Axion dark matter minicluster

Thomas Schwetz

with Jonas Enander, Anderas Pargner, 1708.04466

DESY Theory workshop, 26-29 Sep 2017

QCD Axion

zero-T mass fixed by f_{PQ}

$$m(T=0) \approx 5.7 \times 10^{-5} \,\text{eV} \, \frac{10^{11} \,\text{GeV}}{f_{\text{PQ}}}$$

periodic potential

$$V(\theta, T) = m^2(T)(1 - \cos \theta)$$

QCD Axion

zero-T mass fixed by f_{PQ}

$$m(T=0) \approx 5.7 \times 10^{-5} \,\text{eV} \, \frac{10^{11} \,\text{GeV}}{f_{\text{PQ}}}$$

periodic potential

$$V(\theta, T) = m^2(T)(1 - \cos \theta)$$

below I will adopt the harmonic approximation

$$V(\theta, T) \approx \frac{1}{2}m^2(T)\theta^2$$

Axion minicluster

Hogan, Rees, 1988; Kolb, Tkachev, 93, 94, 95

- PQ symmetry breaking after inflation: Axion field takes random values in different Hubble volumes
- O(1) density fluctuations when Axion mass switches on
- expect gravitationally bound objects with size ~ Hubble volume @ QCD PT

$$M \sim \frac{4\pi}{3} d_H^3(T_{\rm osc}) \overline{\rho}(T_{\rm osc})$$
 $d_H \sim 1/H$

