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Relaxing Λ



Motivations

Can we build a model that dynamically relaxes Λ ?

•  Danger of  “premature application” of anthropic principle

•  The only reason for dark energy is the c.c. problem, 
but concrete models have nothing to do with its solution

•  Predicts existence of light states

•  It requires NEC violation: could be theoretically ruled out

(Motivation for motivations: the actual implementation sucks)



Abbott’s model
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Figure 1: The effective cosmological constant Λtotal for the washboard potential defined
in Eq. 2 can take discrete values depending on which minimum φ occupies. In the scenario
presented here, the time spent in the lowest positive minimum is exponentially greater
than the entire time spent in all other minima.

sloping in the region of interest, around V = 0.) Provided ϵ < M4, (2) has a set of equally

spaced minima VN , with effective cosmological constant Λtotal spaced by VN − VN−1 = ϵ

(Fig. 1). No matter what Vother is, there is a minimum with Λtotal = V0 in the range

0 ≤ V0 < ϵ. Although ϵ must be chosen to be very small in order to account for today’s

tiny vacuum density, this choice is technically natural within the model since all quantum

corrections to ϵ are proportional to ϵ. Hence, Abbott’s model is a self-consistent low-

energy effective theory capable of cancelling contributions to the vacuum density coming

from any other source.

In Abbott’s scheme, the smallness of the cosmological constant today is related through

the relaxation mechanism to the smallness of the parameters M and ϵ in the potential

V (φ). Effectively, the intractable problem of naturally obtaining an exponentially small

cosmological constant is transmuted into a tractable problem of naturally obtaining small

axion interaction parameters.

Abbott assumed the universe emerges from the big bang with some large positive value
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Quickly goes down because of dS 
fluctuations and tunneling

Two main problems:

•  Empty Universe. Generic: sensitive to small Λ when universe is empty

à NEC violation

•  Eternal Inflation. In which minimum do we live? It is a landscape...

cyclic universe picture.

Abbott’s proposal introduces an axion-like scalar field φ coupled to the hidden non-

abelian gauge fields through a pseudoscalar coupling (φ/f)F ∗F , with f some high energy

mass scale. The theory is assumed to have a classical symmetry

φ→ φ+ constant, (1)

which is softly broken at low energies by various effects. Integrating out the gauge fields

induces a potential −M4 cos(φ/f), where M is the scale where the gauge coupling becomes

strong. (Fields of this type are commonly invoked to suppress CP-violation in the strong

interactions (11,12,13) and are also ubiquitous in string theory.)

It is natural for M to be very small, as a consequence of the slow (logarithmic) running

of the coupling in a nonabelian gauge theory. For example, in QCD with six flavors,

ΛQCD = MP lexp(−2π/(7αQCD(MP l)) ∼ 100 MeV if the coupling strength at the Planck

scale αQCD(MP l) ∼ 1/50. (Here and below, MP l = (8πG)−
1

2 ). In Abbott’s model for the

hidden axion field, M replaces ΛQCD and is similarly expressed in terms of the relevant

coupling to hidden gauge fields. For example, if the hidden sector were exactly like QCD,

taking α(MP l) ∼ 1/75 would give M ∼ 10−3 eV, a viable value for our model. (Our

choices are less extreme than those in Abbott’s paper; in the 1980’s, his goal was to

obtain a very small vacuum density, whereas ours is to explain the observed value.)

The cosine potential breaks the symmetry (1) down to a discrete subgroup, φ →

φ+2πN . The discrete symmetry is also assumed to be softly broken, by a term producing

a ‘washboard’ effective potential:

V (φ) = −M4 cos

(

φ

f

)

+ ϵ
φ

2πf
+ Vother, (2)

where Vother includes all other contributions to the vacuum density. (The linearity of the

second, soft breaking term is inessential: any potential will do as long as it is very gently
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Relaxing sector

 Relaxing: canonical scalar

V (�) = ��3�

� � H (classical beats quantum)

�3 << MPlH
2

(slow roll)

⇤? ⇠ (10 MeV)4

�

the largest possible Hubble is 
strongly bounded from above

H3
? < MPlH

2
0

also includes the contribution from the scalar’s potential energy) is of the order of ⇤?. In

the course of the evolution, the cosmological constant adiabatically decreases. (Since the

universe is inflating, all other sources of energy will be quickly diluted away.) Slow roll

(|Ḣ| ⌧ H2) requires a su�ciently flat potential

�3

1

⌧ M
Pl

H2 (slow roll) , (2.3)

while the condition that the dynamics be classical reads

�̇
1

H
� H ) �3

1

� H3 (classical evolution) . (2.4)

Requiring (2.3) and (2.4) to be marginally satisfied respectively for the present value of the

expansion rate (when H ' H
0

⇠ 10�33 eV) and at the initial stages of relaxation (when

H ' H?) yields an upper bound H? ⌧ (M
Pl

H2

0

)1/3. This corresponds to the following

maximal value of the relaxed energy density

⇤
max

⇠ M
8/3
Pl

H
4/3
0

⇠ (10 MeV)4 . (2.5)

Thus, a slowly rolling canonical scalar can not relax a cosmological constant larger than

⇠ (10 MeV)4 if it is to conform to purely classical dynamics all along.

The last conclusion draws heavily upon assuming a constant slope of the scalar potential.

One can in principle give up this requirement, allowing for a slope that changes adiabatically

in the course of the evolution, in a way that is optimally compatible with both conditions

(2.3) and (2.4). One could imagine a potential which is steep at the early stages of relaxation

(when H ⇠ H?), while becoming flat at times when the Hubble rate drops down to ⇠ H
0

.

Such a potential can be made compatible with both slow roll and classical evolution all along

the relaxation trajectory by tuning the tilt V 0 to lie in between V/M
Pl

and (V 1/2/M
Pl

)3 at

any particular moment of time. The corresponding situation is depicted in Fig. 2. However,

it necessarily entails fine-tuning: an order-unity variation of the initial cosmological constant

(without changing the potential and the initial conditions) would result in a breakdown of

one of the above two conditions way before the e↵ective cosmological constant drops down

to the desired value. In other words, the potential has to ‘know’ when H becomes small,

and this brings back the usual fine tuning of the c.c.

The constraint (2.4) that arises from requiring classical evolution of �
1

can be made

milder3 and even removed altogether if the background dynamics is in a di↵erent, ghost-

condensate regime [4].4 This is described by a particular attractor solution with a constant

3For example, this happens in k-inflation models [13].
4We refer to this regime as ‘ghost condensate’, even though �1 does not necessarily have to describe a

ghost on its Poincaré-invariant vacuum (�1 = const), which may or may not be connected to �̇1 6= 0 vacua

within the same low-energy EFT (of course, the Poincaré-invariant vacuum only exists in the limit �1 ! 0).
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Models of inflation (e.g. Ghost Inflation, Galileon Inflation...) with a smooth 
λ à 0 limit  

For our purposes, the virtue of the ghost condensate is that the field always evolves

classically as long as the cuto↵ of the theory is well above the Hubble scale (that is, as far as

the low-energy EFT is valid). In particular, the relative quantum versus classical variation

of �
1

over an e-fold reads [14]

(��
1

)
quant

(��
1

)
class

⇠
✓

H

M
1

◆
5/4

. (2.8)

The peculiar expression for the spectrum of the scalar’s quantum fluctuations arises from the

fact that their gradient energy comes from higher derivative operators in the e↵ective theory,

while the quadratic in momentum contribution vanishes at the leading order in ✏ ⌘ �Ḣ/H2.

This results in a dispersion relation of the form !2 ⇠ k4/M2

1

around Hubble frequencies,

leading to (2.8). Most importantly for our purposes, the amplitude of quantum fluctuations

is independent of the tilt of the potential and remains small even in the limit �
1

! 0.

(Although we stick here to the ghost-condensate for concreteness, one can consider other

models that keep a classical motion in the �
1

! 0 limit, for example based on Galilean

symmetry [15].)

