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•  The evolution of the universe strongly 
depends on initial conditions

•  This is true even in attractor models, such 
as inflation or ekpyrosis

•  Independently of such considerations, we 
might wonder how space and time arose, 
and how they came to behave classically?

•  And can we understand/resolve the big 
bang?



•  There is an old and attractive idea that a 
closed universe can nucleate out of 
“nothing”, since the total Hamiltonian 
vanishes, with all total charges zero

[Lemaître;	Tryon;	
Brout,	Englert	&	Gunzig]	



No-boundary and tunneling proposals
•  Hawking (1981): “There ought 

to be something very special 
about the boundary 
conditions of the universe  
and what can be more special 
than the condition that there 
is no boundary”

•  Tunneling proposal (Vilenkin): 
creation of the universe seen 
as a regular tunneling event
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Two approaches
•  Euclidean
–  In analogy with Wick 

rotation in QFT it was 
hoped that this would 
lead to better 
convergence

–  However conformal 
mode problem

•  Lorentzian
–  No conformal mode 

problem
–  Causality can be built 

in
–  Not clear whether the 

path integral actually 
converges

[Hawking,		
Hartle,		
Gibbons,...]	

[Vilenkin,	
Teitelboim,...]	
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Picard-Lefschetz theory

•  We are interested in oscillatory integrals, 
whose convergence properties are not clear, 
in particular the Feynman integral

•  View the integrand                    as a 
holomorphic function of             , then we 
might be able to find an appropriate 
convergent integration contour 
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Cf.	Wick	rotaBon	where	a	coordinate	is	conBnued	to	the	complex	plane.	But	coordinates	are	
not	physical	in	GR,	hence	it	seems	preferable	to	conBnue	the	fields	to	the	complex	plane	



Picard-Lefschetz theory

•  Cauchy’s theorem tells us that a complex 
integration contour can be deformed

•  Picard-Lefschetz theory tells us how it 
should be deformed

•  A review is provided by E. Witten “Analytic continuation 
of Chern-Simons theory” (2010)



Picard-Lefschetz theory

•  Define the Morse function h as the real part 
of the integrand, and look at its critical 
points, which are also critical points of the 
full integrand

•  From the critical points, look at lines of 
H=constant, these are the flows of steepest 
ascent/descent of h
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From conditionally to absolutely convergent
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Picard-Lefschetz theory
•  Which Lefschetz thimbles contribute? We would like to 

re-express the original integration contour as a sum 
over thimbles:

•  Upward and downward flows have an intersection 
pairing:                               which implies that

                                        

•  Final result:                                                    
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only saddle points that can be linked to 
the original integration contour via an 
upwards flow will contribute
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This makes sense: flow down to get from 
an oscillatory integral, with repeated 
cancellations, to a non-oscillatory one
	



Gravity plus Cosmological Constant

•  We will consider the simple system

    with

•  For a standard minisuperspace metric

   this is hard to solve
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An useful form of the metric
•  Technically much simpler to consider

   since then the action becomes quadratic

•  Then the integral over q=a2 is simply a Gaussian, and can 
be done exactly
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3
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S = 2⇡2

Z
dt

✓
� 3

4N
q̇2 + 3kN �N⇤q

◆



Path integral for propagator
•  We are left with an ordinary integral over the lapse function

•  There are 4 saddle points:

•  The saddle points will be real/complex depending on the 
signs of 

•  Now we can apply Picard-Lefschetz theory 
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No-boundary condition q0=0

•  Propagator 
from zero scale 
factor q0=0 to 
a large final 
value q1

•  Saddle points 
are complex



No-boundary conditions
•  Upward/downward flows and wedges:

Real	Bme	
contour	



No-boundary conditions
•  Upward/downward flows:

Real	Bme	
contour	

Only	one	Lefshetz	
thimble	contributes	



No-boundary conditions
•  Convergence near zero/at infinity:

Real	Bme	
contour	
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Wavefunction for no-boundary conditions

•  The wavefunction is dominated by a single 
saddle point, yielding

The	weighBng	is	inverse	to	that	
advocated	by	Hartle	and	Hawking,	
and	is	the	same	as	for	Vilenkin’s	
tunneling	wavefuncBon	
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Wavefunction for no-boundary conditions

