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As befits a twenty-minute talk, let’s start with a simple
question:

What is a quantum field theory?



“Lots and lots of harmonic oscillators, coupled together
anharmonically, but not too strongly.”

—A. M. Polyakov (light paraphrase)

At root, a quantum field theory is a theory of

• many identical local degrees of freedom,

• parameterized by a geometric space,

• coupled together in a local and homogeneous way.

There are lots of additional possible ingredients, but these are
the key ones. (This is why spin systems can often be described
by field theories, at least in some range of parameters.)



More technical working definition:

A QFT is a quantum theory whose degrees of freedom are
functions˚ on some underlying space X .

These functions represent measurements (observables) that
can be made independently everywhere in X .

The interactions of the theory are encoded in an action
functional:

S : F pX q Ñ R.

(At this point, X could be anything: a manifold, a lattice, a
graph, a set. . . )

˚connections, tensor fields, sections of other bundles, . . .



QFTs (and especially “toy” models like topological field
theories) have also been of interest in pure math.

As one example, when X is a smooth four-manifold,
Donaldson: defined new and sophisticated smooth invariants
by considering (very roughly speaking) the behavior of
particular field theories defined on X .

Many ideas have been imported from physics into
mathematics across this bridge.

What about the reverse?

:Donaldson, J. Diff. Geom. 18.2 (1983); Witten, Comm. Math. Phys. 117.3 (1988)



A (rather vague and conceptual) question that is of great
interest in physics lately:

How is the geometry of X encoded in—or how does it emerge
from—the (not intrinsically geometric) data of the field
theory: its Hilbert space, entanglement structure, time
evolution, and so on?

I’m going to discuss (the very beginnings of) a perspective on
this that borrows some ideas from pure math. The idea is to
start to address this question by varying X .



To foreshadow a bit, here’s an example of an interesting X . . .



To get started more methodically, let’s flesh out the picture a
bit by asking about the kinds of structures that X (and,
correspondingly, the theory on it) might have.

What are some important examples?



— Locality:
X has a notion of distance, measure, or causal structure,
which is respected by the interactions in the theory.

Often, this means something like

Srφs “

ż

X

L rφpxqs.

— Symmetry:
X may have symmetries (implemented by the action of a
group G on X ). The theory may or may not respect the action
of these symmetries on the fields F pX q.



What symmetries might we require of X?

The basic physical example is affine space, X “ Rn. It has
many symmetries, but perhaps the most important one in
QFT is the action of the Poincaré group.

Poincaré invariance embodies the requirement that the
corresponding physics in X be homogeneous and isotropic.



Of course, X “ Rn has even more symmetries, which theories
may preserve (or not) in interesting fashion:

• discrete symmetries (P , T , et cetera. . . )

• scale invariance. (Broken scale invariance is
renormalization group theory).

• conformal invariance, or local scale invariance.
Scale-invariant theories are usually conformal.



— One last piece of structure:

If X has a notion of (mutually commuting) translation
symmetries, I might further ask that there is a complete basis
of eigenfunctions φk P F pX q, diagonalizing those translations.
Here k takes values in the joint spectrum of the translation
operators, which I’ll denote X_.

This amounts to saying that there is a notion of mode
expansion, or equivalently, of the Fourier transform.

On Rn, X “ X_, but this isn’t necessarily true: in lattice
models, for example, Z_ “ S1 (the “Brillouin zone”).



I might also ask for a notion of “size” on X_ (generalizing the
length of a vector).

Once I have this, together with a notion of measure,
translation symmetry, and a mode expansion, I have enough to
write down a free theory of a real field on X :

Srφs “

ż

X_
φp´kq

`

|k |2 `m2
˘

φpkq ` ¨ ¨ ¨

And once I can do this, I’m really in familiar territory. . .

Key point: The more of this structure X has, the more a
theory on it looks like your favorite typical QFT.



Two ways to make Confpnq-invariant Euclidean theories:

• Pick X “ Sn (or Rn), and look for conformal theories:
fixed points of renormalization group flow.

• Pick X “ Hn`1 (hyperbolic space one dimension higher),
and take any field theory!

Isometries of Hn`1 (analogues of Poincaré symmetry) are
given by the group G “ Confpnq.

In fact, Sn “ BHn`1, and a metric on H induces a conformal
structure on its boundary. . .



This is (one) starting point of the AdS/CFT correspondence.;

Central idea: (Certain) conformal theories on Sn are
equivalent to field theories (with gravity) on Hn`1.

From the boundary perspective, the extra coordinate plays the
role of a renormalization-group scale.

A newer entry in the dictionary: geometric features of the bulk
are encoded in the entanglement structure of boundary states.