The very same higher-derivative operators that determine the spectrum of short-wavelength

perturbations of �
1

also induce a Jeans-like instability for long-wavelength modes, once the

e↵ects of mixing with gravity are taken into account [4]. Requiring the characteristic time

scale of this instability to be longer than the current Hubble time strongly constrains the

cuto↵ of the theory [4]:

M3

1

< M2

Pl

H
0

⇠ (10 MeV)3 . (2.9)

Using this constraint and imposing that the relaxation proceeds within the regime of validity

of the low-energy e↵ective field theory (i.e. M
1

> H?) yields the following upper bound on

the magnitude of the relaxed cosmological constant: ⇤? ⇠< M
10/3
Pl

H
2/3
0

⇠ (105 TeV)4 . We will

see in what follows that this estimate is too optimistic: the structure of the model imposes

M
1

. 10�3 eV, which is well compatible with the bound (2.9) imposed by stability. The

validity of the low energy EFT thus requires ⇤? ⇠< (1 TeV)4 .

The ghost condensate entails no constraint on the tilt of the potential from the require-

ment of classical evolution. However, the upper bound from imposing a quasi-stationary

relaxation, ✏ ⌧ 1, is still there, and it reads:

✏
0

⌘
 

� Ḣ

H2

!

H=H0

' �3

1

M2

1

6M2

Pl

H3

0

⌧ 1 . (2.10)

This constraint can be always satisfied by taking �
1

small enough. Moreover, using (2.10),
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for a slightly tilted potential

� = M2t+ ⇡̄(t) , ⇡̄ ⇠ V 0

H

Hubble friction

Superfluids

P (X)

XX = 1
x

S =

Z
d

4
x

p
�g


M

4
P (X)� V (�) + . . .

�
, X = � 1

M

2
(@�)2

Son ’04 (general EFT), Arkani - Hamed et al ’04 (as applied to cosmology)

We want to avoid Eternal Inflation and all measure-related issues

problem in any way (and some introduce additional fine tunings on top of the c.c. one).

Notable exceptions are, for example, “global” modifications of gravity [7–9] and “degravita-

tion” models [10–12]. While there is a strong activity in constraining generic models of dark

energy, there is no reason to expect their phenomenology has anything to do with the physics

which solves the c.c. problem (if any). In our scenario, the two sectors (the one relaxing the

vacuum energy and the one violating the NEC) are also dark energy components nowadays,

but now indeed related to the c.c. problem! The present dark energy is related, albeit in a

model-dependent way, to the violation of the NEC in the past and does not reduce simply to

a small vacuum energy. The second motivation is fully theoretical. A dynamical relaxation

of the c.c. needs a subsequent violation of the NEC. It is not yet clear whether some general

UV obstructions to building NEC violating theories exist. Stopping the exploration in this

direction would be a clear premature application of the anthropic principle.

2 Relaxing the c.c. without eternal inflation

The mechanism responsible for relaxing the cosmological constant ought to satisfy two basic

requirements. First, if that mechanism is to be free from fine tuning, it must be stable under

order-unity variations of the initial vacuum energy. And second, it has to be dominated by

classical dynamics in order to bypass the standard problems with defining the cosmological

probability measures. We will see that these two requirements alone significantly constrain

the ways in which the relaxation of the cosmological constant can be realized.

Perhaps the simplest realization that complies with the above conditions is provided by

an approximately shift-symmetric scalar �
1

, governed by the following low-energy e↵ective

action

S =

Z
d4x

p
�g


M4

1

P
1

(X
1

) + �3

1

�
1

� ⇤? + . . .

�
. (2.1)

Here, ⇤? = 3M2

Pl

H2

? is the cosmological constant we wish to relax (which we assume to be

positive), �
1

is set by some small scale (with ‘small’ quantified shortly), and P
1

is a generic

function of

X
1

⌘ �gµ⌫@µ�1

@⌫�1

M4

1

. (2.2)

Furthermore, by the ellipses we denote all other operators in the e↵ective theory, suppressed

by inverse powers of the cuto↵ M
1

and/or the shift symmetry-breaking spurion2 �
1

.

Suppose now that the scalar is canonical, P
1

= X
1

/2, and that it starts slowly rolling

down the linear potential from a generic point where the e↵ective dark energy density (that

2In the absence of gravity, �1 does not break the scalar’s shift symmetry, meaning that the symmetry-

breaking terms are naturally suppressed both by �1 and by further powers of the Planck mass.
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Dynamically Λ = 0 is special

of the cosmological constant, resulting in a significant change in the interactions described

by (3.2) around the time when ⇡̇
1

/M2

1

becomes of order one. We will assume, that this

causes the dynamics of �
1

and �
2

to change qualitatively — the latter scalar resetting after

the phase transition onto its NEC-violating trajectory. The observed value of the c.c. is

therefore fixed, using Eq. (2.7), in terms of the parameters of the model as

⇤
0

⇠ �6

1

M2

Pl

M4

1

. (3.3)

Depending on how the behaviour of the scanning field �
1

changes at the phase transition,

one has very di↵erent constraints on the dynamics of the NEC-violating sector.

The first possibility is that �
1

gets stabilized in a trivial vacuum, �
1

= const, after the

e↵ective field theory for the scanning field breaks down at ⇡̇
1

/M2

1

⇠ 1. The scanning of

the cosmological constant therefore terminates at the value ⇤ ⇠ ⇤
0

and there is essentially

unlimited time for the NEC violation to proceed. We describe the corresponding scenario

with slow NEC violation in Section 4. One expects the new vacuum of �
1

to have an energy

density that di↵ers from that in the rolling state by ⇠ M4

1

. In order for this change in the

e↵ective cosmological constant not to spoil relaxation we require

M
1

. ⇤1/4
0

⇠ 10�3 eV . (3.4)

Since the scale M
1

determines the cuto↵ of the �
1

theory, it imposes an upper bound on the

maximal value of the cosmological constant to be relaxed

⇤? ⌘ 3M2

Pl

H2

? ⇠< M3

Pl

H
0

⇠ (1 TeV)4 . (3.5)

We will assume that in the scenario with slow NEC violation the characteristic scales of the

scanning sector and the NEC violating sector are similar, M
1

⇠ M
2

⇠ ⇤1/4
0

.

In the second scenario the scanning of the cosmological constant continues. To remain

within the regime of validity of the EFT we can assume that NEC violation kicks in when

the deviation from �̇
1

= M2

1

is still moderately small
✓

⇡̇
1

M2

1

◆

H=H0

= x . 1 . (3.6)

Notice, however, that x cannot be very small since it is di�cult to imagine how a tiny varia-

tion of �̇
1

can induce a phase transition. At this point, �
1

continues to scan the cosmological

constant at a rate given by Eq. (2.11)

✏
0

⇠ x
M4

1

⇤
0

. (3.7)
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for a slightly tilted potential
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System destabilized when H (Hubble friction) small 
enough
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Figure 2: The slope of the potential as a function of the e↵ective dark energy V = ��3

1

�
1

+⇤?.

The green region corresponds to the allowed window, compatible with both the slow-roll

dynamics and classical evolution. Adjusting the slope so as to make it optimally compatible

with both requirements (blue curve) inevitably entails fine tuning. A change in the initial

c.c. of the order of ⇤? leads to a breakdown of the slow-roll regime before the cosmological

constant relaxes to su�ciently low values (red curve). The case corresponding to a constant

slope is depicted by the horizontal purple line. The figure is not to scale and we have set

M
Pl

to one.

velocity that corresponds to a minimum of the function P
1

:

X
1

=
�̇2

1

M4

1

= 1 . (2.6)

For a non-vanishing tilt of the potential, this solution is slightly perturbed by a homogeneous

mode ⇡
1

⌘ �
1

�M2

1

t , whose velocity is driven to the following terminal value by the expansion

of the universe5

⇡̇
1

' �3

1

3H
. (2.7)

Imposing that ⇡ be a small perturbation then yields �3

1

⌧ 3HM2

1

.

