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Axion minicluster

• PQ symmetry breaking after inflation: Axion field takes 
random values in different Hubble volumes 

•  O(1) density fluctuations when Axion mass switches on

• expect gravitationally bound objects with  
size ~ Hubble volume @ QCD PT

Figure 5. Dimensionless minicluster mass function XM ⌘ M2/⇢(dn/dM) for three choices of
f
PQ

. The di↵erent line-styles indicate the mass function at di↵erent times: dotted x = 0.2, dashed
x = 0.5, solid x = 1, dot-dashed x = 5, where x = a/a

eq

.

Estimates of the minicluster mass in the previous literature assume that a minicluster

is made out of all axions inside the Hubble horizon dH at the time the field oscillations

commence [7]: M ⇠ 4⇡
3 d3H(Tosc)⇢(Tosc). Using dH ⇠ 1/H, this leads to (see e.g., Refs. [12,

17]) M ⇠ 10�12M�(fPQ/1011GeV)2. While our results show a similar dependence on fPQ,

the values for Mpeak obtained from fig. 5 are about two orders of magnitude smaller. This

follows from the fact that the characteristic size of the density fluctuations is smaller than

the Hubble horizon at Tosc, see figs. 2 and 3, and therefore we obtain lighter miniclusters.

Note that Ref. [15] obtains an even larger minicluster mass, since their definition of the

“Hubble volume” di↵ers by a factor ⇡ from the above estimate dH ⇠ 1/H.

Let us now discuss the size of the miniclusters. The quantity shown on the vertical

axes of fig. 4 is not very intuitive: it corresponds to the co-moving size of the over-density

at the initial time T? = 100 MeV relative to the co-moving Hubble radius at 1 GeV. In

order to convert this into a more useful quantity, we calculate now the physical size of an

over-density of given mass, at the time when it decouples from the Hubble flow, i.e., at

turn-around, denoted by rta. In the notation of section 4.1, it is given by

rta = ⇠taataR , (4.18)

where R is the initial co-moving radius. By using eq. (4.3) and solving eq. (4.2) numerically

one can get ⇠ta and ata. An approximate analytic expression can be obtained by using [39]

⇠ ' 1 � �x/2, together with �xta ' 0.7. Introducing a minor fudge factor to fit numerics

– 17 –
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Initial condition
• axion field smooth on scales < horizon  

uncorrelated on scales > horizon

• assume power spectrum for axion field 
w Gaussian cut-off

6

configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:

PG
✓ (k) =

8⇡4

3
p
⇡K3

exp

✓

� k2

K2

◆

, (3.6)

which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K�1
1 , where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density

Sticking to the quadratic potential, the energy density of the axion field is given by

⇢(~x) =
f2
PQ

2



✓̇2 � 1

a2
(~r✓)2 +m2 (T ) ✓2

�

. (3.7)

Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write

✓k(a) = ✓k fk(a) . (3.8)

Here ✓k ⌘ ✓k(ai) denotes the initial condition for the field at the time ti and fk(a) is a real

function encoding the time (or a) dependence obtained from solving the equation of motion

with the initial condition fk(ai) = 1. The random properties of the field characterized by

Eq. (3.3) are thus encoded in the initial conditions ✓k. We solve eq. (2.5) numerically

for a large set of modes, for details see appendix A. We use the susceptibility �(T ) as

well as the e↵ective number of degrees of freedom as a function of temperature needed to

determine H(T ) from the QCD calculations from Ref. [27], see also Refs. [28, 29] for similar

calculations.