$$M \sim 10^{-12} M_{\odot} (f_{PQ}/10^{11} \,\text{GeV})^2$$

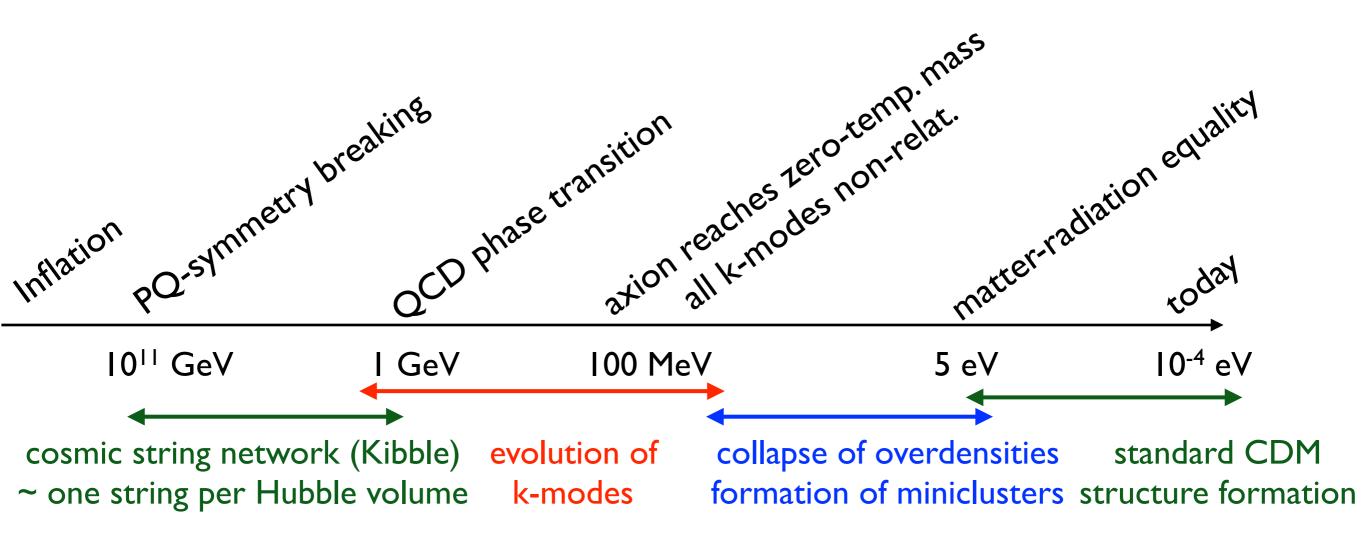
Axion minicluster

Hogan, Rees, 1988; Kolb, Tkachev, 93, 94, 95

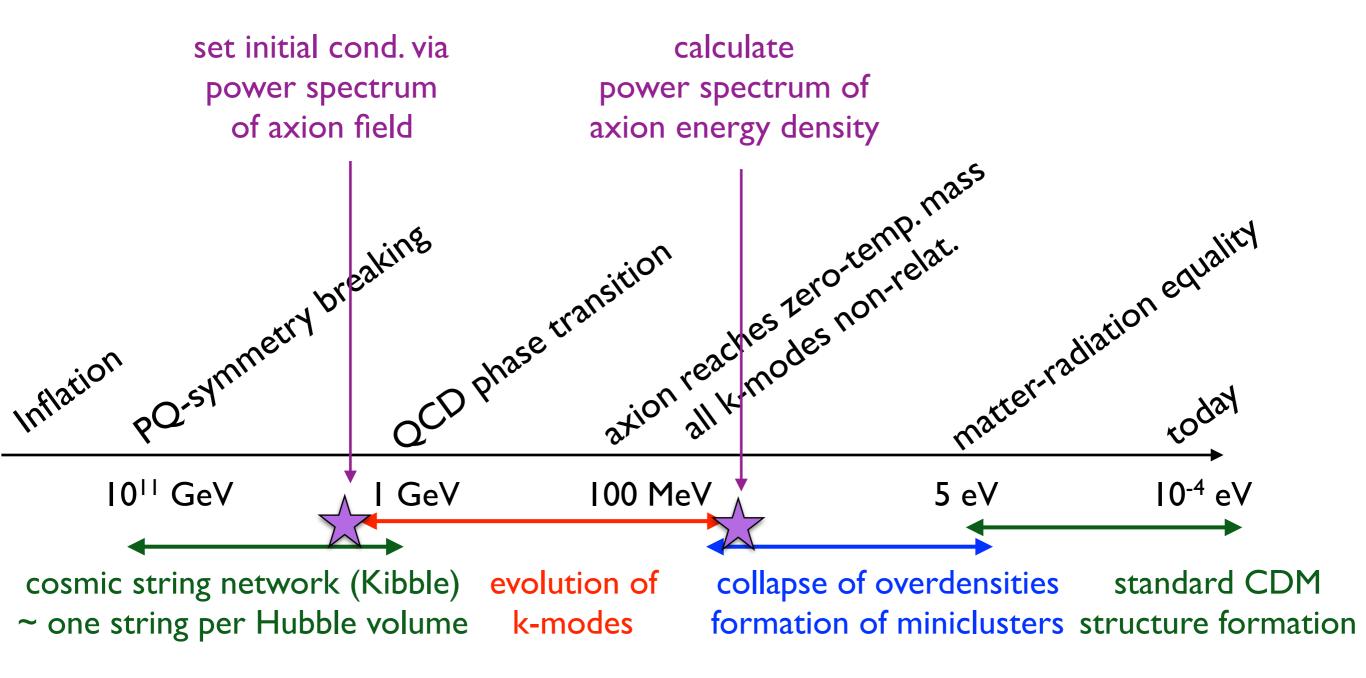
- PQ symmetry breaking after inflation: Axion field takes random values in different Hubble volumes
- O(1) density fluctuations when Axion mass switches on
- expect gravitationally bound objects with size ~ Hubble volume @ QCD PT

