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Motivation

We have 36 different types of SO(10) F-theory fibrations with someadditional
gauge symmetries (non-Abelian,(discrete-)Abelian)

What to do with that?

Good starting point for a pheno survey (see Markus’ talk)

What else can we learn?

Are there relations among the 36 different fibrations?

What are generic features?
∼ 80% percent of the models have superconformal points

Can we understand those models (spectra & anomalies) as well?
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Toric construction of SO(10) theories

Strategy to engineer SO(10) theories

Start with 1/16 reflexive polytopes (dP1) as an ambient space and consider
its anticanonical hypersurface (this is a torus) [Klevers, Mayorga, Piragua, O., Reuter’14]

make coefficients si sections of the base → fibration

Fibration with a generic gauge group (Mordell-Weil group of rank 1: U(1))

Enhance the ambient space with a top [Candelas,Font; Bouchard,Skarke]

4 / 13



Toric construction of SO(10) theories

p =s1u3e21 + s2u2ve21 + s3uv2e21 + s4v3e21 + s5u2we1 + s6uvwe1 + s7v2we1 + s8uw2 + s9vw2

Strategy to engineer SO(10) theories

Start with 1/16 reflexive polytopes (dP1) as an ambient space and consider
its anticanonical hypersurface (this is a torus) [Klevers, Mayorga, Piragua, O., Reuter’14]

make coefficients si sections of the base → fibration

Fibration with a generic gauge group (Mordell-Weil group of rank 1: U(1))

Enhance the ambient space with a top [Candelas,Font; Bouchard,Skarke]

4 / 13



Toric construction of SO(10) theories

p = s1e21 f0f
2
2 f4f1u

3 + s2e21 f
2
0 f

2
2 f3f4f

2
1 f5u

2v + s3e21 f
2
0 f2f3f1uv

2 + s4e21 f
3
0 f2f

2
3 f

2
1 f5v

3

+s5e1f2f4u2w + s6e1f0f2f3f4f1f5uvw + s7e1f0f3v2w + s8f2f3f 24 f1f
2
5 uw

2 + s9f3f4f5vw2 r

Strategy to engineer SO(10) theories

Enhance the ambient space with a top [Candelas,Font; Bouchard,Skarke]

A top is a half-polytope over the ambient of the generic fiber
The z > 0 points: ADE resolution divisors Dfi that restrict to base divisor Z

SADE (B) : Z = 0 Dfi = π−1(Z)
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Toric construction of SO(10) theories

Strategy to engineer SO(10) theories

Enhance the ambient space with a top [Candelas,Font; Bouchard,Skarke]

z=0, the generic fiber: U(1) theory
z=1, the outer roots of SO(10)
z=2, the roots with Dynkin label 2

Resolution divisors intersect as the affine Dynkin Diagram of SO(10)

Dfi · P
1
j = −Ĝ i,j

SO(10) (1)

Construct the Shioda map, that is the orthogonal U(1) generator

σ = S1 − S0 + π∗(sb) + S1 · P1
α,iG

−1
i,j si (2)
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Computation of the Spectrum

The Weierstass Form

Any elliptic curve birationally equivalent to the a (singular) Weierstrass form:

P = y2 − x3 + f x + g

∆ = 4f 3 + 27g2

Vanishing orders of f , g and ∆ hint at the matter types via Kodaira’s
classification [Kodaira’62]

f =Z2
(
B2C2 + CZR1 +O(Z2)

)
,

g =Z3
(
B3C3 + C2ZR2 + CZ2R3 + Z3R4 +O(Z4)

)
,

∆ =Z7
(
A2B3C5 + C4ZR5 + · · ·+ Z5R9 +O(Z)

)
,

Kodaira classification

(f , g ,∆) fiber type rep multiplicity
Z = 0 (2, 3, 7) I ∗1 SO(10) −

Z = A = 0 (2, 3, 8) I ∗2 10 [A]Z
Z = B = 0 (3, 4, 8) III 16 [B]Z
Z = C = 0 (4, 6, 12) non-min SCP [C]Z

6d Multiplicities: Intersections of two base divisor classes

matter charges:Impose the loci for the resolved fibration
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A full spectrum

Full spectrum fixed by intersections of 4 divisor classes Z,S7,S9,K−1B

All Singlets, (i.e. complex structure moduli) included

non-minimal Van(f , g ,∆) = (4, 6, 12) points: superconformal points (SPCs)

SO(10)× U(1)2Rep. multiplicity

161/4,0 (2K−1
B − S7)Z

101/2,0 (2K−1
B − S9 −Z)Z

101/2,1 (K−1
B − S7 + S9)Z

SCP (S7 −Z)Z
11,−1 (K−1

B + S7 − S9 − 2Z)(S7 −Z)
11,2 (K−1

B − S7 + S9)(S9 −Z)
10,2 (S9 −Z)(S7 −Z)