5We assume the canonical normalization for ⇡1, which corresponds to P 00
1 (1) = 1/4 [4, 14].
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Phase transition when 
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This fixes observed 
value of cc: 

M2
PlḢ0 ⇠ M4

1 ⇤? . 3M2
PlM

2
1 ⇠ M2

Pl⇤
1/2
0 ✏1/20 ⇠ (1 TeV)4✏1/20

The model can relax up to TeVish cc after HUGE excursion

The NEC-violating accumulation of the energy density and reheating in this scenario thus has

to be fast and complete within the time of order (✏
0

H
0

)�1 — before the e↵ective cosmological

constant further decreases by a significant amount. We provide an example of how this can

happen in Sec. 5. The bound on the maximal value of the relaxed cosmological constant (3.5)

in this case reads

⇤? . 3M2

Pl

M2

1

⇠ M2

Pl

⇤1/2
0

⇣✏
0

x

⌘
1/2

⇠ (1 TeV)4
⇣✏

0

x

⌘
1/2

. (3.8)

Thus, in order to avoid significantly reducing ⇤?, it is necessary to assume that the energy

density of the scanning field evolves with a not-too-small ✏
0

. On the other hand, the non-

vanishing value of ✏
0

is related to the current dark energy equation of state parameter

(wDE + 1), constrained to be less than 0.05 [18].

One could worry that in the second scenario the e↵ective cosmological constant will con-

tinue to scan values much smaller than ⇤
0

. This however is not the case since �
1

remains on

the slow-roll trajectory only for the time of order (✏
0

H
0

)�1, after which ✏ becomes of order

one and the system exits the slow-roll regime. Thus, the magnitude of the scanned e↵ective

cosmological constant never falls below its value at the moment of the breakdown of slow-roll

(see Eq. (2.10))

⇤
min

' ✏
2/3
0

⇤
0

. (3.9)

After the breakdown of slow-roll, the evolution of �
1

drives the potential energy to negative

values, causing the expansion of the universe to be followed by a fast contracting phase that

ends in a collapse within a Hubble time at that moment, H�1

✏ ⇠ ✏
�1/3
0

H�1

0

.

Notice that the displacement of �
1

to relax ⇤4

? is of order �� ⇠ ⇤4

?/(H0

M2

1

), using

eq. (3.3). This gives a disturbingly large displacement ��
1

/M
Pl

' M
Pl

/H
0

using eqs (3.4)

and (3.5).

We stress that independently of the fate of �
1

, our scenario can relax at most a vacuum

energy of order (TeV)4. Reducing higher values would require understanding the UV com-

pletion of the scanning field, or invoking other means of cancellation, e.g. supersymmetry,

broken not too far from the TeV scale or another relaxation mechanism. Notice that the

bounds on ⇤? discussed in this Section are much stronger than the ones based on stability

we discussed above.

In this paper we do not attempt to study the phase transition to the NEC-violating regime.

We wish however to argue that its details should not modify the global picture of the scenario.

One could imagine the transition to proceed by nucleation of regions with the new phase

or by a smooth cross-over to the NEC violating regime. In the first case the bubbles — or

whatever describes the nucleation of the new phase — will give rise to a very inhomogeneous

universe on scales much shorter than Hubble, while the long period of relaxation guarantees
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NEC violators

1.  Ghost Condensate
     Deform theory with a rising potential

Control instabilities if 

2.  Galileon theories

Tµ�kµk� � 0 ) � + p � 0

Usually associated with instabilities, but stable examples exist

(recent 4d NEC violation via extra dimension) 

Starting from theories with exact dS solution with dynamical field  

⇢̇ = �3H(⇢+ p)

for a slightly tilted potential

� = M2t+ ⇡̄(t) , ⇡̄ ⇠ V 0

H

Hubble friction

Superfluids

P (X)

XX = 1
x

S =

Z
d

4
x

p
�g


M

4
P (X)� V (�) + . . .

�
, X = � 1

M

2
(@�)2

Son ’04 (general EFT), Arkani - Hamed et al ’04 (as applied to cosmology)

Ḣ . H2

low cuto↵ 6

M
2 ⇠< ⇤1/4

0

⇠ 10�3 eV . (3.1)

For the scenario at hand to work, it is obviously important that the e↵ective c.c. has

not been reduced significantly by the dynamics of �
1

taking place from the onset of the

NEC-violating phase up to the present time. As we will see, this leads to significant bounds

on the sector of our model responsible for violating the NEC.

3.2 Dynamics of the transition and a bound on ⇤?

We have remarked above that the NEC-violating dynamics of �
2

should be triggered when

the Hubble rate drops down to values of order H
0

. In principle, this can happen in a few

di↵erent ways. One could imagine that the e↵ective action of �
2

is directly sensitive to the

Hubble rate, for example as a consequence of integrating out a degree of freedom � with

mass fixed by the curvature through a non-minimal coupling R�2. Another possibility —

more along the lines of Refs. [2, 3] — to make the system sensitive to the varying Hubble

rate, is to invoke strong dynamics. Unfortunately, neither of these possibilities work for our

purposes. In the first case, the mass of � will receive radiative corrections at least of order

⇤?/M
2

Pl

⇠ H2

? so that, barring fine-tuning, the dependence on H is irrelevant for H ⌧ H?.

In the second case, one can invoke another sector that confines at energies around H
0

and

a↵ects the dynamics of �
2

in some way. However, the energy density that such a strongly-

coupled sector can store is at most of order H4

0

— much less than the characteristic energy

density of the NEC-violating sector of our model M4

2

⇠ M2

Pl

H2

0

. This makes it practically

impossible for the confining phase transition to influence the �
2

dynamics in any significant

way.

The other route — the one we will stick to below — to encode information about the

background evolution into the EFT of �
2

is to couple it directly to the scanning scalar �
1

through some Lagrangian term

S �
Z

d4x
p

�gM4

2

P (X
1

, X
2

) . (3.2)

The deviation ⇡
1

of �
1

from the exact ghost condensate solution (2.6) is negligible at early

times while X
2

is assumed to vanish at that stage. However, ⇡
1

grows with the relaxation

6To trust the low energy EFT of �2, at no point during the relaxation process should the Hubble rate

exceed this scale. This would impose an upper bound, H? ⇠< M2, on the curvature of the universe, corre-

sponding to a maximal value of the cosmological constant ⇤? . (1 TeV)4. This bound is not very robust,

since there is nothing wrong if at the beginning of the relaxation one is sensitive to the UV completion of the

�2 sector. However a very similar bound will be derived below using constraints on the relaxation sector.

10

low cuto↵ 6

M
2 ⇠< ⇤1/4

0

⇠ 10�3 eV . (3.1)

For the scenario at hand to work, it is obviously important that the e↵ective c.c. has

not been reduced significantly by the dynamics of �
1

taking place from the onset of the

NEC-violating phase up to the present time. As we will see, this leads to significant bounds

on the sector of our model responsible for violating the NEC.

3.2 Dynamics of the transition and a bound on ⇤?

We have remarked above that the NEC-violating dynamics of �
2

should be triggered when

the Hubble rate drops down to values of order H
0

. In principle, this can happen in a few

di↵erent ways. One could imagine that the e↵ective action of �
2

is directly sensitive to the

Hubble rate, for example as a consequence of integrating out a degree of freedom � with

mass fixed by the curvature through a non-minimal coupling R�2. Another possibility —

more along the lines of Refs. [2, 3] — to make the system sensitive to the varying Hubble

rate, is to invoke strong dynamics. Unfortunately, neither of these possibilities work for our

purposes. In the first case, the mass of � will receive radiative corrections at least of order

⇤?/M
2

Pl

⇠ H2

? so that, barring fine-tuning, the dependence on H is irrelevant for H ⌧ H?.

In the second case, one can invoke another sector that confines at energies around H
0

and

a↵ects the dynamics of �
2

in some way. However, the energy density that such a strongly-

coupled sector can store is at most of order H4

0

— much less than the characteristic energy

density of the NEC-violating sector of our model M4

2

⇠ M2

Pl

H2

0

. This makes it practically

impossible for the confining phase transition to influence the �
2

dynamics in any significant

way.