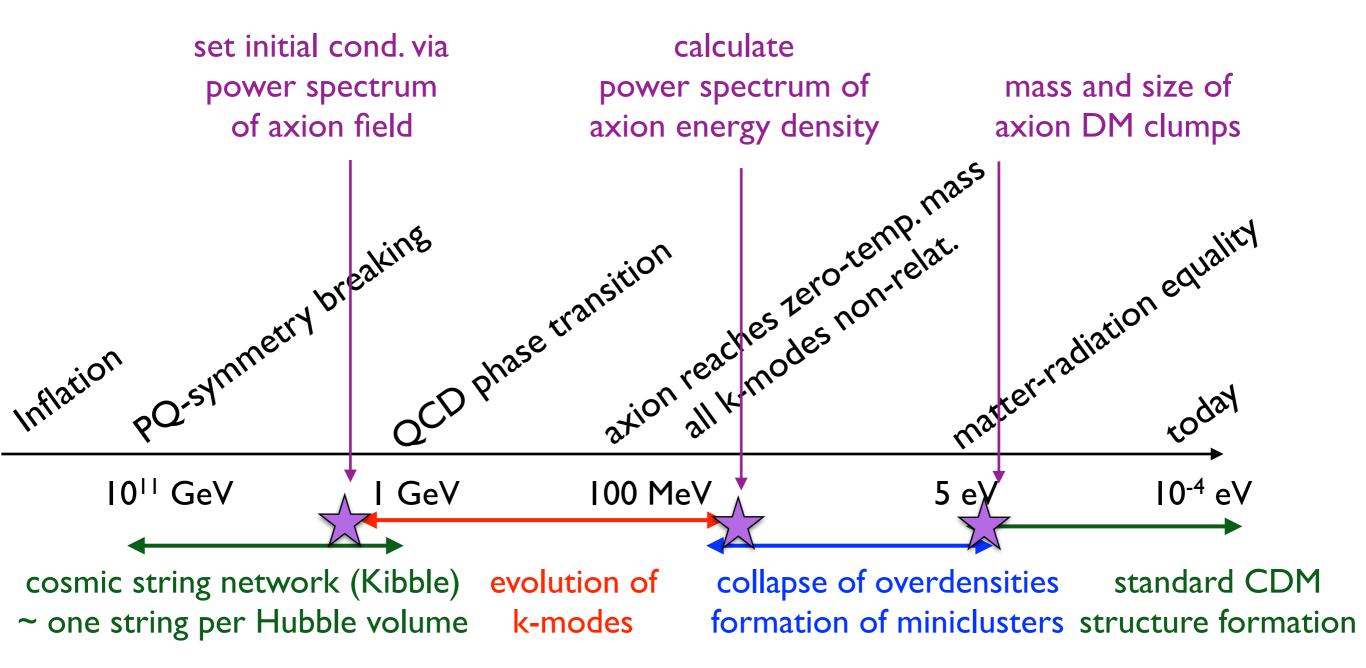
$$M \sim \frac{4\pi}{3} d_H^3(T_{\rm osc}) \overline{\rho}(T_{\rm osc})$$
 $d_H \sim 1/H$

$$M \sim 10^{-12} M_{\odot} (f_{\rm PQ}/10^{11} \, {\rm GeV})^2 \to {\rm see \ later}$$









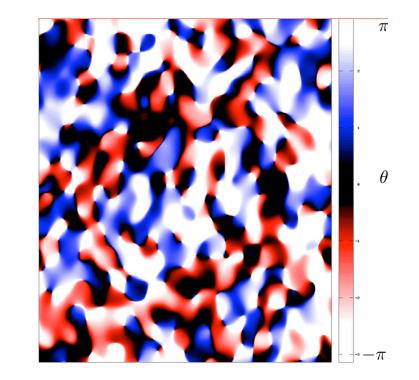
Initial condition



Initial condition

- axion field smooth on scales < horizon uncorrelated on scales > horizon
- assume power spectrum for axion field w Gaussian cut-off

$$\langle \theta_k \theta_{k'}^* \rangle = (2\pi)^3 \, \delta^3(\vec{k} - \vec{k'}) P_{\theta}(k)$$