With this notation we obtain for the energy density

⇢(~x) =
1

(2⇡)6
f2
PQ

2

Z

d3kd3k0 ✓k✓
⇤
k0F (k, k0)e�i~x(~k�~k0) , (3.9)
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value of any quantity Y (✓) is given by hY i =
R

d✓ f(✓)Y (✓). In particular, it implies for

the mean and the variance:

h✓(~x)i = 0 , h✓(~x)2i = ⇡2/3 . (3.1)

Let us now consider the Fourier transform

✓k =

Z

V
d3x ✓(~x)ei

~k~x , ✓(~x) =
1

(2⇡)3

Z

d3k ✓ke
�i~k~x . (3.2)

The integral over d3x is taken over a large volume V , such that the integral is finite, and

~x and ~k are co-moving coordinate and momentum, respectively. We have h✓ki = 0, and

✓�k = ✓⇤k since ✓(~x) is real. Due to statistical homogeneity and isotropy the correlation

function in Fourier space can be written as

h✓k✓⇤k0i = (2⇡)3 �3(~k � ~k0)P✓(k) , (3.3)

where P✓(k) denotes the power spectrum for the field, which is the Fourier transform of

the 2-point correlation function ⇠(|~r|) = h✓(~x)✓(~x+ ~r)i. We follow the conventions for the

power spectrum of Ref. [26].

We can now use the shape of the power spectrum to implement that causally discon-

nected regions should be uncorrelated. Let us introduce a characteristic wave number

K = aiHi , (3.4)

where ai is the scale factor at our initial time ti and Hi is the Hubble rate at that time.

The axion field should be uncorrelated at co-moving distances larger than 1/K. Note that

there is an ambiguity in this definition. Alternatively we could use the association of wave

number and co-moving distance as k = ⇡/R, which would lead to an additional factor ⇡ in

eq. (3.4) for R = 1/(aiHi). In general, K is defined only up to factors of order one, which

unfortunately introduces a large uncertainty, since K enters in many quantities of interest

with third power.

The normalization of the power spectrum is fixed by requiring h✓(~x)2i = ⇡2/3 according

to eq. (3.1). The shape of the power spectrum should be determined by the evolution of

the field from the PQ scale down to the QCD scale. In absence of a full simulation over so

many orders of magnitude, we are forced to make some (physically motivated) guesses. A

reasonable assumption seems to be a white noise (i.e., flat) power spectrum with a sharp

cut-o↵ at co-moving wave number K (“top-hat”):

PTH
✓ (k) =

2⇡4

K3
⇥(K � k) . (3.5)

This means that fluctuations for each mode up to K are equally likely. However, the

finite cut-o↵ leads to an oscillating two-point correlation function ⇠(r) which decreases

only with the inverse of the distance-squared, and hence, implies long-range correlations in

to unphysical implications of the zero mode.
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After inflation, PQ phase transition, misaligned patches
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• normalization: fixed by flat distribution

• cut-off: comoving horizon wave-number
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✓̈ + 3H(T )✓̇ � r2

a2
✓ + V 0(✓, T ) = 0 . (2.1)

Here the dot denotes derivative with respect to time, r is the derivative with respect to co-

moving coordinates, H(T ) = ȧ/a is the expansion rate with the cosmic scale factor a, and

V (✓, T ) is the temperature dependent axion potential, and the prime denotes derivative

with respect to ✓. The potential is related to the topological susceptibility of QCD, �(T ),

by

V (✓, T ) =
�(T )

f2
PQ

(1� cos ✓) . (2.2)

For small ✓ the cosine can be expanded and we obtain the temperature dependent axion

mass in terms of the susceptibility:

V (✓, T ) ⇡ 1

2
m2(T )✓2 , m2(T ) =

�(T )

f2
PQ

. (2.3)

For T . 100 MeV, �(T ) becomes constant and the axion reaches its zero-temparature mass

m0. Approximately we have [1]

m0 '
m⇡f⇡
fPQ

p
mumd

mu +md
' 5.7⇥ 10�6 eV

1012GeV

fPQ
, (2.4)

with m⇡ and f⇡ being the pion mass and decay constant, respectively, and mu,d are the

up, down quark masses.

Below we will allways assume the small ✓ expansion. This is a crucial ingredient of

our calculations, since it leads to a linear equation of motion. It is clear that our results

will not include anharmonic e↵ects when the field takes on values close to ✓ ' ±⇡. In

the context of miniclusters those field values may lead to very dense objects [8, 9], which

will not be contained in the mass function derived below and need to be considered as a

correction to our results.