1−1,−1 6(K−1
B )2 + S27 − 2S29 + 2Z2 − 2S9Z

+K−1
B (−5S7 + 4S9 − 4Z) + S7S9

11,0 6(K−1
B )2 − 2S27 + S29 + 3Z2 + 2S9Z

+K−1
B (4S7 − 5S9 − 11Z) + S7(S9 + Z)

10,1 6(K−1
B )2 − 2S27 − 2S29 + 4Z2 − S9Z

+K−1
B (4S7 + 4S9 − 13Z) + S7Z

10,0 19 + 11(K−1
B )2 + 2S27 + 2S29 + 2S9Z + 7Z2

−S7(S9 + 2Z)− 4K−1
B (S7 + S9 + 3Z)
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Transitions of Theories

Organization of models by transitions

Theories are related by a conifold transitions (toric blow-ups/downs)

Blow-up at at height 0:

Higgs Mechanism: SO(10)× [SU(2)× U(1)2]
(1,2)1,0−−−−→ SO(10)× [U(1)2]

Blow-up at at height: 1 (one point interior of a facet)
Superconformal transition: SO(10)× [U(1)2] + superconformal points
→Tensionless string states appearing [Bershadsky,Johanson’94]
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Transitions in theories

Field Theory perspective:

The transitions induce a specific change of the spectrum: [Anderson,Gray,Rhaguram,Taylor]

Loose: [16−1/4,−1/2 + 101/2,0 + 1−1,−1 + 10,1 + 10,0]× nscp = 29× nscp

Gain: [Z][C] = nscp superconformal points

Due to the missing hypers we can not satisfyanomalies !

Hint: Superconformal points are tensor multiplets, not located in the base
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Non-flat fibers and superconformal points

Appearance of non-flat fibers

The point f̃2 is associated to the point in the top facet with hypersurface:

P = s1e21e
2
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2
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3
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2
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2
3 f

2
4 g1g

2
2 uw

2 + s9e1 f̃2f3f 24 g2vw
2

over sscp = 0 the fiber becomes reducible

over Z = πB(f1f2f3f4g1g2) = 0,Df2 becomes an additional curve in the fiber
→ non-flat fiber: the fiber dimension jumps

Df2 is a non-toric divisor that intersects the Calabi-Yau [sscp][Z] = nscp times

Therefore it contributes nscp additional non-toric Kahler deformations that
are not located in the base

From a base-independent computation of theEuler numbers for a generic
base, we have to modify the Kahler moduli as:

h1,1(X ) = rank(G ) + 2 + h1,1(B) + nscp
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Anomalies of SCP theories

[sscp] Z

SCP1

SCP2

[ŝscp] Ẑ

E1

E2

Physical picture of superconformal points

The super conformal points have an interpretation as tensionles string modes
[Witten; Seiberg ’96] :

Obtain SUGRA by a blow-up in the base via exceptional divisors Ei in the
base with Kahler moduli ai

The Kahler moduli ai are also the vev of the additional 6d tensor multiplet

The tensors couple to strings with tension ai and coupling strength
gs = 1/ai

SCP: Blow-down ai → 0, tensionless string, strongly coupled to a tensor
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Anomalies of SCP theories

[sscp] Z

SCP1

SCP2

[ŝscp] Ẑ

E1

E2

Blow-up the super conformal points in the base introduce: [Bershadsky, Johnson ‘97]

Exceptional divisors: Ei with EiEj = −δi,j , i , j = 1..nscp

Blow-down map: β∗ : H2(B̂,Z)→ H2(B,Z)

Shift base divisor classes

K−1
B̂
→ (K−1b )∗ −

∑
i

Ei , Z∗ = Ẑ +
∑
i

nscp,iEi
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Anomalies of SCP theories
[sscp] Z

SCP1

SCP2

[ŝscp] Ẑ

E1

E2

We have no superconformal points anymore and obtain a well defined 6d
SUGRA description, where all anomalies are satisfied

Factorization of anomalies

Grav4Anomaly : T := 9− (K−1B )2 → T ∗ + nscp

H − V + 29(T ∗ + nscp)− 273 = 0X

Indeed, all other (gauge and mixed) anomalies factorize now

This procedure can again be applied for a generic base
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Summary and Outlook

1 We made a complete classification of torically resolved SO(10) fibrations in
F-theory

2 We computed the full spectrum and 6d multiplicities base independently

3 Checked full anomaly cancellation (also in theories with superconformal
points)

What is that good for ?

1 Phenomenological explorations for SO(10) models in 6d

2 Playground to study theories with superconformal points and their
transitions

Outlook

Further exploration of superconformal points (M-theory limit of non-flat
fibers, 6d anomaly lattice)

Study the 6d → 4d orbifold flux compactification of the pheno models

Thank you very much!
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