;Maldacena, in AIP Conf. Proc. CONF-981170, 484.1 (1999); Witten, ATMP 2 (1998);
Gubser, Klebanov, & Polyakov, Phys. Lett. B 428.1 (1998)



There has been much interest recently in discrete models of
holography; most of these are variants of tensor network
constructions, designed to reproduce Ryu-Takayanagi.

However, discretization usually breaks symmetries, which seem
to be a key part of the story. Moreover, tensor networks aren’t
field theories, at least according to my definition. . . (they don’t
tend to have Hamiltonians; just produce vacuum state).

Can we make a discrete analogue of the story I’ve been telling?

Just need to come up with a discrete X , with properties that
mimic those of Hn`1. . . §

§Manin & Marcolli, ATMP 5 (2001)



Key idea from mathematics:

Most of the structures on Rn exist because it’s an affine space
over a field (which, confusingly, now means a collection of
abstract “numbers” for which addition, subtraction,
multiplication, and division all work as expected).

At least as far as algebraic structures are concerned, affine
spaces over fields all behave similarly. We can simply replace
one field by another. . .



Where do fields come from?

R is defined by starting with the rational numbers, and “filling
in the holes” (completing with respect to a notion of distance).

We will use fields called Qp, that are defined by an identical
procedure—but with respect to a different notion of distance:

x “ pνpa{bq pa, b K pq ùñ |x |p “ p´ν .

Note that the norm takes on only a discrete set of values.

These are the only possible completions of Q!



Qp has all the structures I catalogued before:

• There is an obvious translation symmetry on the affine
space Qn

p.

• There are scaling symmetries as well.

• There is a unique translation-invariant integration
measure dx on Qp (additive Haar measure).

• The space of well-behaved (locally constant) functions
on Qp is spanned by eigenfunctions of translation, which
take the form

χppkxq “ e2πitkxup .

• Qp is Fourier-self-dual: k P Q_p – Qp.

• There’s a notion of size, namely | ¨ |p.



In low dimensions, the relevant symmetries for AdS/CFT can
also be formulated algebraically!

Confp2q “ PGLp2,Cq acts on the boundary, S2 “ P1pCq, by
Möbius transformations:

z ÞÑ
az ` b

cz ` d
.

H3 is the quotient of the isometry group, PGLp2,Cq, by its
maximal compact subgroup PSUp2q.



To illustrate:

boundary “ P1pCq

bulk “ H3

“ PGLp2,Cq{PSUp2q

totally geodesic surface

0

8



Replacing C by Qp produces a discrete bulk space that is an
analogue of H3!

This space is the Bruhat–Tits tree:

Tp “ PGLp2,Qpq{PGLp2,Zpq,

an infinite tree of uniform valence p ` 1.

It has many properties characteristic of hyperbolic space: the
perimeter of a circle is exponential in the radius; geodesic
triangles are slim (in fact, they all look like the letter Y).



To illustrate (p “ 3):

boundary “ P1pQpq

bulk “ Tp

“ PGLp2,Qpq{PGLp2,Zpq
geodesics

0 1

8



Just as before, PGLp2,Qpq acts by isometries on the tree, and
by Möbius transformations on its boundary.

We can even obtain “black holes” in the same way, as
quotients of this geometry by certain free subgroups:

The p-adic BTZ black hole (pictured for p “ 3).



Then it’s off to the races:
One can now try to understand the simplest instances of
holography: for instance, free bulk scalar fields propagating
without backreaction.

The Klein–Gordon equation and its plane-wave solutions:¶

4φ “
ÿ

v 1

pφpv 1q ´ φpvqq “ m2φ, φκpvq “ pκxv ,xy.

xv , xy is the distance from v to the boundary point x ,
regularized to be zero at the (arbitrary) center vertex C .

The corresponding mass eigenvalue is

m2
κ “ pκ ` p1´κ

´ pp ` 1q.

(Thus, the BF bound is m2
κ ě ´p

?
p ´ 1q2.)

¶Zabrodin, CMP 123.3 (1989); Heydeman, Marcolli, IAS, and Stoica, arXiv:1605.07639

arXiv:1605.07639


Just as in ordinary AdS/CFT, these solutions provide a
bulk/boundary Green’s function:

φpvq “
p

p ` 1

ż

Qp

dµ0pxqφ0pxqp
xv ,xy.

Bulk fields of mass mκ couple to boundary operators of
conformal dimension κ:}

xOκpxqOκpyqy „
1

|x ´ y |2κp
.

If the boundary field φ0 is a single mode (additive character
of Qp), it stops contributing to the reconstruction of bulk
physics abruptly, at a height determined by its wavelength.