In the harmonic limit the equation of motion for the Fourier modes of the field decouple:

✓̈k + 3H(T )✓̇k + !2
k✓k = 0 , !2

k ⌘ k2

a2
+m(T )2 . (2.5)

Qualitatively, we see that super-horizon modes with !k ⌧ 3H are frozen, ✓k = const,

whereas they start to oscillate once they enter the horizon. We define Tosc as the temper-

ature where the zero-mode (i.e., the homogeneous field) starts to oscillate by the equation

3H(Tosc) = m(Tosc) . (2.6)

The corresponding time and scale factors are denoted by tosc and aosc, respectively. Non-

zero k modes will start to oscillate somewhat earlier. The redshifting of non-zero k modes

is encoded by the 1/a2 factor in the expression for !k in eq. (2.5). For su�ciently late

times the mass term will dominate for all modes and the energy density will behave like

cold dark matter.

There are two main goals of this work:

– 3 –

• harmonic approximation of axion potential

• equation of motion including gradient terms:

structure 
formation



T. Schwetz (KIT) - DESY Theory workshop 2017

Axion field evolution

7

Infl
atio

n

PQ
 PT

1011 GeV

QCD PT

zer
o-T m

ass
 

M-R eq
ual

ity

today

1 GeV 100 MeV 5 eV 10-4 eV

cosmic string network (Kibble)  
~ one string per Hubble volume

collapse of overdensities 
formation of miniclusters

evolution of 
k-modes

Universe is given by

✓̈ + 3H(T )✓̇ � r2

a2
✓ + V 0(✓, T ) = 0 . (2.1)

Here the dot denotes derivative with respect to time, r is the derivative with respect to co-
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– 3 –

• harmonic approximation of axion potential

• equation of motion including gradient terms:

structure 
formation

• solve EoM to calculate axion energy density and  
density power spectrum 
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configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:

PG
✓ (k) =

8⇡4

3
p
⇡K3

exp

✓

� k2

K2

◆

, (3.6)

which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K�1
1 , where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density

Sticking to the quadratic potential, the energy density of the axion field is given by

⇢(~x) =
f2
PQ

2



✓̇2 � 1

a2
(~r✓)2 +m2 (T ) ✓2

�

. (3.7)

Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write

✓k(a) = ✓k fk(a) . (3.8)

Here ✓k ⌘ ✓k(ai) denotes the initial condition for the field at the time ti and fk(a) is a real

function encoding the time (or a) dependence obtained from solving the equation of motion

with the initial condition fk(ai) = 1. The random properties of the field characterized by

Eq. (3.3) are thus encoded in the initial conditions ✓k. We solve eq. (2.5) numerically

for a large set of modes, for details see appendix A. We use the susceptibility �(T ) as

well as the e↵ective number of degrees of freedom as a function of temperature needed to

determine H(T ) from the QCD calculations from Ref. [27], see also Refs. [28, 29] for similar

calculations.

With this notation we obtain for the energy density

⇢(~x) =
1

(2⇡)6
f2
PQ

2

Z

d3kd3k0 ✓k✓
⇤
k0F (k, k0)e�i~x(~k�~k0) , (3.9)
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Figure 1. Contributions to the average energy density according to Eq. (3.13) when using the
top-hat (TH) (blue) respectively the Gaussian (G) (red) power spectrum for the axion field. For
the plot we chose f

PQ

= 1012 GeV.

where we have defined

F (k, k0) = ḟkḟk0 +

 

~k · ~k0

a2
+m2 (T )

!

fkfk0 . (3.10)

The average energy density is obtained by using the correlator from eq. (3.3) as

⇢ ⌘ h⇢(~x)i = 1

2⇡2

f2
PQ

2

Z 1

0
dk k2 P✓(k)F (k, k) , (3.11)

with

F (k, k) = ḟ2
k + !2

kf
2
k , (3.12)

where !k has been defined in eq. (2.5) and it can be identified with the energy of the mode

with momentum ~k. Since the power spectrum suppresses modes with k > K, at su�ciently

late times, the term k2/a2 can be neglected compared to the zero-temperature mass m.