The other route — the one we will stick to below — to encode information about the

background evolution into the EFT of �
2

is to couple it directly to the scanning scalar �
1

through some Lagrangian term

S �
Z

d4x
p

�gM4

2

P (X
1

, X
2

) . (3.2)

The deviation ⇡
1

of �
1

from the exact ghost condensate solution (2.6) is negligible at early

times while X
2

is assumed to vanish at that stage. However, ⇡
1

grows with the relaxation

6To trust the low energy EFT of �2, at no point during the relaxation process should the Hubble rate

exceed this scale. This would impose an upper bound, H? ⇠< M2, on the curvature of the universe, corre-

sponding to a maximal value of the cosmological constant ⇤? . (1 TeV)4. This bound is not very robust,

since there is nothing wrong if at the beginning of the relaxation one is sensitive to the UV completion of the

�2 sector. However a very similar bound will be derived below using constraints on the relaxation sector.

10

Small cc jump

Graham, Kaplan, Rajendran 17 



Slow NEC violation

Same cc before and after NEC violation due to Z2

We relaxed the low-temperature c.c. of today

If φ1 stops, one has plenty of time to make the Universe
(but eternal inflation in the future)

�2

V (�2)

M4
I

x x x
��f ��I��NEC

A waterfall field gets trapped
 into false minimum until φf 

and then reheats 

�2

V (�2)

M4
I

x x x
��f ��I��NEC

Figure 3: The potential V (�
2

) for the NEC-violating scalar. The figure is not to scale: all

slopes are extremely small compared to the scale setting the potential’s height.

On the way up the positive slope, one has to deal with the known problems associated

with NEC violation (see, e.g. [20, 21]). In the particular case of the ghost condensate there

are two possible issues: besides the Jeans-like instability discussed above Eq. (2.9) there is

a gradient instability associated with NEC violation. The rates corresponding to these are

respectively !
Jeans

⇠ M3

2

/M2

Pl

and !
grad

⇠ ḢM2

Pl

/M3

2

. These instabilities are harmless if

these rates are less than the expansion rate of the universe, which imposes the following

bounds on M
2

[20]

Ḣ

H ⇠<
M3

2

M2

Pl

⇠< H . (4.2)

We have encountered an analogous upper bound in the context of the scanning field �
1

; it

yields a constraint, similar to Eq. (2.9), M
2 ⇠< (M2

Pl

H
0

)1/3 ⇠ 10 MeV. This is a much weaker

constraint than the one we derived in Eq. (3.1) based on naturalness of the NEC-violating

phase transition. The lower bound onM
2

that follows from (4.2), on the other hand, strongly

constrains the slope of the linear piece of the potential, V 0(�
2

) = �3

2

,

�3

2 ⇠< M
2

H2

0

. (4.3)

Note that the above constraint forces �
2

to be extremely small compared to the height of the

potential MI . Indeed, assuming that the latter scale takes on its maximal value, M4

I ⇠ ⇤?,

we have

�
2

MI
⇠<

(M
2

H2

0

)1/3

(M3

Pl

H
0

)1/4
⇠
 
⇤1/4

0

M
Pl

!
7/6

⇠ 10�35 . (4.4)
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Fast NEC violation

��2

f2

�2

shift symmetric shift symmetric

shifts broken, 
NEC violation�̇2 > 0

\begin{figure}[t!]
! \center
! \includegraphics[width=15cm]{phi2.pdf}%
! \caption{The structure of the $\phi_2$ effective theory (the endpoints of the depicted field space are identified). }
! \label{fig:phi2}
\end{figure}

Figure 4: The structure of the �
2

e↵ective theory (the endpoints of the depicted field space

are identified).

model, as we discuss shortly. A successful implementation of the scenario requires that the �
2

field space be periodic with a period f
2

, so that any �
2

is identified with �
2

+ f
2

. The virtue

of periodicity is twofold. First, periodicity, together with invariance under internal shifts,

imposes that away from the red region with broken symmetry, the value of the cosmological

constant is identical on the two sides of that region, see Fig. 4. Second, periodicity of

�
2

is important for naturalness of the model under consideration. This is because, given

the limited time for the NEC-violating phase to complete, �
2

has to hit the red region

with broken symmetry within a time that does not parametrically exceed (✏
0

H
0

)�1 (we are

assuming the phase transition will leave �
2

in a generic point of the field space).8 Since

�
2

moves with a constant speed �̇
2

⇠ M2

2

in the shift-symmetric region, this translates,

assuming M4

2

⇠ M2

Pl

H2

0

(see Eq. (3.1)), and ✏
0

⇠ 1, into f
2

. M
Pl

. This is reminiscent of

the constraint on axion decay constants that follows from the weak gravity conjecture of

Ref. [22].

8Given the periodicity, one can imagine to have a cyclic evolution of the universe [5] which goes through

NEC violation many times. As discussed around eq. (3.9), the cosmological constant will continue the

scanning only until the breaking of slow-roll, so that its value will not be parametrically di↵erent in the

various cycles, unless ✏0 is not very suppressed.
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Same cc before and after NEC violation due to periodicity

When scanning field proceeds one needs to create universe in  

As in the case of the scanning field �
1

, the smallness of �
2

is technically natural given that

it is a spurion of �
2

shift symmetry breaking.

The smallness of �
2

significantly limits the speed at which energy density can be built up

by the dynamics of the NEC-violating sector. One can readily estimate how long it takes

for �
2

to roll up the linear slope. Assuming that the energy density grows all the way up to

M4

I ⇠ ⇤? in the process, we have

⇢ '
Z

⇢̇ dt ⇠ �3

2

M2

2

t ⇠ ⇤? . (4.5)

Making use of Eqs. (3.1), (3.5) and (4.3), the resulting time scale can be expressed as

t & 1

H
0

⇤?

M3

2

H
0

⇠ 1090

H
0

. (4.6)

The time required to create a sizeable amount of energy density is way beyond the Hubble

time right before the onset of the NEC-violating phase transition. This is due to the smallness

of the cuto↵ M
2

compared with the energy density we want to produce. Slow violation of the

NEC is therefore only relevant if the scanning of the cosmological constant stops completely

as a result of this transition. Much faster violation of the NEC is possible, provided the

cuto↵ evolves in time, as we will study in the next Section.

5 Fast violation of the NEC

Rather than stopping, the scanning field may retain a non-zero speed �̇
1

⇠ M2

1

after the

transition to the NEC-violating phase. In this case it is crucial that this phase followed by

inflation and reheating complete relatively fast, within a time of order, or less than (✏
0

H
0

)�1.

This will guarantee that, by the time the universe reaches its present state, the cosmological

constant has not been reduced by a significant amount.

For the purposes of achieving fast NEC violation, we will again rely on a theory that in

most of the �
2

-field space is described by a ghost condensate-like shift-symmetric action.

The shift symmetry is only broken in a narrow interval of width ��
2

, centered at �
2

= 0, see

Fig. 4 for an illustration. This region is also where the violation of the NEC happens in our

model, as we discuss shortly. A successful implementation of the scenario requires that the �
2

field space be periodic with a period f
2

, so that any �
2

is identified with �
2

+ f
2

. The virtue

of periodicity is twofold. First, periodicity, together with invariance under internal shifts,

imposes that away from the red region with broken symmetry, the value of the cosmological

constant is identical on the two sides of that region, see Fig. 4. Second, periodicity of
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Fast NEC violation

within a period t⇠⇠⇠NEC ⇠< H�1

0

— at the same time avoiding instabilities and superluminal

perturbations usually associated with NEC violation. Our presentation draws heavily on an

analogous construction of Ref. [23].

Inspired by the fact that NEC violation is possible in Galileon theories, let us consider a

theory of the following form (it is convenient to work with a dimensionless angle, defined as

✓ ⌘ �
2

/f
2

):

S✓ =

Z
d4x

p
�g


f 2

2

F
1

(✓)(@✓)2 +
f 3

2

M3

✓

F(✓)(@✓)2⇤✓ +
f 3

2

2M3

✓

F
2

(✓)(@✓)4 � V (✓)

�
. (5.1)

To reheat the universe, we are going to need an extra scalar, �, which will act as a waterfall

field; we postpone this discussion to the following Section and consider only the field ✓ here.