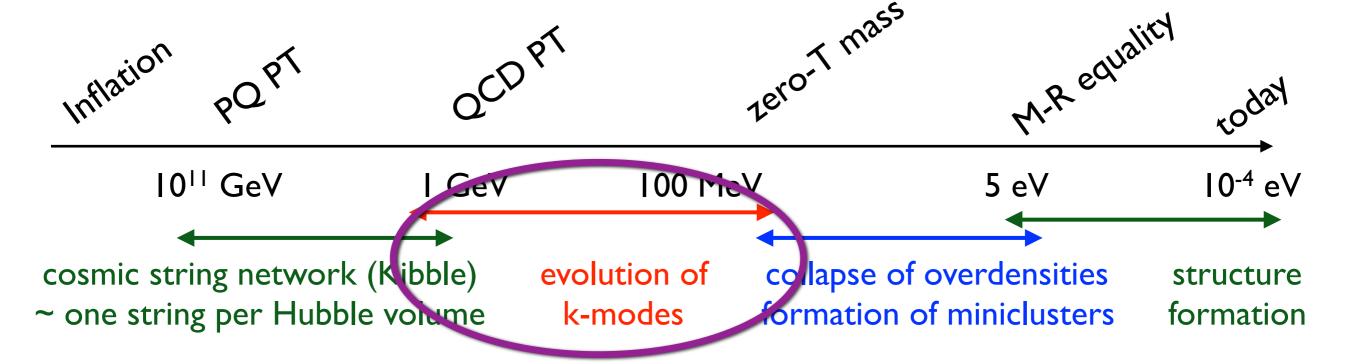
$$P_{\theta}^{G}(k) = \frac{8\pi^4}{3\sqrt{\pi}K^3} \exp\left(-\frac{k^2}{K^2}\right)$$

- normalization: fixed by flat distribution
- cut-off: comoving horizon wave-number $K = a_i H_i$

$$\langle \theta(\vec{x})^2 \rangle = \pi^2/3$$

$$K = a_i H_i$$

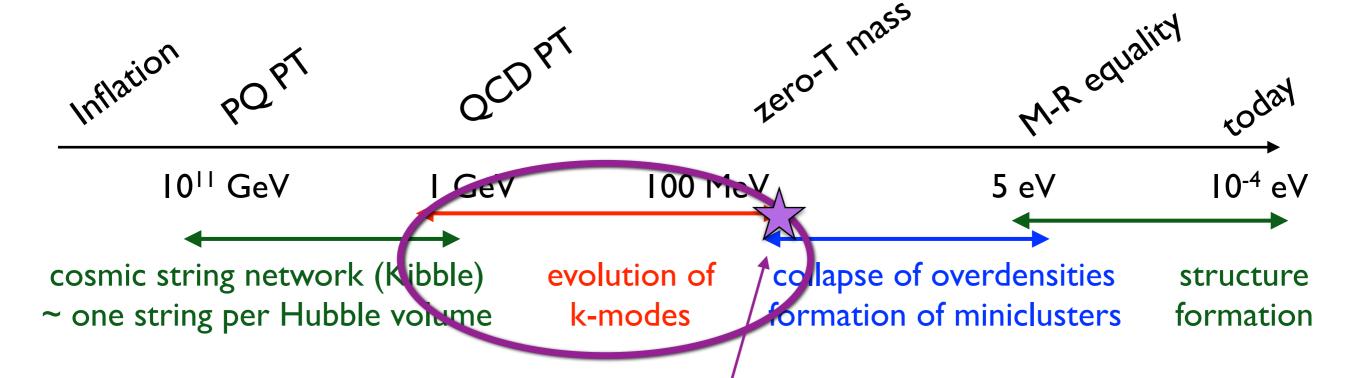
Axion field evolution



- harmonic approximation of axion potential
- equation of motion including gradient terms:

$$\ddot{\theta}_k + 3H(T)\dot{\theta}_k + \omega_k^2\theta_k = 0, \qquad \omega_k^2 \equiv \frac{k^2}{a^2} + m(T)^2$$