We say that all modes become non-relativistic.

Let us introduce the dimensionless wave number k̃ = k/K. It follows from the equation

of motion that once all relevant modes have become non-relativistic and m(T ) reached its

zero-temperature value, F , and consequently ⇢, scales as a�3, as it should for cold dark

matter. We factor out the a�3 dependence and use m2
0 in order to define a dimensionless

quantity F̃ through F = m2
0(a?/a)

3F̃ , with a? corresponding to T? = 100 MeV. Assuming

for illustration the top-hat power spectrum defined in eq. (3.5), we find

⇢ =
f2
PQ

2
m2

0

⇣a?
a

⌘3
⇡2

Z 1

0
dk̃ k̃2 F̃ (k̃, k̃) (PTH

✓ ) . (3.13)

– 7 –

• go to Fourier space for field
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motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).
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With Wick’s Theorem one obtains

h✓k✓⇤k�q✓
⇤
k0✓k0�qi = h✓k✓⇤k�qih✓⇤k0✓k0�qi+ h✓k✓⇤k0ih✓⇤k�q✓k0�qi+ h✓k✓k0�qih✓⇤k�q✓

⇤
k0i (3.19)

= (2⇡)6P✓(|~k|)P✓(|~k � ~q|)
n

[�3(~k � ~k0)]2 + [�3(~k + ~k0 � ~q)]2
o

. (3.20)

where we have used eq. (3.3) and we have droped terms with �3(~q) by assuming q 6= 0. In

order to deal with the squares of the Dirac delta function we use �3(k = 0) = V/(2⇡)3.

The first term in the curle bracket of eq. (3.20) gives |F (k, k � q)|2. For the second term

we can use that F (q � k,�k) = F (k, k � q), which follows from fk = f⇤
�k. Hence the first

and second terms are equal and we obtain

h|⇢q|2i = 2
V

(2⇡)3

 

f2
PQ

2

!2
Z

d3k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2 (3.21)

Using eq. (3.11) for ⇢ this gives for the power spectrum

P (q) =
1

V

h|⇢q|2i
⇢2

= 2(2⇡)3
R

d3k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2
⇥
R

d3k P✓(k)F (k, k)
⇤2 . (3.22)

The function F (k, k0) defined in eq. (3.10) is obtained from solving the equation of

motion as described in appendix A and it depends on time. Once the axion has reached its

zero-temperature mass and all relativistic modes have been red-shifted away, F (k, k0) scales

as a�3, independent of k, k0. Hence the time dependence in numerator and denumerator

of eq. (3.22) cancels and the power spectrum becomes constant in time. Our numerical

calculation shows that for temperatures below

T? ⌘ 100MeV (3.23)

this is indeed the case. Since for the following considerations we only need the power

spectrum, we can stop the field evolution at that point. In the left panel of fig. 2 we plot

the power spectrum at T? for di↵erent choices of fPQ. We observe constant power at small

q (large scales), corresponding to white noise. Then the power drops at a characteristic

scale, corresponding roughly to the size of the miniclusters, and is suppressed for large

wave numbers (small scales) where fluctuations are erased by the gradient terms.

In the right panel of fig. 2 we show the dimensionless power spectrum

�2(q) =
q3

2⇡2
P (q) , (3.24)

which corresponds to the variance of the relative density perturbations per decade of q.