F
1,2 and F are a priori arbitrary dimensionless functions of ✓. The typical values of the

decay constant f
2

we will have in mind are around the Planck scale, and often we will simply

assume f
2

= M
Pl

. Since the coe�cients of the operators are arbitrary we can choose for later

convenience

M3

✓ =
3

2
f
2

H2

0

. (5.2)

Furthermore, we will be interested in the functions F
1,2 and F such that the resulting

theory complies with the symmetry requirements illustrated in Fig. 4. In particular these

functions must be constant asymptotically with the same value on the two sides of the shift-

breaking region. For reasons that will become clear below, we will also assume that F is

very small in the shift-symmetric part of the field space (while we will have F
1

⇠ F
2

⇠ 1).

What this means in practice is that the higher-derivative Galileon has the right magnitude

dictated by the derivative expansion, and it thus gives sub-leading e↵ects compared to the

more relevant one-derivative operators.9 We will have to break this náıve power counting

in the NEC-violating region with broken shifts, where the Galileon operator will play a

crucial role. Notice it is consistent and technically natural to have a large ⇤✓(@✓)2 operator

compared to the (@✓)4 since the first one is Galilean invariant, while the second is not [24].

Regarding the potential, we are going to look for solutions such that the potential after the

shift-breaking region is much larger than before: the idea is that the waterfall field � gets

trapped in some minimum with higher potential energy during the NEC-violating phase. It

will eventually return to the same vacuum as before (with a very small, relaxed cosmological

constant), releasing the energy into the thermal bath. Therefore, although the potential for

9In particular, canonical normalization of the action (5.1) for F1 ⇠ F2 ⇠ 1 reveals that the cubic

operator is suppressed by powers of the scale (f2H
2
0/F)1/3, while the quartic one — by powers of (f2

2 H2
0 )1/4.

Requiring the two scales to be comparable as dictated by náıve dimensional analysis (and recalling that

f2 ⇠ MPl � H0) yields an extremely suppressed value of F in the shift-symmetric region.
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e↵ective theory (the endpoints of the depicted field space

are identified).

model, as we discuss shortly. A successful implementation of the scenario requires that the �
2

field space be periodic with a period f
2

, so that any �
2

is identified with �
2

+ f
2

. The virtue

of periodicity is twofold. First, periodicity, together with invariance under internal shifts,

imposes that away from the red region with broken symmetry, the value of the cosmological

constant is identical on the two sides of that region, see Fig. 4. Second, periodicity of

�
2

is important for naturalness of the model under consideration. This is because, given

the limited time for the NEC-violating phase to complete, �
2

has to hit the red region

with broken symmetry within a time that does not parametrically exceed (✏
0

H
0

)�1 (we are

assuming the phase transition will leave �
2

in a generic point of the field space).8 Since

�
2

moves with a constant speed �̇
2

⇠ M2

2

in the shift-symmetric region, this translates,

assuming M4

2

⇠ M2

Pl

H2

0

(see Eq. (3.1)), and ✏
0

⇠ 1, into f
2

. M
Pl

. This is reminiscent of

the constraint on axion decay constants that follows from the weak gravity conjecture of

Ref. [22].

8Given the periodicity, one can imagine to have a cyclic evolution of the universe [5] which goes through

NEC violation many times. As discussed around eq. (3.9), the cosmological constant will continue the

scanning only until the breaking of slow-roll, so that its value will not be parametrically di↵erent in the

various cycles, unless ✏0 is not very suppressed.
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When scanning field proceeds one needs to create universe in  

As in the case of the scanning field �
1

, the smallness of �
2

is technically natural given that

it is a spurion of �
2

shift symmetry breaking.

The smallness of �
2

significantly limits the speed at which energy density can be built up

by the dynamics of the NEC-violating sector. One can readily estimate how long it takes

for �
2

to roll up the linear slope. Assuming that the energy density grows all the way up to

M4

I ⇠ ⇤? in the process, we have

⇢ '
Z

⇢̇ dt ⇠ �3

2

M2

2

t ⇠ ⇤? . (4.5)

Making use of Eqs. (3.1), (3.5) and (4.3), the resulting time scale can be expressed as

t & 1

H
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M3

2

H
0

⇠ 1090

H
0

. (4.6)

The time required to create a sizeable amount of energy density is way beyond the Hubble

time right before the onset of the NEC-violating phase transition. This is due to the smallness

of the cuto↵ M
2

compared with the energy density we want to produce. Slow violation of the

NEC is therefore only relevant if the scanning of the cosmological constant stops completely

as a result of this transition. Much faster violation of the NEC is possible, provided the

cuto↵ evolves in time, as we will study in the next Section.

5 Fast violation of the NEC

Rather than stopping, the scanning field may retain a non-zero speed �̇
1

⇠ M2

1

after the

transition to the NEC-violating phase. In this case it is crucial that this phase followed by

inflation and reheating complete relatively fast, within a time of order, or less than (✏
0

H
0

)�1.

This will guarantee that, by the time the universe reaches its present state, the cosmological

constant has not been reduced by a significant amount.

For the purposes of achieving fast NEC violation, we will again rely on a theory that in

most of the �
2

-field space is described by a ghost condensate-like shift-symmetric action.

The shift symmetry is only broken in a narrow interval of width ��
2

, centered at �
2

= 0, see

Fig. 4 for an illustration. This region is also where the violation of the NEC happens in our

model, as we discuss shortly. A successful implementation of the scenario requires that the �
2

field space be periodic with a period f
2

, so that any �
2

is identified with �
2

+ f
2

. The virtue

of periodicity is twofold. First, periodicity, together with invariance under internal shifts,

imposes that away from the red region with broken symmetry, the value of the cosmological

constant is identical on the two sides of that region, see Fig. 4. Second, periodicity of
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Reverse engineering

within a period t⇠⇠⇠NEC ⇠< H�1

0

— at the same time avoiding instabilities and superluminal

perturbations usually associated with NEC violation. Our presentation draws heavily on an

analogous construction of Ref. [23].

Inspired by the fact that NEC violation is possible in Galileon theories, let us consider a

theory of the following form (it is convenient to work with a dimensionless angle, defined as

✓ ⌘ �
2

/f
2

):

S✓ =

Z
d4x

p
�g


f 2

2

F
1

(✓)(@✓)2 +
f 3

2

M3

✓

F(✓)(@✓)2⇤✓ +
f 3

2

2M3

✓

F
2

(✓)(@✓)4 � V (✓)

�
. (5.1)

To reheat the universe, we are going to need an extra scalar, �, which will act as a waterfall
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1,2 and F are a priori arbitrary dimensionless functions of ✓. The typical values of the
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we will have in mind are around the Planck scale, and often we will simply

assume f
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= M
Pl

. Since the coe�cients of the operators are arbitrary we can choose for later
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Furthermore, we will be interested in the functions F
1,2 and F such that the resulting

theory complies with the symmetry requirements illustrated in Fig. 4. In particular these

functions must be constant asymptotically with the same value on the two sides of the shift-

breaking region. For reasons that will become clear below, we will also assume that F is
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1

⇠ F
2

⇠ 1).
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9In particular, canonical normalization of the action (5.1) for F1 ⇠ F2 ⇠ 1 reveals that the cubic

operator is suppressed by powers of the scale (f2H
2
0/F)1/3, while the quartic one — by powers of (f2

2 H2
0 )1/4.

Requiring the two scales to be comparable as dictated by náıve dimensional analysis (and recalling that

f2 ⇠ MPl � H0) yields an extremely suppressed value of F in the shift-symmetric region.
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✓ is periodic, the potential energy will be higher until � drops to the true minimum. We will

come back to this part of the model in Section 6.

The dynamics of the system (5.1) is governed by the Einstein’s equations plus the scalar

equation of motion. These however are not independent: as a consequence of di↵eomorphism

invariance, the scalar equation can be traded for the conservation of its stress-energy tensor

via

rµT
µ
⌫ = � 1p

�g

�S✓

�✓
@⌫✓ . (5.3)

On homogeneous FRW backgrounds, it is the energy conservation, ⇢̇ + 3H(⇢ + p) = 0 that

yields the ✓-equation of motion. Energy conservation on the other hand follows from the

temporal and space components of the Einstein’s equations. Therefore, one can choose the

latter two to make up the complete system determining the background evolution.