Axion field evolution



- harmonic approximation of axion potential
- equation of motion including gradient terms:

$$\ddot{\theta}_k + 3H(T)\dot{\theta}_k + \omega_k^2 \theta_k \neq 0, \qquad \omega_k^2 \equiv \frac{k^2}{a^2} + m(T)^2$$

 solve EoM to calculate axion energy density and density power spectrum

Axion energy density

$$\rho(\vec{x}) = \frac{f_{PQ}^2}{2} \left[\dot{\theta}^2 - \frac{1}{a^2} (\vec{\nabla}\theta)^2 + m^2 (T) \theta^2 \right]$$

$$\theta_k(a) = \theta_k f_k(a)$$

go to Fourier space for field

$$\rho(\vec{x}) = \frac{1}{(2\pi)^6} \frac{f_{PQ}^2}{2} \int d^3k d^3k' \,\theta_k \theta_{k'}^* F(k, k') e^{-i\vec{x}(\vec{k} - \vec{k'})}$$

$$F(k, k') = \dot{f}_k \dot{f}_{k'} + \left(\frac{\vec{k} \cdot \vec{k'}}{a^2} + m^2(T)\right) f_k f_{k'}$$

Axion energy density

$$\rho(\vec{x}) = \frac{f_{PQ}^2}{2} \left[\dot{\theta}^2 - \frac{1}{a^2} (\vec{\nabla}\theta)^2 + m^2 (T) \theta^2 \right]$$

$$\theta_k(a) = \theta_k f_k(a)$$

go to Fourier space for field

$$\rho(\vec{x}) = \frac{1}{(2\pi)^6} \frac{f_{PQ}^2}{2} \int d^3k d^3k' \, \theta_k \theta_{k'}^* F(k, k') e^{-i\vec{x}(\vec{k} - \vec{k'})}$$

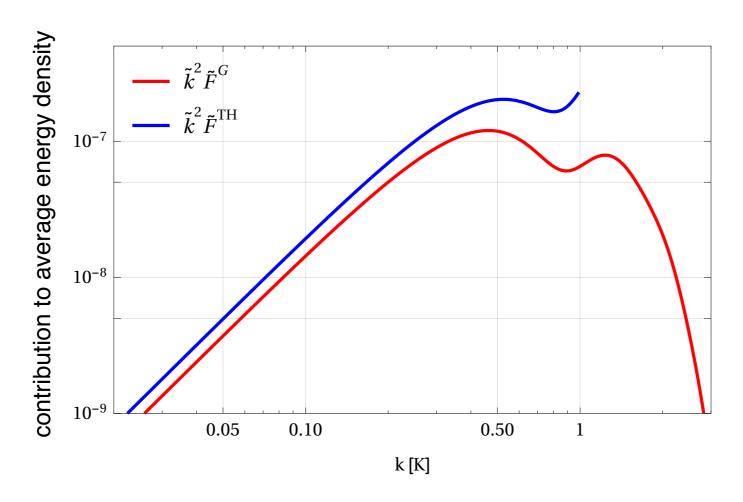
$$F(k, k') = \dot{f}_k \dot{f}_{k'} + \left(\frac{\vec{k} \cdot \vec{k'}}{a^2} + m^2(T)\right) f_k f_{k'}$$

average energy density (without string contribution):

$$\overline{\rho} \equiv \langle \rho(\vec{x}) \rangle = \frac{1}{2\pi^2} \frac{f_{PQ}^2}{2} \int_0^\infty dk \, k^2 \, P_{\theta}(k) F(k, k)$$

$$F(k,k) = \dot{f}_k^2 + \omega_k^2 f_k^2$$

Axion energy density



average energy density (without string contribution):

$$\overline{\rho} \equiv \langle \rho(\vec{x}) \rangle = \frac{1}{2\pi^2} \frac{f_{PQ}^2}{2} \int_0^\infty dk \, k^2 \, P_{\theta}(k) F(k, k)$$