From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for

instance by considering the orange curve, corresponding to fPQ = 1012 GeV. For this case,

Tosc ⇡ 1 GeV, and hence K1 = a1H1 is the inverse of the horizon at Tosc. The peak for the

orange curve is around q ⇡ 4K1, and hence it corresponds to a size 4 times smaller than
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Figure 2. The axion energy density power spectrum P (q) (left) and the dimensionless power
spectrum �2(q) defined in eq. (3.24) (right), for di↵erent choices of f

PQ

. Solid curves in both
panels assume the Gaussian initial axion field correlator, eq. (3.6), and Ti = 3T

osc

. In the right
panel, the dashed-blue curve corresponds to Ti = 2T

osc

(Gaussian correlator) and the dash-dotted
orange curve corresponds to the top-hat (TH) correlator, eq. (3.5), and Ti = 3T

osc

.

the horizon at Tosc. For the other two curves, fPQ is smaller, which means larger Tosc, and

therefore the peak is shifted to smaller length scales accordingly.

Another interesting result is that the power spectrum has a cut-o↵ around 2K (instead

of the naively expected K). This is most transparent for the case when we consider a top-

hat initial correlator for the axion field according to eq. (3.5), where we have a sharp cut-o↵

in k-space. In this case we have K/K1 = aiHi/(a1H1) ⇡ a1/ai ⇡ 3, since Ti/(1 GeV) ⇡
Ti/Tosc = 3. Therefore, the value q/K1 ⇡ 6, at which the dash-dotted curve goes to zero

corresponds to 2K. This result follows directly from the way how the two P✓ factors in

eq. (3.22) depend on the wave number, and it implies that although modes with k > K

do not contribute to the energy density, there is power in fluctuations up to wave numbers

2K. Note that for the Gaussian correlator, eq. (3.6), which is our default assumption, the

cut-o↵ is smeared out.

The comparison of the blue solid and dashed curves in fig. 2 shows the impact of

changing our default assumption Ti = 3Tosc to Ti = 2Tosc. Note that this implies also a

change of the wave number cut-o↵, which we define as K = aiHi. As expected we observe

a shift of the peak towards smaler wave numbers.

A note on the normalization of our power spectrum is in order. We use ⇢ to normalize

the spectrum, which is the average density from the re-alignment mechanism. If there is

an additional contribution to the axion energy density (e.g., from the string and domain

wall decay) the power would be reduced accordingly, unless the additional component itself

introduces further fluctuations.

Our calculations so-far do not include the e↵ect of gravity on the axion over-densities,

therefore the expression for the power spectrum, eq. (3.22) remains constant after T?. In

the following we are going to “switch on” gravity for the axions, and develop a model to
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From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for
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• density fluctuations of order one
• charact. size a few times smaller than horizon @ Tosc
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variable ⇠ to describe the deviation of the over-density from this expansion: r = ⇠rflow. KT

derived an equation of motion for ⇠:

x(1 + x)
d2⇠

dx2
+

✓

1 +
3

2
x

◆

d⇠

dx
+

1

2

✓

1 + �

⇠2
� ⇠

◆

= 0 , (4.2)

where x ⌘ a/aeq, with aeq being the scale factor at matter-radiation equality. The density

contrast � is the over-density at the initial time where we start the evolution. It is related

to M through

M =
4⇡

3
⇢ (1 + �) r3 , (4.3)

with r denoting the initial size of the over-dense region. Eq. (4.2) is valid both in the

radiation and matter radiation era. The solution ⇠(x) of eq. (4.2) can be used to identify

the time when an over-density collapses by requiring ṙ = 0, i.e., when the over-density

“turns around” and starts to contract. We have verified by numerically solving eq. (4.2)

the result of KT, namely that an initial over-density � at an early time will turn around at

x if � > �c with

�c(x) ⇡
0.7

x
. (4.4)

This result holds for x < 1 (radiation domination) as well as x > 1 (matter domination),

and is to good approximation independent of the initial time. As we have seen above,

the minicluster power spectrum remains constant shortly after all modes became non-

relativistic and the axion reaches its zero-temperature mass. Hence, the precise point when

we start the spherical collapse is not important as long as the corresponding temperature is

less than T? = 100 MeV. For definiteness, we set the initial time of the collapse calculation

to that temperature and denote initial quantities with the index ?.