The expressions for the energy density and pressure due to a homogeneous evolution ✓(t)

are
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where 0 denotes di↵erentiation with respect to the argument (so that Ḟ = F 0✓̇). The two

functions F
1,2(✓) can be solved for with the help of the Friedmann equations, 3M2

Pl

H2 = ⇢

and M2

Pl
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Now, for any postulated homogeneous profile for ✓, F , the Hubble rate H, and the scalar

potential V , one can find a theory (i.e. find F
1,2(✓)) such that the chosen background solves

its equations of motion. The recipe for constructing the relevant solutions goes as follows: i)

pick arbitrary background profiles for ✓(t), F(t), H(t), and the potential V (✓(t)), ii) for the

chosen profiles, find the time-dependent functions F
1,2(t) with the help of (5.6) and (5.7),

iii) invert the expression for ✓(t) to find t = t(✓) (we do not have problems of inversion if we

remain within a single period of ✓), and iv) using the previous steps find F
1,2 as functions

of the dynamical field, rather than time: F
1,2 = F

1,2 (t(✓)). Importantly, we should check

whether a given cosmological solution obtained through the above procedure is stable and
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functions F
1,2(✓) can be solved for with the help of the Friedmann equations, 3M2

Pl

H2 = ⇢

and M2

Pl
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Stability checks

devoid of superluminal perturbations. A detailed analysis of perturbations for the theory

(5.1) can be found in Ref. [23], and here we will only present the relevant expressions without

deriving them.

5.2 Perturbations and stability

In the unitary gauge defined by the absence of ✓ - fluctuations, the system’s only scalar degree

of freedom is captured by the curvature perturbation on uniform-density hypersurfaces

gij = a(t)2(1 + 2⇣)�ij . (5.8)

A peculiar feature of the theory (5.1) — in particular of the Galileon operator — is that it

leads to second-order equations of motion both for the scalar and for metric on an arbitrary

background. Related to that, the quadratic ⇣ action takes on the standard two-derivative

form

S⇣ =

Z
d4x a3


A(t) ⇣̇2 � B(t)

1

a2
(@⇣)2

�
. (5.9)

The kinetic coe�cients A and B are given by [20, 23]
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(�4M4
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where M4 and M̂3 have been defined as follows
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With the above expressions at hand, we are in a position to postulate an arbitrary NEC-

violating set of profiles H(t), F (✓(t)), ✓(t) and V (✓(t)) and check the properties of perturba-

tions on the chosen background. In particular, the absence of ghost and gradient instabilities

require A > 0 and B > 0, while subluminal propagation of ⇣ imposes B/A  1.

5.3 An ansatz

An ansatz that we will find particularly useful for fast NEC violation is defined by the

following set of relations

✓̇(t) = H
0

, F(t) = ↵(t)
H(t)

H
0

, Ḣ(t) = "(t)H(t)2 , V (t) = 3(t)M2

Pl

H(t)2 , (5.13)
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Figure 6: A sketch of the potential U(�
2

,�) for di↵erent values of the NEC-violating field

�
2

.

as depicted on the lower right panel of Fig. (6.1). While � is sitting in the false vacuum,

the common potential U(�
2

,�) is nearly flat and the universe inflates with the inflationary

Hubble rate of order H2

I ⇠ M4

I /M
2

Pl

. In the meantime, the inflaton field �
2

continues to roll

and eventually reaches the point � = �
NEC

where the true minimum at � = 0 has reappeared.

Inflation ends when the ghost condensate field rolls past �
2

= �f , removing the second

minimum in the potential (6.1). Around that point � starts rolling back towards the true

minimum and oscillates around it — eventually transferring energy to the standard model

degrees of freedom through one of the conventional reheating mechanisms (see, e.g., [28, 29]).

When � reaches field values �/MI ⌧ 1 the inflationary period ends and one returns to the

state with the present day cosmological constant. In this sense, the field � plays a role

analogous to the waterfall field that terminates the period of hybrid inflation [6]. Notice that

in our model the inflaton �
2

is a ghost condensate and this gives a peculiar phenomenology

for primordial perturbations [14]. In particular, the normalization of scalar perturbations

will read (HI/M2

)5/4 ⇠ 10�5. Assuming M4

2

⇠ ⇤
0

, one gets (HIMPl

)2 ⇠ (10GeV)4: inflation

occurs at very low energy, but it is still compatible with nucleosynthesis.

At this point we should comment on the �
2

-dependence of the function f(���I
ˆM

, �2
˜M
), that

provides the mild modulation of the � potential in the flat region. We will assume that f

is an order unity function of its dimensionless arguments. As remarked above, this function

is symmetric under a sign flip for �
2

. Moreover, given that �
2

varies over a huge distance

in field space within the region of interest12 (��f < �
2

< �f ), one should make f weakly

12This is a direct consequence of the fact that the slope of V (�2) is bound to be extremely small compared

27

...and then 
reheating

•  No backreaction on φ2
•  No χ perturbations  



UV extension of Ghost Condensate

Can one trigger the NEC violating phase? Can one turn on the GC?

the requirement that the EFT description is valid for the inflationary background imposes

the hierarchy2 M � M 0. On the other hand, ⇢1/4inf can naturally be of the same order as M .

As a result of this new hierarchy, the amplitude of non-Gaussianity is somewhat suppressed

compared to the original prediction of the ghost inflation; still, it remains large enough to

be observationally interesting.

The paper is organized as follows. In Sec. 2 we describe the model and identify the

inflationary regime that reproduces ghost inflation. In Sec. 3 we study linear cosmological

perturbations emphasizing the similarities and di↵erences with the generic ghost inflation

treatment. Sec. 4 contains calculation of the bispectrum. In Sec. 5 we apply our results to

the special case when the background dynamics is dominated by the kinetic energy of the

inflaton and derive observational constraints on the model parameters in this case. Sec. 6 is

devoted to conclusions. Some details of the analysis are postponed to the Appendices.

2 Fast-roll inflation

We start with the class of gravity theories containing in addition to the metric gµ⌫ a dynamical

time-like vector field uµ with unit norm,3

uµu
µ = 1 . (1)

This field, called aether, exists in every point of space-time and defines a preferred reference

system, breaking the local LI of GR down to the subgroup of spatial rotations around this

vector. The dynamics of uµ is described by the most general covariant action containing up

to two derivatives,

S
[EH]

+ S
[u] = �M2

0

2

Z
d4x

p
�g

�
R +Kµ⌫

⇢�rµu
⇢r⌫u

�
�
, (2)

where

Kµ⌫
⇢� = c

1

gµ⌫g⇢� + c
2

�µ⇢ �
⌫
� + c

3

�µ��
⌫
⇢ + c

4

uµu⌫g⇢� , (3)

c
1

, . . . , c
4

are dimensionless parameters and M
0

is related to the Planck mass,

M2

P = M2

0

✓
1� c

1

+ c
4

2

◆
. (4)

2At first sight, this hierarchy might seem surprising from the viewpoint of the EFT for the inflaton

perturbations. However, it is straightforward to verify that it is stable under radiative corrections and thus

perfectly natural.
3Our signature convention is (+,�,�,�).
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This class of theories has been introduced in [4] (see also [5]) and received the name of

Einstein-aether models.

It is possible to impose further restriction on uµ to make it hypersurface-orthogonal. This

condition can be solved explicitly in terms of a scalar field

uµ ⌘ rµ�p
r⌫�r⌫�

, (5)

where �(t,x) is assumed to have a non-vanishing time-like gradient everywhere. Then out

of the four terms with the derivatives of uµ in (2) only three are independent and the theory

is parameterized by the following combinations,

↵ ⌘ c
1

+ c
4

, � ⌘ c
1

+ c
3

, � ⌘ c
2

. (6)

The geometrical meaning of � is that it labels the slices of a preferred space-time foliation.

From the physical viewpoint � sets a preferred time variable: hence the name “khronon”.