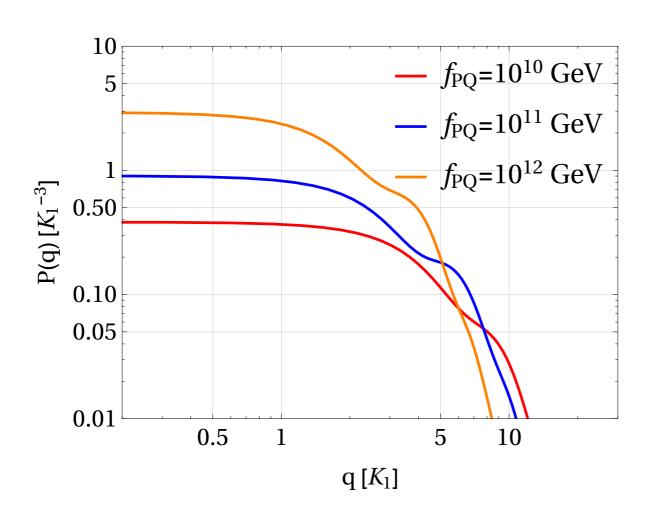
$$F(k,k) = \dot{f}_k^2 + \omega_k^2 f_k^2$$

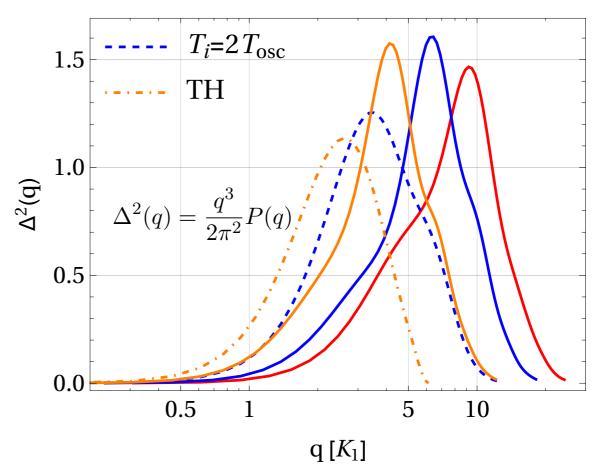
Density power spectrum

$$P(q) = \frac{1}{V} \frac{\langle |\rho_q|^2 \rangle}{\overline{\rho}^2} = 2(2\pi)^3 \frac{\int d^3k \, P_{\theta}(|\vec{k}|) P_{\theta}(|\vec{k} - \vec{q}|) \, F(k, k - q)^2}{\left[\int d^3k \, P_{\theta}(k) F(k, k) \right]^2}$$

Density power spectrum

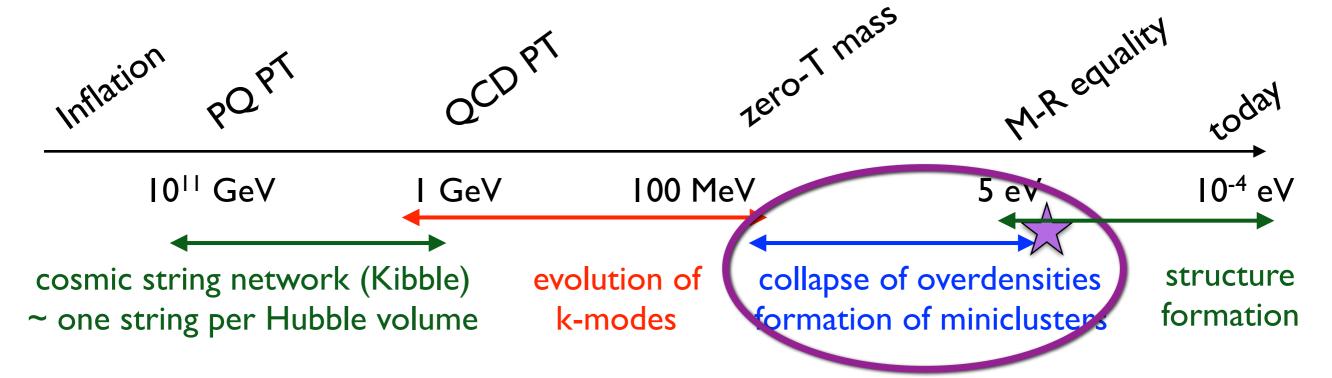
$$P(q) = \frac{1}{V} \frac{\langle |\rho_q|^2 \rangle}{\overline{\rho}^2} = 2(2\pi)^3 \frac{\int d^3k \, P_{\theta}(|\vec{k}|) P_{\theta}(|\vec{k} - \vec{q}|) \, F(k, k - q)^2}{\left[\int d^3k \, P_{\theta}(k) F(k, k)\right]^2}$$