4.2 Double di↵erential mass function

Let us consider the axion energy density contrast smoothed over a characteristic length

scale R:

�R(~x) =

Z

d3x0WR(~x� ~x0)�(~x0) , (4.5)

where WR(~x) is a filter function which goes to zero if x � R. Then the variance of the

smoothed density contrast is determined by the power spectrum:

�2
R ⌘ h�R(~x)2i =

1

2⇡2

Z 1

0
dk k2P (k)

�

�

�

W̃R(k)
�

�

�

2
, (4.6)

where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 3, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval

[�, � + d�] is

fsm(�;R) =
1p
2⇡�R

exp

✓

� �2

2�2
R

◆

. (4.7)
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where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 3, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval

[�, � + d�] is

fsm(�;R) =
1p
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exp
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guess the solution. By di↵erentiating eq. (4.8) one obtains

fsm(�;R)



g0(R)� d log �R
dR

✓

1� �2

�2
R

◆

g(R)

�

= �f(�, R) (4.10)

Indeed, it is easy to show that g(R) = �R/�0 provides a solution, with �0 ⌘ �R=0 being

the variance without smooting. Using eq. (4.10) we obtain:

f(�, R) = � 1

�0

d�R
dR

�2

�2
R

fsm(�;R) , (4.11)

f(R) = � 1

�0

d�R
dR

. (4.12)

The result for the marginal distribution in eq. (4.12) has an intuitive interpretation: the

distribution of the size of the fluctuations is related to the change in the smoothing scale,

and if �R is constant at a given scale R, there are no fluctuations of size r = R at that

scale. We show some numerical examples of f(R) for the axion miniclusters in fig. 3.

Combining our result for f(�, r) with eq. (4.4), we can now proceed in analogy to the

PS formalism and estimate the double di↵erential mass function. We use that for fixed r,

eq. (4.3) relates the mass M to the over-density �. We denote by dn/dMdR the comoving

number density of collapsed objects with mass in [M,M + dM ] and size in [R,R+ dR]. It

is related to f(�, r) by

M

⇢

dn

dMdR
dMdR = 2 f(�, R) d�dR⇥[� � �c(x)] . (4.13)

The theta-function selects over-densities larger than �c(x), which are collapsed at the time

x. The factor of 2 is included here for the same reason as it appears in the original PS

formula. It takes into account the mass in under-dense regions; if all mass was bound in

collapsed objects (meaning �c = 0) the integral of the right-hand side of eq. (4.13) should

give 1, whereas without the factor 2 it would give only 1/2. Using eq. (4.3) we obtain our

final result for the double di↵erential mass function:

dn

dMdR
=

3

2⇡MR3
f(�, R)⇥[� � �c(x)] , (4.14)

where f(�, R) is given in eq. (4.11), � is considered as a function of M and R, � = �(M,R)

according to eq. (4.3), and the critical density �c(x) is given in eq. (4.4). The interpretation

of eq. (4.14) is as follows: dn/dMdR is the distribution of collapsed objects at a time

x = a/aeq, whereas f(�, R) is the distribution of the fluctuations at the initial time x?,

which can be calculated departing from the power spectrum at x? using eq. (4.11). The

total mass function dn/dM is obtained by integrating over R

dn

dM
=

3

2⇡M

Z Rc(M)

0

dR

R3
f [�(M,R), R] , (4.15)

where Rc for a given M can be derived from eq. (4.3) with � = �c(x).
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• Gaussian distribution for the smoothed contrast

• derive distribution in δ and R:
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and is to good approximation independent of the initial time. As we have seen above,

the minicluster power spectrum remains constant shortly after all modes became non-
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we start the spherical collapse is not important as long as the corresponding temperature is

less than T? = 100 MeV. For definiteness, we set the initial time of the collapse calculation

to that temperature and denote initial quantities with the index ?.
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where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 3, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval

[�, � + d�] is
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guess the solution. By di↵erentiating eq. (4.8) one obtains
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Indeed, it is easy to show that g(R) = �R/�0 provides a solution, with �0 ⌘ �R=0 being

the variance without smooting. Using eq. (4.10) we obtain:
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The result for the marginal distribution in eq. (4.12) has an intuitive interpretation: the

distribution of the size of the fluctuations is related to the change in the smoothing scale,

and if �R is constant at a given scale R, there are no fluctuations of size r = R at that

scale. We show some numerical examples of f(R) for the axion miniclusters in fig. 3.

