# Constraints on the SM from the Weak Gravity Conjecture



#### Irene Valenzuela

MPI, Munich Utrecht University



Ibanez, Martin-Lozano, IV [arXiv:1706.05392 [hep-th]]

Ibanez, Martin-Lozano, IV [arXiv: 1707.05811 [hep-th]]

DESY Theory Workshop, 2017

## What are the constraints that an effective theory must satisfy to be embedded in quantum gravity?



#### **Quantum Gravity Conjectures**

Motivated many times by observing recurrent features of the string landscape and "model building failures"



They can have significant implications in low energy physics!

## Weak Gravity Conjecture

Weak Gravity Conjecture: [Arkani-Hamed et al.'06]

Given an abelian p-form gauge field, there must exist an electrically charged state with  $T \leq Q$ 

Sharpened WGC: ) [Ooguri-Vafa'16]

Bound is saturated only for a BPS state in a SUSY theory

Geometry supported by fluxes



Brane charged under the flux with  $T \leq Q$ 

[Maldacena et al.'99]



Geometry supported by fluxes



Brane charged under the flux with  $T \leq Q$ 

[Maldacena et al.'99]



Geometry supported by fluxes



Brane charged under the flux with  $T \leq Q$ 

[Maldacena et al.'99]



(non-susy)
Geometry supported

by fluxes



Brane charged under the flux with T < Q

[Maldacena et al.'99]



(non-susy)

Geometry supported by fluxes



Brane charged under the flux with T < Q

[Maldacena et al.'99]

 $\red{!}$  In AdS, a brane with T < Q describes an instability



Non-susy AdS vacua supported by fluxes are at best metastable

[Ooguri-Vafa'16]

Non-susy AdS vacua supported by fluxes are at best metastable

[Ooguri-Vafa'16]

Non-susy AdS vacua

are at best metastable

[Ooguri-Vafa'16]

Non-susy AdS vacua are at best metastable

[Ooguri-Vafa'16]

Non-susy AdS vacua are at best metastable

Same conjecture in [Freivogel-Kleban'16]

[Ooguri-Vafa'16]

Non-susy AdS vacua are at best metastable

Same conjecture in [Freivogel-Kleban'16]

Non-susy stable AdS vacua cannot be embedded in quantum gravity!

Implications for:

- Holography
- String landscape
- Low energy physics?

Standard Model + Gravity on  $S^1$ : [Arkani-Hamed et al.'07] (also [Arnold-Fornal-Wise'10])

$$V(R)\simeq rac{2\pi r^3\Lambda_4}{R^2}$$
 + Casimir energy tree-level one-loop corrections

Standard Model + Gravity on  $S^1$ : [Arkani-Hamed et al.'07] (also [Arnold-Fornal-Wise'10])

$$V(R)\simeq rac{2\pi r^3\Lambda_4}{R^2}$$
 + Casimir energy tree-level one-loop corrections

 $\longrightarrow$  suppressed by  $e^{-2\pi mR}$  for  $m\gg 1/R$ 

$$V(R) \simeq \frac{2\pi r^3 \Lambda_4}{R^2} \quad + \text{Casimir energy} \\ \quad \downarrow \\ \text{tree-level} \quad \text{one-loop corrections} \\ \quad \bullet \quad \text{suppressed by } e^{-2\pi mR} \quad \text{for} \quad m \gg 1/R$$

Depending on the light mass spectra and the cosmological constant, we can get AdS, Minkowski or dS vacua in 3d

Standard Model + Gravity on  $S^1$ : [Arkani-Hamed et al.'07] (also [Arnold-Fornal-Wise'10])

$$V(R)\simeq rac{2\pi r^3\Lambda_4}{R^2}$$
 + Casimir energy tree-level one-loop corrections

 $\longrightarrow$  suppressed by  $e^{-2\pi mR}$  for  $m\gg 1/R$ 

Depending on the light mass spectra and the cosmological constant, we can get AdS, Minkowski or dS vacua in 3d

But AdS vacua are not consistent with quantum gravity!



Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!



Absence of these vacua Constraints on SM (light espectra)

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!



Absence of these vacua Constraints on SM (light espectra)

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!

Absence of these vacua Constraints on SM (light espectra)

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!

- Absence of these vacua 
  Constraints on SM (light espectra)
- There is some hidden instability

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!

- Absence of these vacua 
  Constraints on SM (light espectra)
- There is some hidden instability
  - ▶ Instability appearing upon compactification (periodic b.c. → no bubbles of nothing)

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!

- Absence of these vacua 
  Constraints on SM (light espectra)
- There is some hidden instability
  - Instability appearing upon compactification (periodic b.c. → no bubbles of nothing)



Instability already in 4 dimensions —— Transfered to 3d

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent



We should not get stable non-susy AdS vacua from compactifying the SM!