- density fluctuations of order one
- charact. size a few times smaller than horizon @ Tosc

Collapse of over-densities



- spherical collapse model for non-linear density fluctuations during radiation domination [Kolb, Tkachev, 94]
- modified Press-Schechter ansatz to calculate doubledifferential minicluster distribution in mass and size

Double-differential mass function

variance of the smoothed density contrast

$$\sigma_R^2 \equiv \langle \delta_R(\vec{x})^2 \rangle = \frac{1}{2\pi^2} \int_0^\infty dk \, k^2 P(k) \left| \tilde{W}_R(k) \right|^2$$

Gaussian distribution for the smoothed contrast

$$f_{\rm sm}(\delta;R) = \frac{1}{\sqrt{2\pi}\sigma_R} \exp\left(-\frac{\delta^2}{2\sigma_R^2}\right).$$

derive distribution in δ and R:

$$f(\delta, R) = -\frac{1}{\sigma_0} \frac{d\sigma_R}{dR} \frac{\delta^2}{\sigma_R^2} f_{\rm sm}(\delta; R)$$

Double-differential mass function

variance of the smoothed density contrast

$$\sigma_R^2 \equiv \langle \delta_R(\vec{x})^2 \rangle = \frac{1}{2\pi^2} \int_0^\infty dk \, k^2 P(k) \left| \tilde{W}_R(k) \right|^2$$

Gaussian distribution for the smoothed contrast

$$f_{\rm sm}(\delta;R) = \frac{1}{\sqrt{2\pi}\sigma_R} \exp\left(-\frac{\delta^2}{2\sigma_R^2}\right).$$

derive distribution in δ and R:

$$f(\delta, R) = -\frac{1}{\sigma_0} \frac{d\sigma_R}{dR} \frac{\delta^2}{\sigma_R^2} f_{\rm sm}(\delta; R)$$

• double-differential distribution in M and R using: $M = \frac{4\pi}{3} \overline{\rho} \left(1 + \delta\right) r^3$

$$\frac{dn}{dMdR} = \frac{3}{2\pi MR^3} f(\delta, R)\Theta[\delta - \delta_c(x)]$$

Dimensionless double-differential mass function

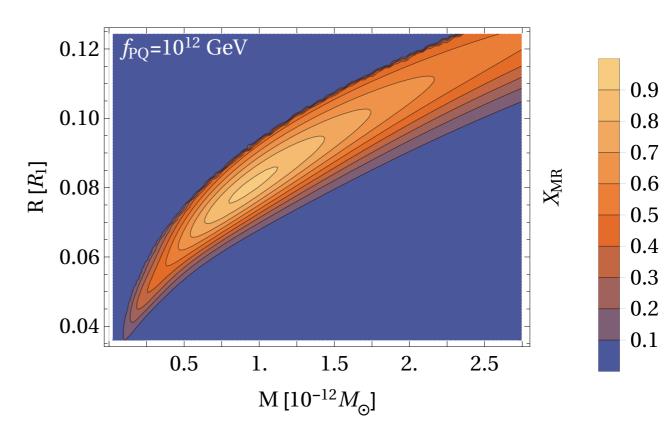
physical sizes at turn around

$f_{\rm PQ} \; [{\rm GeV}]$	$M_{ m peak} \left[M_{\odot} ight]$	$M \text{ range } [M_{\odot}]$	$r_{ m ta}^{ m peak} \ [{ m km}]$	$r_{\rm ta}$ range [km]
10^{10}	4×10^{-16}	$[2 \times 10^{-17}, 1 \times 10^{-14}]$	4×10^4	$[2 \times 10^4, 2 \times 10^5]$
10^{11}	2×10^{-14}	$[5 \times 10^{-16}, 3 \times 10^{-13}]$	2×10^5	$[4 \times 10^4, 7 \times 10^5]$
10^{12}	8×10^{-13}	$[6 \times 10^{-14}, 2 \times 10^{-11}]$	2×10^6	$[7 \times 10^5, 7 \times 10^6]$