The theory with the action (2) and uµ expressed as in (5) was introduced in [3] under the

name “khronometric” model. Note that it is invariant under reparameterizations of �,

� 7! �̃(�) , (7)

where �̃(�) is an arbitrary monotonic function. It has been shown to arise as the low-

energy limit of Hořava gravity [1]. In other words, Hořava gravity can potentially provide a

UV-completion to the model at trans-Planckian scales.

The generic Einstein-aether theory di↵ers from the khronometric version by the presence

of vector modes, while the scalar and tensor sectors in the two models are identical.4 We will

see in the next section that vector perturbations are not generated during inflation for the

choice of parameters we are interested in. Therefore, without loss of generality, we will focus

on the khronometric case and use the parameterization (6). We will assume throughout the

paper that the parameters ↵, �,� are of the same order and use ↵ in various estimates as a

shorthand for the whole set ↵, �,�. Then the khronometric gravity is a valid EFT up to the

scale5 [2, 3],

⇤
cuto↵

= M
0

p
↵ , (8)

which is only a few orders below the Planck mass if ↵ is not extremely small. To avoid

instabilities and negative energy the parameters must satisfy [25, 3]

0 < ↵ < 2 , 0 < � + � .

4Another di↵erence is the instantaneous interaction arising in the khronometric model [24]. However,

this is irrelevant for the local physics studied in this paper.
5A nice study of this subject for the generic Einstein-aether theory is given in [26].
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Observations require ↵, �,� to be small. In particular, in the absence of fine-tuning between

↵, �,� the Solar System constraints [27] on the post-Newtonian parameters ↵PPN
1

, ↵PPN
2

describing LV can be translated into the bounds,

|↵|, |�|, |�| . 10�7 . (9)

Even stronger constraint on ↵̂PPN
2

— the analog of ↵PPN
2

in strong gravitational field —

was recently obtained from pulsar timing [11]. However, we will disregard these constraints

in this paper for two reasons. First, a single fine-tuning ↵ = 2� is su�cient to make both

PPN parameters vanish [3].6 Then one is left with much weaker bounds on ↵, �,� at the

level of per cent from emission of the gravitational waves [9, 12, 13] and late-time cosmology

[10]. Second, the values of ↵, �,� during inflation can be di↵erent from the present epoch

(e.g., they can depend on the inflaton field) and may well exceed (9). Thus, the only a priori

assumption we are going to make to simplify the calculations is ↵, �,� ⌧ 1. This will be

validated at the end by the constraints on the primordial spectrum following from the Planck

data.

We now introduce the inflaton field ⇥. As it is well-known, to sustain inflation the

potential for ⇥ must be very flat which can be achieved by imposing an approximate shift

symmetry,

⇥ 7! ⇥+ const . (10)

Assume for a moment that this symmetry is exact. Then only derivatives of ⇥ can appear in

the action. Allowing for the coupling between ⇥ and the aether we obtain the most general

action containing operators of dimension up to four,7

S
[⇥]

=

Z
d4x

p
�g


1

2
gµ⌫@µ⇥@⌫⇥+

{
2
(uµ@µ⇥)2 � µ2 u⌫@⌫⇥� V

�
, (11)

where {, µ and V are constants. One will easily convince oneself that the cuto↵ of this

action combined with (2) is still given by (8). Note that it is technically natural for the mass

parameter µ to be smaller than ⇤
cuto↵

as it is protected from large quantum corrections by

the discrete symmetry ⇥ 7! �⇥ obeyed by the rest of the action. The model with non-

minimal coupling between the aether and the inflaton similar to (11) was first introduced in

6This fine-tuning also greatly suppresses the strong-field PPN parameters as implied by the results of

[13]. We thank Diego Blas for the discussion of this point.
7As explained in [30], the operators uµrµu⌫ @⌫⇥, rµuµ u⌫@⌫⇥ that naively have dimension 3, are in fact

of higher dimension when expressed in terms of the canonically normalized fluctuations of the fields. Note

that these oprators can be forbidden by imposing the symmetry uµ 7! �uµ, ⇥ 7! �⇥.

6

Ivanov, Sibyriakov 14 

Einstein-aether: 

Cut-off almost at Planck scale

•  Can be turned on and off (by φ1)
•  Around it at low energy, one light 

ghost-condensate field

⇥̇ = µ2



Conclusions

•  It is possible to relax the cc. One needs to describe the whole evolution.

•  Unless NEC violation is forbidden.

•  Light states are present.

•  Connection with present dark energy.  Model dependent.

•  (Or I convinced you it is anthropic?)



Stability of geodesically complete 
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Cai, Wan, Li, Qiu, Piao 16

No general pathology in violating NEC
 
Can we have a complete cosmology?
     (e.g. Bouncing or a à const.)

the integral on the right hand side of (3.2) may or may not be finite for a finite tf (ti). We

are particularly interested in cosmologies for which the integral in (3.2) diverges on both

ends. The condition Z t

�1
dt a(t) = 1 (3.3)

is precisely the one expressing past-completeness of a given FRW cosmology [8], while future-

complete cosmologies satisfy a similar condition, but with integration from a finite time to

t = +1. Notice that this is only true in the Einstein frame where MPl = const and the

speed of graviton propagation is equal to one, in which case the graviton’s a�ne parameter

is related to the scale factor as d� = a(t)dt (simply a consequence of the gravitational

redshift). Therefore we are concentrating on spacetimes which are geodesically complete for

the propagation of the gravitons.2

One example of a geodesically complete cosmology is a smooth bouncing universe, which

starts out contracting from an asymptotically flat (a(t ! �1) = const) state; see e.g. [12] for

a recent discussion. Another example is a universe that starts expanding from a Minkowski

spacetime like in Galilean Genesis [25] and smoothly transits into an inflationary de Sitter

regime, where a(t ! 1) / eHI t. This transition has been studied in [20] within a sub-class

of (2.1) (only m4
2 and m̂3

1 are non-vanishing) and has been found to su↵er from a gradient

instability right before the onset of the inflationary phase.3 The fact that the gradient

instability is unavoidable for geodesically complete cosmological backgrounds in this class of

theories has been recently formulated as a theorem in [8] and subsequently generalized to

the broader class of Horndeski theories in [9]. In what follows, we will re-derive these no-go

results4 and will point out ways to evade them.

Since the integral in (3.2) diverges on both ends Y has to start o↵ at Y (t ! �1) = �1
and it has to cross zero at some t = t0. In Horndeski theories m̄2

3 = 0 and the expression in

(2.11) further simplifies to

Y = 2a · M4
Pl

2M2
PlH � m̂3

1

. (3.4)

It thus becomes evident that, assuming a continuous Y , the gradient instability in the

2The scalar perturbation ⇣ and other particles will in general move on a di↵erent e↵ective metric, so

that one should check geodesic completeness separately for each species. For example, in the case of ⇣, the

relevant integral to look at is
R
dt a(t)B(t).

3Notice that backgrounds describing the transition between two asymptotic de Sitter spaces are not

geodesically complete in the past. As discussed in Refs. [20] and [4], there are no generic issues with stability

in this case (see also [8] for a di↵erent example).
4In comparing with the previous references notice that our formulas will be simpler since we chose to work

in the Einstein frame from the beginning. As we discussed, this is always possible without loss of generality.
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to ensure stability. Notice that the operator (3)R�N gives rise (for instance in Newtonian

gauge [15]) to equations of motion with three derivatives. Even if this fact does not give rise

to extra degrees of freedom or pathologies in the particular case at hand, it is impossible to

have the (3)R�N operator starting from a theory with only second-order equations of motion.

Since we know that the universe contains many di↵erent species, it is mandatory to study

what happens when they are considered. The simplicity of the EFT approach allows to

generalise the study including an arbitrary number of fields and fluids (Section 4). The

conclusions apply completely unchanged to the adiabatic mode of the whole system. Some

examples of stable FRW evolution are given in Section 5, while Section 6 is devoted to the

conclusions.

Note added: While this paper was close to conclusion, the preprint [16] appeared with

substantial overlap with our work.