- Absence of these vacua 
  Constraints on SM (light espectra)
- There is some hidden instability
  - Instability appearing upon compactification



(periodic b.c. → no bubbles of nothing)

Instability already in 4 dimensions —— Transfered to 3d

Assumption: Background independence

A 4d bubble instability also yields a 3d instability if

$$R_b < l_{AdS_3}$$

We

Therefore, the 3d vacuum will be stable if:

(periodic b.c. → no bubbles of not

Instability already in 4 dimensions

Transfered to 3d

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!

- Absence of these vacua Constraints on SM (light espectra)
- There is some hidden instability
  - Instability appearing upon compactification (periodic b.c. → no bubbles of nothing)



Instability already in 4 dimensions —— Transfered to 3d unless  $l_{AdS_3} < R_{\text{bubble}} < l_{dS_4}$ 

Assumption: Background independence

If our 4d SM is consistent with QG



Compactifications of SM should also be consistent

We should not get stable non-susy AdS vacua from compactifying the SM!

- There is some hidden instability
  - Instability appearing upon compactification (periodic b.c. → no bubbles of nothing)



Instability already in 4 dimensions —— Transferred to 3d unless

 $l_{AdS_3} < R_{\text{bubble}} < l_{dS_4}$ 

Standard Model + Gravity on  $S^1$ :

$$V(R) \simeq rac{2\pi r^3 \Lambda_4}{R^2}$$
 + Casimir energy



$$V(R) \simeq \frac{2\pi r^3 \Lambda_4}{R^2} - 4\left(\frac{r^3}{720\pi R^6}\right)$$

massless particles: graviton, foton





The more massive the neutrinos, the deeper the AdS vacuum

#### Constraints on neutrino masses

Majorana:

There is an AdS vacuum for any value of  $m_{\nu}$ 

Majorana neutrinos ruled out!

Dirac:

|                | NH                                              | IH                                               |
|----------------|-------------------------------------------------|--------------------------------------------------|
| No vacuum      | $m_{\nu_1} < 6.7 \text{ meV}$                   | $m_{\nu_3} < 2.1 \text{ meV}$                    |
| $dS_3$ vacuum  | $6.7 \text{ meV} < m_{\nu_1} < 7.7 \text{ meV}$ | $2.1 \text{ meV} < m_{\nu_3} < 2.56 \text{ meV}$ |
| $AdS_3$ vacuum | $m_{\nu_1} > 7.7 \; {\rm meV}$                  | $m_{\nu_3} > 2.56 \text{ meV}$                   |

Absence of AdS vacuum requires

$$m_{\nu_1} < 7.7 \text{ meV (NH)}$$

$$m_{\nu_1} < 2.1 \text{ meV (IH)}$$

#### Lower bound on the cosmological constant

Cosmological Constant + Majorana Neutrinos (NH)



Cosmological Constant + Dirac Neutrinos (NH)



The bound for  $\Lambda_4$  scales as  $m_{
u}^4$ 

(as observed experimentally)

$$\Lambda_4 \ge \frac{a(n_f)30(\Sigma m_i^2)^2 - b(n_f, m_i)\Sigma m_i^4}{384\pi^2}$$

with 
$$a(n_f) = 0.184(0.009) \\ b(n_f, m_i) = 5.72(0.29)$$
 for Majorana (Dirac)

First argument (not based on cosmology) to have  $\Lambda_4 \neq 0$ 

## Adding BSM physics

#### Light fermions

Positive Casimir contribution — helps to avoid AdS vacuum

Majorana neutrinos are consistent if adding  $m_\chi \lesssim 2 \,\,\mathrm{meV}$ 

example. For  $m_\chi = 0.1~{\rm meV}$  :