- MC masses span 3 orders, sizes span 1 order of magn.
- peak-masses 2 orders of mag. smaller than naive estimates

$$M \sim 10^{-12} M_{\odot} (f_{\rm PQ}/10^{11} \, {\rm GeV})^2$$

(typical fluctuations smaller than horizon at T_{osc})

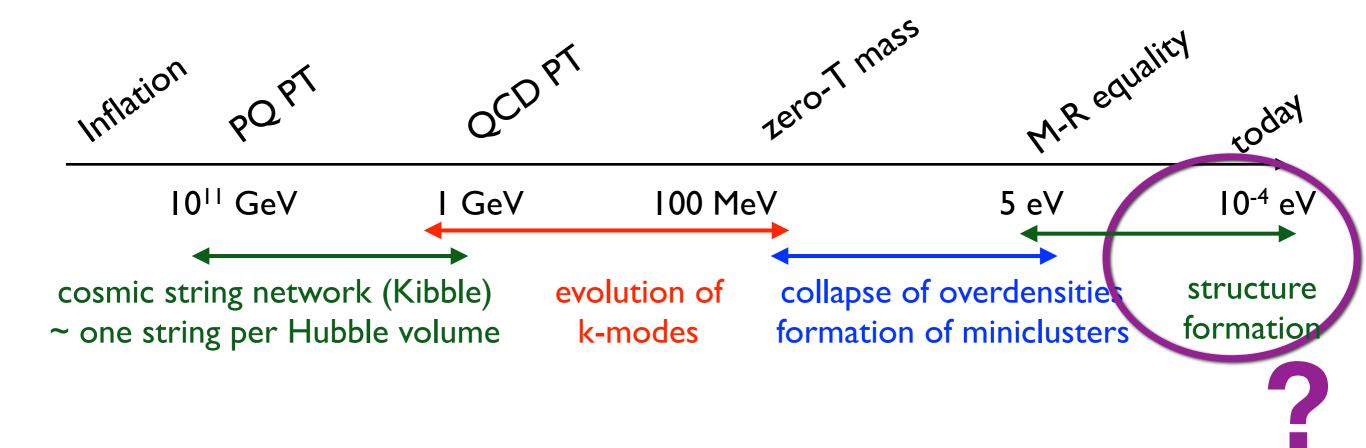


T. Schwetz (KIT) - DESY Theory workshop 2017

Outlook - approximations/assumptions

- initial power spectrum: should follow from evolution of string network (Kibble mechanism)
- harmonic approximation: anharmonic effects may lead to spikes in axion density [Kolb, Tkachev, 93]
- contribution from string/domain wall decays: likely to introduce additional energy density & fluctuations

Axion DM today - in our galaxy?



- Do minicluster survive non-linear structure formation?
- Do they collapse to dense Axion-stars?
 Are Axion-stars stable?

Axion DM today - in our galaxy?

 if a large fraction of the DM energy density is in MC-sized bound objects, the probability to meet one is very low (bad news for direct axion detection)

 depending on structure formation history, potentially interesting lensing signatures: femto-lensing Kolb, Tkachev, 95 micro-lensing Fairbairn, Marsh et al, 17

Axion DM today - in our galaxy?

 if a large fraction of the DM energy density is in MC-sized bound objects, the probability to meet one is very low (bad news for direct axion detection)

 depending on structure formation history, potentially interesting lensing signatures: femto-lensing Kolb, Tkachev, 95 micro-lensing Fairbairn, Marsh et al, 17

Thank you!

Jonas Enander, Anderas Pargner, TS: 1708.04466