Constraining particle dark matter using local galaxy distribution

Koji Ishiwata

Kanazawa University

Based on

- JCAP 1505 (2015) 05, 024 (with S. Ando)
- JCAP 1606 (2016) 06, 045 (with S. Ando)

Hamburg, September 27, 2017

4	I 1	I 1
1	Introc	luction
		14011011

After the Higgs discovery in 2012,

- The Standard model (SM) has been found to be a very good theory below a TeV scale
- But there're some inconsistencies, especially cosmological side

+ something

Cosmological issues:

- (Almost) isotropic, flat universe
- Baryon asymmetry
- Dark matter
- Dark energy

Cosmological issues:

- (Almost) isotropic, flat universe
- Baryon asymmetry

- Dark matter
- Dark matter (DM) is beyond the SM physics
 - Many DM searches are ongoing

DM searches

- Direct detection
- Indirect detection (via cosmic rays)
- Collider
- Axion like particle searches

Fermi-LAT

LHC

XENON1T

CAST

DM searches

Direct detection

Indirect detection (via cosmic rays)

Fermi-LAT

- Collider
- Axion like particle searches

LHC

XENON1T

CAST

DM signals in cosmic rays?

Excesses over 100 GeV

DM signals in cosmic rays?

Ibe, Matsumoto, Shirai, Yagagida '14

Hamaguchi, Moroi, Nakayama '15

DM signals in cosmic rays?

 4.5σ indication of a DM signal for DM masses near 80 GeV

Cuoco, Krämer, Korsmeir '17 Cui, Yuan, Tsai, Fan '17

Detailed discussion in Alessandro's talk And in Martin's talk

Are those really DM signals?

Are those really DM signals?

We may check with other observables

Today's topic

DM search using local galaxy distribution

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the

- KI, Matsumoto, Moroi '09 Profumo, Jeltema '09
- c). Tomographic cross-correlation using local galaxy distribution

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the extragalactic region

Ando, KI '15 c). Tomographic cross-correlation using local galaxy distribution

- a). Inverse-Compton (IC) γ -rays in the
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

Cuoco, Xia, Regis, Branchini, Fornengo, Viel '15

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

Our present study

Outline

- 1. Introduction
- 2. Overview of the analysis
- 3. Results
- 4. Conclusion

2. Overview of the analysis

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the
- c). Tomographic cross-correlation using local galaxy distribution

- 1. About 27% of the total energy of the universe is DM
- 2. Assume that high energy e^\pm are produced by decay or annihilation of DM
- 3. They hit the CMB photons and produce high energy γ -rays

- 1. About 27% of the total energy of the universe is DM
- 2. Assume that high energy e^\pm are produced by decay or annihilation of DM
- 3. They hit the CMB photons and produce high energy γ -rays

- 1. About 27% of the total energy of the universe is DM
- 2. Assume that high energy e^\pm are produced by decay or annihilation of DM
- 3. They hit the CMB photons and produce high energy γ -rays

KI, Matsumoto, Moroi '09 Profumo, Jeltema '09

- The story is very simple
- If we specify DM model, the QED tells us the IC spectrum exactly especially for decaying DM
- A good tool to test DM scenarios which accommodate the anomalous positron or antiproton excess

- a). Inverse-Compton (IC) γ -rays in the
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

The known sources well explain the observed gamma rays

Ando, KI '15

The known sources well explain the observed gamma rays

Constraints on DM scenarios

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the extragalactic region

Ando, KI '15 c). Tomographic cross-correlation using local galaxy distribution

For the TeV anomalous antiproton Dark matter mass $m_{\rm dm}~[{
m GeV}]$

Decaying DM scenarios to explain the anomalous positron or antiproton are partly excluded

In the study, we considered that the gamma rays from the extragalactic region is

- Statistically isotropic
- Integrated over the cosmological distances

In the study, we considered that the gamma rays from the extragalactic region is

- Statistically isotropic
- Integrated over the cosmological distances

But due to the recent observational developments,

- Anisotropies
- Cosmological distances

of the gamma rays can be used for the study

- a). Inverse-Compton (IC) γ -rays in the
- b). Astrophysical sources in the
- c). Tomographic cross-correlation using local galaxy distribution

c). Tomographic cross-correlation using local galaxy distribution

Gamma rays are almost isotropic, but ...

c). Tomographic cross-correlation using local galaxy distribution

There're anisotropies

c). Tomographic cross-correlation using local galaxy distribution

Anisotropies

Ando, Benoit-Lévy, Komatsu '13 Fornengo, Regis '13

2MRS '11 (QSO, 2MASS, NVSS, MG, LRG)

We cross-correlate the gamma rays with local galaxy distribution

2MRS '11

We know the distance from each galaxy by its redshift

Cosmological distance

Ando '14

We have "tomography" regarding cosmological distance

- Anisotropies
- Cosmological distances

Gamma rays

Local galaxy distribution

Xia, Cuoco, Branchini, Viel '15

- Anisotropies
- Cosmological distances

Gamma rays

Local galaxy distribution

Tomographic cross-correlation using local galaxy distribution

3. Results

The reported anomalous cosmic rays:

- Positron
- Antiproton (over 100 GeV)
- Antiproton (~ 80 GeV DM mass)

The reported anomalous cosmic rays:

- Positron
- Antiproton (over 100 GeV)
- Antiproton (~ 80 GeV DM mass)

Decaying DM

Annihilating DM

Decaying DM (for the anomalous e^+)

Here we focus on three-body leptonic decay: ${
m DM}
ightarrow
u l^{\pm} l^{\mp}$

(a).
$$\nu\mu^{\pm}e^{\mp}\&\nu e^{\pm}e^{\mp}$$
 (mainly e^{\pm})

(b).
$$\nu \mu^{\pm} \mu^{\mp} \& \nu e^{\pm} \mu^{\mp}$$
 (mainly μ^{\pm})

Ando, KI '16

Ando, KI '16

Including astrophysical sources give ~10 times stronger constraints

Ando, KI '16

The preferred regions are excluded

Results without IC (consistent with Regis et al. '15)

(Results without astro. comp.)

IC gamma gives 1-2 orders of magnitude stronger constraints over TeV region

IC gamma gives 1-2 orders of magnitude stronger constraints over TeV region

IC gamma rays are crucial to constrain over TeV DM

Annihilating DM (for the anomalous \bar{p})

 $DM DM \rightarrow b\bar{b}$

Ando, KI '16

Obtained constraints are similar to those given by dwarf galaxy

(consistent with

Cuoco et al. '15)

Annihilating DM (for the anomalous \bar{p})

 $DM DM \rightarrow b\bar{b}$

Ando, KI '16

Best fit regions given by Cuoco et al. '17

More data will be needed to check the anomaly

4. Conclusion

We have studied DM using local galaxy distribution

- The preferred regions for the anomalous positron flux $m_{\rm DM}=1\text{-}10~{\rm TeV},\, \tau_{\rm DM}=10^{27\text{-}26}\,{\rm sec}\,$ are excluded
- IC-induced gamma rays are crucial for the exclusion
- This analysis will be another check for 80 GeV annihilating DM motivated by the anomalous antiproton