C.C. + Majorana Neutrinos (NH) + Weyl fermion



C.C. + Majorana Neutrinos (IH) + Weyl fermion



## Adding BSM physics

#### Axions

1 axion: negative contribution — bounds get stronger

Multiple axions: can destabilise AdS vacuum



## Bounds on the SM + light BSM physics

| Model                           | Majorana (NI)                      | Majorana (IH)                    | Dirac (NH)                          | Dirac (IH)                          |
|---------------------------------|------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|
| SM (3D)                         | no                                 | no                               | $m_{\nu_1} \le 7.7 \times 10^{-3}$  | $m_{\nu_3} \le 2.56 \times 10^{-3}$ |
| SM(2D)                          | no                                 | no                               | $m_{\nu_1} \le 4.12 \times 10^{-3}$ | $m_{\nu_3} \le 1.0 \times 10^{-3}$  |
| SM+Weyl(3D)                     | $m_{\nu_1} \le 0.9 \times 10^{-2}$ | $m_{\nu_3} \le 3 \times 10^{-3}$ | $m_{\nu_1} \le 1.5 \times 10^{-2}$  | $m_{\nu_3} \le 1.2 \times 10^{-2}$  |
|                                 | $m_f \le 1.2 \times 10^{-2}$       | $m_f \le 4 \times 10^{-3}$       |                                     |                                     |
| SM+Weyl(2D)                     | $m_{\nu_1} \le 0.5 \times 10^{-2}$ | $m_{\nu_3} \le 1 \times 10^{-3}$ | $m_{\nu_1} \le 0.9 \times 10^{-2}$  | $m_{\nu_3} \le 0.7 \times 10^{-2}$  |
|                                 | $m_f \le 0.4 \times 10^{-2}$       | $m_f \le 2 \times 10^{-3}$       |                                     |                                     |
| SM+Dirac(3D)                    | $m_f \le 2 \times 10^{-2}$         | $m_f \le 1 \times 10^{-2}$       | yes                                 | yes                                 |
| SM+Dirac(2D)                    | $m_f \le 0.9 \times 10^{-2}$       | $m_f \le 0.9 \times 10^{-2}$     | yes                                 | yes                                 |
| $SM+1 \operatorname{axion}(3D)$ | no                                 | no                               | $m_{\nu_1} \le 7.7 \times 10^{-3}$  | $m_{\nu_3} \le 2.5 \times 10^{-3}$  |
|                                 |                                    |                                  |                                     | $m_a \ge 5 \times 10^{-2}$          |
| $SM+1 \operatorname{axion}(2D)$ | no                                 | no                               | $m_{\nu_1} \le 4.0 \times 10^{-3}$  | $m_{\nu_3} \le 1 \times 10^{-3}$    |
|                                 |                                    |                                  |                                     | $m_a \ge 2 \times 10^{-2}$          |
| $\geq 2(10)$ axions             | yes                                | yes                              | yes                                 | yes                                 |

## Bounds on the SM + light BSM physics

| Model                           | Majorana (NI)                      | Majorana (IH)                    | Dirac (NH)                          | Dirac (IH)                          |
|---------------------------------|------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|
| SM (3D)                         | no                                 | no                               | $m_{\nu_1} \le 7.7 \times 10^{-3}$  | $m_{\nu_3} \le 2.56 \times 10^{-3}$ |
| SM(2D)                          | no                                 | no                               | $m_{\nu_1} \le 4.12 \times 10^{-3}$ | $m_{\nu_3} \le 1.0 \times 10^{-3}$  |
| SM+Weyl(3D)                     | $m_{\nu_1} \le 0.9 \times 10^{-2}$ | $m_{\nu_3} \le 3 \times 10^{-3}$ | $m_{\nu_1} \le 1.5 \times 10^{-2}$  | $m_{\nu_3} \le 1.2 \times 10^{-2}$  |
|                                 | $m_f \le 1.2 \times 10^{-2}$       | $m_f \le 4 \times 10^{-3}$       |                                     |                                     |
| SM+Weyl(2D)                     | $m_{\nu_1} \le 0.5 \times 10^{-2}$ | $m_{\nu_3} \le 1 \times 10^{-3}$ | $m_{\nu_1} \le 0.9 \times 10^{-2}$  | $m_{\nu_3} \le 0.7 \times 10^{-2}$  |
|                                 | $m_f \le 0.4 \times 10^{-2}$       | $m_f \le 2 \times 10^{-3}$       |                                     |                                     |
| SM+Dirac(3D)                    | $m_f \le 2 \times 10^{-2}$         | $m_f \le 1 \times 10^{-2}$       | yes                                 | yes                                 |
| SM+Dirac(2D)                    | $m_f \le 0.9 \times 10^{-2}$       | $m_f \le 0.9 \times 10^{-2}$     | yes                                 | yes                                 |
| $SM+1 \operatorname{axion}(3D)$ | no                                 | no                               | $m_{\nu_1} \le 7.7 \times 10^{-3}$  | $m_{\nu_3} \le 2.5 \times 10^{-3}$  |
|                                 |                                    |                                  |                                     | $m_a \ge 5 \times 10^{-2}$          |
| $SM+1 \operatorname{axion}(2D)$ | no                                 | no                               | $m_{\nu_1} \le 4.0 \times 10^{-3}$  | $m_{\nu_3} \le 1 \times 10^{-3}$    |
|                                 |                                    |                                  |                                     | $m_a \ge 2 \times 10^{-2}$          |
| $\geq 2(10)$ axions (           | yes                                | yes                              | yes                                 | yes                                 |