Combining our result for f(�, r) with eq. (4.4), we can now proceed in analogy to the

PS formalism and estimate the double di↵erential mass function. We use that for fixed r,

eq. (4.3) relates the mass M to the over-density �. We denote by dn/dMdR the comoving

number density of collapsed objects with mass in [M,M + dM ] and size in [R,R+ dR]. It

is related to f(�, r) by

M

⇢

dn

dMdR
dMdR = 2 f(�, R) d�dR⇥[� � �c(x)] . (4.13)

The theta-function selects over-densities larger than �c(x), which are collapsed at the time

x. The factor of 2 is included here for the same reason as it appears in the original PS

formula. It takes into account the mass in under-dense regions; if all mass was bound in

collapsed objects (meaning �c = 0) the integral of the right-hand side of eq. (4.13) should

give 1, whereas without the factor 2 it would give only 1/2. Using eq. (4.3) we obtain our

final result for the double di↵erential mass function:

dn

dMdR
=

3

2⇡MR3
f(�, R)⇥[� � �c(x)] , (4.14)

where f(�, R) is given in eq. (4.11), � is considered as a function of M and R, � = �(M,R)

according to eq. (4.3), and the critical density �c(x) is given in eq. (4.4). The interpretation

of eq. (4.14) is as follows: dn/dMdR is the distribution of collapsed objects at a time

x = a/aeq, whereas f(�, R) is the distribution of the fluctuations at the initial time x?,

which can be calculated departing from the power spectrum at x? using eq. (4.11). The

total mass function dn/dM is obtained by integrating over R

dn
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=

3
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f [�(M,R), R] , (4.15)

where Rc for a given M can be derived from eq. (4.3) with � = �c(x).
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This result holds for x < 1 (radiation domination) as well as x > 1 (matter domination),
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where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 3, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval

[�, � + d�] is

fsm(�;R) =
1p
2⇡�R

exp

✓

� �2

2�2
R

◆

. (4.7)
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• Gaussian distribution for the smoothed contrast

• derive distribution in δ and R:

• double-differential distribution in M and R using:
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Dimensionless double-differential mass function
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Figure 4. Dimensionless double di↵erential distribution of collapsed objecs XMR ⌘
M2R/⇢(dn/dMdR) at matter-radiation equality for three choices of f

PQ

. The vertical axis shows
the co-moving size of the over-density at the initial time T? = 100 MeV relative to R

1

, the co-moving
Hubble radius at 1 GeV.

fPQ [GeV] Mpeak [M�] M range [M�] rpeakta [km] rta range [km]

1010 4⇥ 10�16 [2⇥ 10�17, 1⇥ 10�14] 4⇥ 104 [2⇥ 104, 2⇥ 105]

1011 2⇥ 10�14 [5⇥ 10�16, 3⇥ 10�13] 2⇥ 105 [4⇥ 104, 7⇥ 105]

1012 8⇥ 10�13 [6⇥ 10�14, 2⇥ 10�11] 2⇥ 106 [7⇥ 105, 7⇥ 106]

Table 2. For three example values of f
PQ

we give the minicluster mass for which the relative mass
function XM peaks, M

peak

, and the interval in masses, where the mass function XM is larger than
1% of the peak. The column “rpeak

ta

” gives the size of the over-density corresponding to M
peak

when
it decouples from the Hubble flow and starts to collapse (“turn-around”). The last column gives
the range of r

ta

corresponding to masses for which the mass function XM is larger than 1% of the
peak.

see some hierarchical collapsing at the high mass end. But we checked that the dash-dotted

curves (x = 5) are already close to the x ! 1 limit. This can be understood from the

analytic expression, eq. (4.15), in the limit �c ! 0.
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• MC masses span 3 orders, 
sizes span 1 order of magn.