•  The wavefunction is dominated by a single 
saddle point, yielding

Picard-Lefschetz	theory	implies	that	relevant	saddle	points	
will	always	come	in	with	a	suppressed	amplitude,	as	they	
must	be	linked	via	an	upwards	flow	to	the	original	
integraBon	contour	(along	which	h=0)	–	this	makes	sense	
physically	as	quantum	processes	are	suppressed	(and	not	
enhanced)	compared	to	classical	evoluBon	
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Relation to the Euclidean formulation

•  Here we see that the Euclidean path integral cannot be 
approximated by the saddle point method, and is 
simply not well-defined

•  Halliwell pointed 
out that the 
Euclidean 
approach is not 
complete, since 
the choice of 
contour is not 
specified, and 
different results 
can be obtained 
by considering 
different contours

Euclidean	
contour	



Remark on Hartle-Hawking
•  Hartle and 

Hawking have 
conjectured that 
the relevant 
saddle points are 
saddles 3 and 4

•  One can find a 
convergent 
contour that 
would yield this 
result (and a real 
wavefunction), but 
this is an 
inherently 
complex theory

This	contour	was	recently	considered	by	J.	
Diaz	Dorronsoro	et	al.	[1705.05340]	



Shape of the saddle points in N

P-L	 H-H	

Real	Bme	

Imaginary	Bme	
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Include Tensor Perturbations
If we add perturbations, the propagator is given by

with 
where the perturbation action is (e.g. for a gravity wave 
mode with wavenumber l)
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Include Tensor Perturbations
•  In physical time,

•  Solution to the equation of motion                  
(at background saddle point), with

•  For P-L instanton, at South Pole
•  Then regularity implies c2=0 (now call            ) 
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•  The action then becomes            

•  so that the weighting is given by
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•  The action then becomes            

•  so that the weighting is given by

•  Thus the perturbations obey an inverse 
Gaussian distribution – the distribution 
prefers large fluctuations and the model 
breaks down!
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Analogy in terms of Wick rotation

P-L	

H-H	

One way to understand this result is 
to realize that PL theory forces one to 
choose the “wrong” Wick rotation. 

These arguments remain true for 
more general matter. 
In terms of	χ=φ q1/2	:	

Then at large wavenumber l our 
previous arguments still go through.
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More rigorously:
•  We can in fact find a unique finite action solution 

(almost) everywhere in the complex N plane reaching 
the value      at t=1:

•  At                        there also exists a finite action solution
•  There is precisely one finite action solution and one 

divergent solution at each N (modulo a subtlety to 
which we now turn)
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[Feldbrugge,	JLL	&	Turok,	1709.03171]	



Properties of the perturbed action

•  Perturbed action has a saddle point at N* (as the 
perturbations increase the saddle points will 
move towards the real line)

•  There are branch cuts (zigzag lines) on the real N 
line
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Failure of correspondence principle

•  How can we get a weighting larger than 1? The starting 
action is real, and we must flow down, hence expect a 
weighting smaller than e0

•  The correspondence principle, namely that quantum 
effects should vanish in the limit hbar ->0, fails!

But	as	we	have	seen,	the	acBon	has	a	
jump	across	the	cut	on	the	real	line.	It	
is	not	analyBc	there,	and	
mathemaBcally	the	existence	of	the	
cut	is	a	clear	manifestaBon	of	a	
problem	with	the	no-boundary	
proposal	
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Do our approximations break down?

•  Backreaction (i.e. corrections to the scale factor due to 
the linear perturbations) change the results very little

•  Have also checked that the full non-linear l=2 modes 
show the same qualitative behavior – the instability in 
fact becomes even stronger

No	backreacBon	

BackreacBon,	linear	
perturbaBon	theory	

BackreacBon,	full	
Einstein	equaBons	
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Remark on Diaz Dorronsoro et al.

•  The branch cut and the upper saddle points 
contribute non-perturbatively to the path integral, 
resulting in the same instability!

•  N fact one can prove that no choice of contour avoids 
this problem!
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•  Background and perturbations must be 
considered together
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Conclusions

•  Background and perturbations must be 
considered together

•  The universe did not have a smooth 
beginning

•  The question of initial conditions is wide 
open!