}For p-adic CFT, see Melzer, Int. J. Mod. Phys. A 4.18 (1989)



In many cases, p-adic analogues of familiar field theory models
(such as the OpNq model) can be defined straightforwardly.
Computations in these theories exhibit universal answers,
independent of which space the theory is defined on!

As an example, leading-order anomalous dimensions in OpNqℵ

for the operators φ and φ2:

γφ,φ2 “ Resδ“0 gφ,φ2pδq ` Op1{N2
q

where the functions gφ,φ2 are given by

gφpδq “
1

N

Bpn ´ s, δ ´ sq

Bpn ´ s, n ´ sq
,

gφ2 pδq “ ´
2

N

Bpn ´ s, δ ´ sq

Bpn ´ s, n ´ sq
`

1

N

Bpδ, δq

Bpn ´ s, n ´ sq

ˆ

2
Bpn ´ s, n ´ 2sq

Bpn ´ s, n ´ sq
´ 1

˙

.

ℵGubser, Jepsen, Parikh, & Trundy, arXiv:1703.04202

arXiv:1703.04202


These results apply equally well in every case, assuming the
special functions involved are defined uniformly!

Let the local zeta function be defined following Tate’s thesis as

ζppsq “
1

1´ p´s
, ζ8psq “ π´s{2Γps{2q.

Then gamma and beta functions are defined for Rn or Qn
p by

the relations

Γppsq “
ζppsq

ζppn ´ sq
, Bpt1, t2q “

Γppt1qΓppt2q

Γppt1 ` t2q
,

where p is a prime or 8.



Grassmann variables` sign characters “ fermions:

We considered analogues of Klebanov-Tarnopolsky models
(variants of SYK):Υ

Sfree “

ż

dω
1

2
φabc

p´ωq|ω|sp sgnpωqφabc
pωq

Sint “

ż

dt φabcφab1c 1φa1bc 1φa1b1c

Here, the field is either commuting or anticommuting; pairs of
indices are contracted either with δ or with a fixed
antisymmetric matrix; and the sign character may be either
“odd” or “even.”

Exactly one specific collection of choices leads to consistent
behavior in the IR for each X !

ΥGubser, Heydeman, Jepsen, Parikh, IAS, Stoica, & Trundy, arXiv:1707.01087

arXiv:1707.01087


In the limit of large N and weak coupling, with g 2N3 fixed, the
leading-order Schwinger-Dyson equation is

G “ F ` σΩpg
2N3

qG ‹ G 3
‹ F .

Solve in the IR to obtain universal limiting behavior:

G ptq “ b
sgnptq

|t|1{2
, |t| " pg 2N3

q
1{p2´4sq

where
1

b4g 2N3
“ ´σΩΓpπ´1{2,sgnqΓpπ1{2,sgnq.

Scaling in the IR limit is completely independent of the
spectral parameter of the UV theory!



For fermionic theories with “direction-dependent” characters,
one can do even better: it is possible to explicitly solve the
Schwinger-Dyson equation for behavior at all scales,
interpolating between the UV and the (universal) IR.

If F ptq “ f p|t|q sgnptq (and similarly for G ), then

g “ f ´
g 2N3

p
|t|2g 4f .



What about analogues of gravity?

One might try making the edge lengths dynamical.ג A
plausible action comes from a notion of Ricci curvature for
graphs.:: On a tree-like graph, it reduces to

κxy “
bxy
dx

´

bxy ´
ÿ

bxxi

¯

`
bxy
dy

´

bxy ´
ÿ

byyi

¯

Linearized equations of motion are massless!

On-shell action (after regularization by an analogue of the
Gibbons-Hawking-York boundary term) is topological.

,Gubserג Heydeman, Jepsen, Marcolli, Parikh, IAS, Stoica, & Trundy, JHEP 06 (2017)
157, arXiv:1612.09580

::Lin, Lu, & Yau, Tohoku Math. J. 2nd ser. 63.4 (2011); see also Ollivier

arXiv:1612.09580


One might also try to strengthen the connection to ordinary
tensor networks.;;

Several plausible directions here: first, one might try to use
tensors (quantum codes) connected to curves over finite fields,
and connect to algebraic structure of the tree.

Another: the path integral of our theory is already, in some
sense, a tensor network! (It’s built by concatenating many
copies of the same linear map. . . )

H H bp

;;Heydeman, Marcolli, IAS, and Stoica, work in progress



Other future directions:

• Entanglement entropy?

• Further connections to exact renormalization group?
Statistical mechanics models defined on Cayley trees?

• Use models to do complicated calculations in real
AdS/CFT, via universality or adelic relations?

• Can one define invariants of p-adic spaces using field
theories?



Thanks!

Drawing courtesy of Robert Savannah, U.S. Fish and Wildlife Service