2 EFT for Single-Field Non-Singular Universe

Consider a flat FRW universe that evolves throughout its history, spanning the cosmic

time interval �1  t  1, without ever developing a singularity (by ‘singularity’ we

mean divergence of any physical quantity, such as e.g. the expansion rate). We will further

assume in this Section that the cosmological evolution is driven by a single scalar �(t, ~x) that

acquires a time-dependent expectation value �̄(t). This configuration spontaneously breaks

the time translation-invariance of the underlying theory, but leaves the (time-dependent)

spatial di↵eomorphisms, xi ! xi + ⇠i(t, ~x), intact. In the unitary gauge defined by frozen

scalar fluctuations �(t, ~x) = �̄(t), the most general action consistent with this symmetry

breaking pattern is [5]

S =

Z
d4xN

p
h


1

2
M2

Pl

✓
(3)R +

EijE
ij � E2

N2

◆
� M2

PlḢ

N2
�M2

Pl(3H
2 + Ḣ)

+
1

2
m4

2�N
2 � m̂3

1�N�E � 1

2
m̄2

1�E
2 � 1

2
m̄2

2�E
i
j�E

j
i � m̄2

3
(3)R�N + . . .

�
.

(2.1)

In writing this action we have made use of the ADM decomposition of the metric

ds2 = �N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.2)

assuming a background solution of the FRW form: N̄ = 1, N̄ i = 0, h̄ij = a2(t)�ij. Further-

more, Eij is related to the extrinsic curvature of the uniform-time hypersurfaces as

Eij ⌘ NKij =
1

2

⇣
ḣij �riNj �rjNi

⌘
, (2.3)

3

grounds. Putting them in the form (2.1) would require an additional conformal transforma-

tion on the metric (followed by a reparametrization of time to bring back the expectation

value of the lapse function to one) – see Appendix A for more detail. For this transforma-

tion to be non-singular, it is important that the e↵ective Planck mass before transition to

the frame (2.1) be a strictly positive function of time everywhere on the temporal domain.

Violation of this condition would imply vanishing of the tensor modes’ gradient energy at

some point in time. Conversely, for solutions with a strictly positive e↵ective Planck mass

in the original frame, the tensor modes are manifestly stable and weakly coupled and the

transformation to the frame (2.1) is well-defined.1

The e↵ective theory (2.1) can be further simplified by means of a perturbative redefinition

of the fields. Indeed, for theories satisfying (2.4) it is possible to set

m̄2
1 = �m̄2

2 = 0 (2.6)

with the help of a conformal + disformal transformation of the metric, described in Appendix

A. This amounts to moving into the frame where the graviton propagates at unit speed [23].

We will refer to the latter as the Einstein frame and will exclusively work in this frame in

what follows. The virtue of this frame is that the propagation of the graviton is completely

standard, and one can easily check geodesic completeness.

Within the Einstein frame, it is generically possible to perform another, generalized disfor-

mal transformation that would make also the coe�cient m̄2
3 vanish, see Appendix A. (This

is the linearized version of the transformation that is used to establish equivalence of some

of the theories beyond Horndeski and Horndeski/generalized Galileons [14].) However, cru-

cially for the discussion to come, in certain physically relevant cases the latter transformation

becomes singular and can not be implemented.

The spectrum

The dynamical degrees of freedom are conveniently described in the ⇣ gauge [24]:

hij = a2e2⇣ (e�)ij , �ii = @i�ij = 0 , (2.7)

where ⇣ and � capture the dynamics of the scalar and the tensor degrees of freedom respec-

tively. The action for ⇣—the curvature perturbation on comoving hypersurfaces—can be

obtained by integrating out the non-dynamical lapse (N) and shift (N i) variables from the

1This explains why our analysis does not capture the recently proposed non-singular scenarios that feature

tensor modes with asymptotically vanishing kinetic terms [12].
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•  Einstein frame

•                          to avoid higher spatial derivatives. 
Removable with disformal transf: cT=1

•   has 3 derivatives, but does not propagate extra dof
    (beyond Horndenski)
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assuming a background solution of the FRW form: N̄ = 1, N̄ i = 0, h̄ij = a2(t)�ij. Further-

more, Eij is related to the extrinsic curvature of the uniform-time hypersurfaces as

Eij ⌘ NKij =
1

2

⇣
ḣij �riNj �rjNi

⌘
, (2.3)
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Hamiltonian and momentum constraint equations in the standard way. For vanishing m̄2
3,

this has been done in [5, 20] and here we generalize the results of these references to the case

of a non-zero m̄2
3, assuming we are in the Einstein frame (2.6). A straightforward calculation

yields

S⇣ =

Z
d4x a3


A⇣̇2 � B

1

a2

⇣
~r⇣

⌘2
�
, (2.8)

where the two (generically time-dependent) coe�cients read

A = M2
Pl ·

3(2M2
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Pl(m
4
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PlH
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(2.9)

B = �M2
Pl +

1

a
· @tY , (2.10)

where

Y ⌘ a · 2M
2
Pl(M

2
Pl � 2m̄2

3)

2M2
PlH � m̂3

1

. (2.11)

This Lagrangian thus propagates a single, unitary scalar degree of freedom, provided that

the quantities A and B are positive [15]. The dynamics of tensor perturbations are exacty

those of General Relativity by our choice of the frame (2.6).

3 Stability

One can easily arrange for the kinetic coe�cient A in (2.9) to be positive via imposing the

following condition (which should of course hold at any particular moment of time)

3(2M2
PlH � m̂3

1)
2 + 2M2

Pl(m
4
2 � 2M2

PlḢ � 6M2
PlH

2) > 0 . (3.1)

What remains is to make sure that also B is positive, that is, the scalar perturbations are

free from gradient instabilities throughout the entire evolution. It will prove convenient to

put this condition, using (2.10), in the integrated form

Y (tf )� Y (ti) > M2
Pl

Z tf

ti

dt a(t) , (3.2)

which shows that Y is a monotonically growing function of time.

Consider now a universe that at no point during its evolution encounters a singularity, that

is, no physical quantity such as the Hubble rate or its derivatives ever diverges, while the

scale factor may tend to zero or infinity asymptotically in time. Setting ti (tf ) ! �1 (+1),
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Stability

•                    must be there and change sign (not removable)

•  Any action with explicit 2nd order EOM has gradient instability!

•   Valid including any number of fields and fluids

to ensure stability. Notice that the operator (3)R�N gives rise (for instance in Newtonian

gauge [15]) to equations of motion with three derivatives. Even if this fact does not give rise

to extra degrees of freedom or pathologies in the particular case at hand, it is impossible to

have the (3)R�N operator starting from a theory with only second-order equations of motion.

Since we know that the universe contains many di↵erent species, it is mandatory to study

what happens when they are considered. The simplicity of the EFT approach allows to

generalise the study including an arbitrary number of fields and fluids (Section 4). The

conclusions apply completely unchanged to the adiabatic mode of the whole system. Some

examples of stable FRW evolution are given in Section 5, while Section 6 is devoted to the

conclusions.

Note added: While this paper was close to conclusion, the preprint [16] appeared with

substantial overlap with our work.

2 EFT for Single-Field Non-Singular Universe

Consider a flat FRW universe that evolves throughout its history, spanning the cosmic

time interval �1  t  1, without ever developing a singularity (by ‘singularity’ we

mean divergence of any physical quantity, such as e.g. the expansion rate). We will further

assume in this Section that the cosmological evolution is driven by a single scalar �(t, ~x) that

acquires a time-dependent expectation value �̄(t). This configuration spontaneously breaks

the time translation-invariance of the underlying theory, but leaves the (time-dependent)

spatial di↵eomorphisms, xi ! xi + ⇠i(t, ~x), intact. In the unitary gauge defined by frozen

scalar fluctuations �(t, ~x) = �̄(t), the most general action consistent with this symmetry

breaking pattern is [5]
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assuming a background solution of the FRW form: N̄ = 1, N̄ i = 0, h̄ij = a2(t)�ij. Further-

more, Eij is related to the extrinsic curvature of the uniform-time hypersurfaces as
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