• Perturbative approach:

$$D(\xi) = J + \sum_{k=1}^{\infty} H_k \xi^k \qquad \xi = \lambda/J^2$$

• $H_1 = H_{XXX} \Rightarrow$ Integrability (Bethe ansatz)

On the string side:

ullet Classical world-sheet theory was found to be an integrable $\sigma\text{-model}.$

[Bena et al. 2004]