#### Majorana neutrinos are consistent if adding:

- A Weyl (or Dirac) fermion  $m_f \leq 10 \,\,\mathrm{meV}$
- Multiple axions

## Bounds on the SM + light BSM physics

| Model                           | Majorana (NI)                      | Majorana (IH)                    | Dirac (NH)                          | Dirac (IH)                          |
|---------------------------------|------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|
| SM(3D)                          | no                                 | no                               | $m_{\nu_1} \le 7.7 \times 10^{-3}$  | $m_{\nu_3} \le 2.56 \times 10^{-3}$ |
| SM(2D)                          | no                                 | no                               | $m_{\nu_1} \le 4.12 \times 10^{-3}$ | $m_{\nu_3} \le 1.0 \times 10^{-3}$  |
| SM+Weyl(3D)                     | $m_{\nu_1} \le 0.9 \times 10^{-2}$ | $m_{\nu_3} \le 3 \times 10^{-3}$ | $m_{\nu_1} \le 1.5 \times 10^{-2}$  | $m_{\nu_3} \le 1.2 \times 10^{-2}$  |
|                                 | $m_f \le 1.2 \times 10^{-2}$       | $m_f \le 4 \times 10^{-3}$       |                                     |                                     |
| SM+Weyl(2D)                     | $m_{\nu_1} \le 0.5 \times 10^{-2}$ | $m_{\nu_3} \le 1 \times 10^{-3}$ | $m_{\nu_1} \le 0.9 \times 10^{-2}$  | $m_{\nu_3} \le 0.7 \times 10^{-2}$  |
|                                 | $m_f \le 0.4 \times 10^{-2}$       | $m_f \le 2 \times 10^{-3}$       |                                     |                                     |
| SM+Dirac(3D)                    | $m_f \le 2 \times 10^{-2}$         | $m_f \le 1 \times 10^{-2}$       | yes                                 | yes                                 |
| SM+Dirac(2D)                    | $m_f \le 0.9 \times 10^{-2}$       | $m_f \le 0.9 \times 10^{-2}$     | yes                                 | yes                                 |
| $SM+1 \operatorname{axion}(3D)$ | no                                 | no                               | $m_{\nu_1} \le 7.7 \times 10^{-3}$  | $m_{\nu_3} \le 2.5 \times 10^{-3}$  |
|                                 |                                    |                                  |                                     | $m_a \ge 5 \times 10^{-2}$          |
| SM+1 axion(2D)                  | no                                 | no                               | $m_{\nu_1} \le 4.0 \times 10^{-3}$  | $m_{\nu_3} \le 1 \times 10^{-3}$    |
|                                 |                                    |                                  |                                     | $m_a \ge 2 \times 10^{-2}$          |
| $\geq 2(10)$ axions             | yes                                | yes                              | yes                                 | yes                                 |

Compactifications of SM on  $T_2$  — qualitatively similar, but a bit stronger

(see also [Hamada-Shiu'17])

#### Upper bound on the EW scale

#### Majorana case

$$\langle H \rangle \lesssim \frac{\sqrt{2}}{Y_{\nu_1}} \sqrt{M \Lambda^{1/4}}$$

Majorana Neutrinos (NH)



$$M = 10^{10} \text{ GeV}, Y = 10^{-3}$$

#### Dirac case

$$\langle H \rangle \lesssim 1.6 \frac{\Lambda^{1/4}}{Y_{\nu_1}}$$

Dirac Neutrinos (NH)



$$Y = 10^{-14}$$

#### **Conclusions**

- Consistency with quantum gravity implies constraints on low energy physics:
  - Lower bound on the cosmological const. of order the neutrino masses
  - Upper bound on the EW scale in terms of the cosmological const.
- Assumptions taken:
  - Validity of the Ooguri-Vafa Conjecture
  - Non-perturbative stability of 3D SM vacua
- New approach to fine-tuning or hierarchy problems?

  UV/IR mixing? (see also [Luest-Palti'17])

Thank you!

back-up slides

#### Casimir energy

#### Potential energy in 3d:

$$V(R) = \frac{2\pi r^3 \Lambda_4}{R^2} + \sum_{i} (2\pi R) \frac{r^3}{R^3} (-1)^{s_i} n_i \rho_i(R)$$

#### Casimir energy density:

$$\rho(R) = \mp \sum_{n=1}^{\infty} \frac{2m^4}{(2\pi)^2} \frac{K_2(2\pi Rmn)}{(2\pi Rmn)^2}$$

#### For small mR:

$$\rho(R) = \mp \left[ \frac{\pi^2}{90(2\pi R)^4} - \frac{\pi^2}{6(2\pi R)^4} (mR)^2 + \frac{\pi^2}{48(2\pi R)^4} (mR)^4 + \mathcal{O}(mR)^6 \right]$$

Cosmological Constant + Majorana Neutrinos (NH)







#### Adding light fermions





#### Weyl Fermion + Dirac Neutrinos (NH)