• peak-masses 2 orders of mag. 
smaller than naive estimates  
 
 
(typical fluctuations smaller than 
horizon at Tosc) 

Figure 5. Dimensionless minicluster mass function XM ⌘ M2/⇢(dn/dM) for three choices of
f
PQ

. The di↵erent line-styles indicate the mass function at di↵erent times: dotted x = 0.2, dashed
x = 0.5, solid x = 1, dot-dashed x = 5, where x = a/a

eq

.

Estimates of the minicluster mass in the previous literature assume that a minicluster

is made out of all axions inside the Hubble horizon dH at the time the field oscillations

commence [7]: M ⇠ 4⇡
3 d3H(Tosc)⇢(Tosc). Using dH ⇠ 1/H, this leads to (see e.g., Refs. [12,

17]) M ⇠ 10�12M�(fPQ/1011GeV)2. While our results show a similar dependence on fPQ,

the values for Mpeak obtained from fig. 5 are about two orders of magnitude smaller. This

follows from the fact that the characteristic size of the density fluctuations is smaller than

the Hubble horizon at Tosc, see figs. 2 and 3, and therefore we obtain lighter miniclusters.

Note that Ref. [15] obtains an even larger minicluster mass, since their definition of the

“Hubble volume” di↵ers by a factor ⇡ from the above estimate dH ⇠ 1/H.

Let us now discuss the size of the miniclusters. The quantity shown on the vertical

axes of fig. 4 is not very intuitive: it corresponds to the co-moving size of the over-density

at the initial time T? = 100 MeV relative to the co-moving Hubble radius at 1 GeV. In

order to convert this into a more useful quantity, we calculate now the physical size of an

over-density of given mass, at the time when it decouples from the Hubble flow, i.e., at

turn-around, denoted by rta. In the notation of section 4.1, it is given by

rta = ⇠taataR , (4.18)

where R is the initial co-moving radius. By using eq. (4.3) and solving eq. (4.2) numerically

one can get ⇠ta and ata. An approximate analytic expression can be obtained by using [39]

⇠ ' 1 � �x/2, together with �xta ' 0.7. Introducing a minor fudge factor to fit numerics
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, the co-moving
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Table 2. For three example values of f
PQ

we give the minicluster mass for which the relative mass
function XM peaks, M

peak

, and the interval in masses, where the mass function XM is larger than
1% of the peak. The column “rpeak

ta

” gives the size of the over-density corresponding to M
peak

when
it decouples from the Hubble flow and starts to collapse (“turn-around”). The last column gives
the range of r

ta

corresponding to masses for which the mass function XM is larger than 1% of the
peak.

see some hierarchical collapsing at the high mass end. But we checked that the dash-dotted

curves (x = 5) are already close to the x ! 1 limit. This can be understood from the

analytic expression, eq. (4.15), in the limit �c ! 0.
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physical sizes at turn around
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Outlook - approximations/assumptions

• initial power spectrum: should follow from evolution 
of string network (Kibble mechanism)

• harmonic approximation: anharmonic effects may 
lead to spikes in axion density [Kolb, Tkachev, 93]

• contribution from string/domain wall decays: likely to 
introduce additional energy density & fluctuations
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Axion DM today - in our galaxy?
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cosmic string network (Kibble)  
~ one string per Hubble volume

collapse of overdensities 
formation of miniclusters

evolution of 
k-modes

• Do minicluster survive non-linear structure formation?

• Do they collapse to dense Axion-stars?  
Are Axion-stars stable?

structure 
formation

?
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Axion DM today - in our galaxy?

• if a large fraction of the DM energy density is in  
MC-sized bound objects, the probability to meet one 
is very low (bad news for direct axion detection)

• depending on structure formation history, potentially 
interesting lensing signatures: 
femto-lensing Kolb, Tkachev, 95  
micro-lensing Fairbairn, Marsh et al, 17
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Thank you!
Jonas Enander,  Anderas Pargner, TS:1708.04466


