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AdS/CFT in a hyperbolic nutshell

Holographic duality between
(d + 1)-dimensional
gravitational theory and
d-dimensional CFT

Question: how to
reconstruct the bulk from
the boundary?

Entanglement plays a key
role (Ryu-Takayanagi,
quantum error correction)

Problems for non-trivial
spacetimes (black holes,
holographic shadows)
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“Entanglement is not enough” (1411.0690)

Consider the thermofield double state as a realization of ER=EPR:
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Black hole reaches thermal equilibrium quickly, ⇠ t
therm

Distance along maximal slices increases linearly with time

with the boundary condition

lim
s�t

r(s) = 1. (2.21)

Figure 9: Two-sided ADS black hole foliated by maximal slices.

Figure 9 shows the Penrose diagram for BTZ foliated by maximal surfaces. As the time

at which the surfaces are anchored increases the maximal surface moves toward the final

slice shown as the green curve. The proper length of the ERB can be defined to be the

proper distance, between the left and right horizons, measured along the purple curves. It

grows linearly with t,

length ! 2t
�

|f (rf )| (2.22)

At late time almost all of the ERB volume is very close to the final slice. Only the portion

near the ends deviates from r
f

. Over most of the length the cross-sectional area of the

19

|TFDi continues to evolve for ⇠ t
comp
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Holographic complexity

Susskind proposed “holographic complexity” as the CFT quantity
that encodes the continued evolution of the ERB.

Two proposals for the bulk dual of complexity:

“complexity = volume”
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Figure 1: The Penrose diagrams for two-sided eternal black holes (left) and one-sided

black holes that form from collapsing shock waves (right). The two-sided black hole is

dual to an entangled state of two CFTs that live on the left and right boundaries; the

one-sided black hole is dual to a single CFT. The (old) complexity/volume conjecture

related the complexity of the entangled CFT state to the volume of the maximal spatial

slice anchored at the CFT state. Our (new) complexity/action conjecture relates the

complexity of the CFT state to the action of the Wheeler-DeWitt patch.
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“complexity = action”
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Figure 1: The Penrose diagrams for two-sided eternal black holes (left) and one-sided

black holes that form from collapsing shock waves (right). The two-sided black hole is

dual to an entangled state of two CFTs that live on the left and right boundaries; the

one-sided black hole is dual to a single CFT. The (old) complexity/volume conjecture

related the complexity of the entangled CFT state to the volume of the maximal spatial

slice anchored at the CFT state. Our (new) complexity/action conjecture relates the

complexity of the CFT state to the action of the Wheeler-DeWitt patch.
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Computational (circuit) complexity

Goal: construct the optimum circuit for a given task

Given a reference state | 
0

i, what is the least complex
quantum circuit U that produces a given target state | 

1

i?

| 
1

i = U | 
0

i

U consists of a sequence of gates Q
i

: U = Q
1

Q
2

. . .

Circuit complexity = length of circuit U = number of gates Q
i

State complexity C( ) = complexity of least complex circuit
U that generates the state | i
Defined relative to a reference state, C( 

0

) ⌘ 0

Depends on the set of gates, {Q
i

}
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MERA: a quantum circuit

MERA (Mutli-scale Entanglement Renormalization Ansatz)
e�ciently generates ground-state wavefunction in d = 2 critical
systems

Vidal 2015:
MERA as a quantum circuit

“time”

Entanglement introduced by gates at different “times” (= length scales)

quantum 
circuit 

cMERA describes the ground state of a free scalar field
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A free field theory model

Consider a free scalar field as an infinite set of harmonic oscillators:
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Choosing our states

Target state: ground state oscillators in normal-mode basis x±
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Choosing our gates

Su�cient set of gates to produce  
1

from  
0

:

Q
00

= ei✏p0x0 , Q
i0

= ei✏xip0 , Q
0i

= ei✏x0pi ,

Q
ij

= ei✏xipj , Q
ii

= e
i✏
2 (xipi+pixi)

= e✏/2ei✏xipi .

These act on an arbitrary state  (x
1

, x
2

) as follows:

Q
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) global phase change

Q
10

 (x
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) = ei✏p0x1 (x
1

, x
2

) local phase change

Q
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) =  (x
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, x
2

) shift x
1

by ✏x
0

Q
21
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1
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2
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Q
11

 (x
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1
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2
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1

to e✏x
1

(scaling)
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Example

Consider the simple circuit U defined as

U 
0

= Q↵3
22

Q↵2
21

Q↵1
11
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Length of circuit U given by circuit depth:
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1

!
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+

.

Cannot identify D
1

(U) with C( 
1

): no guarantee that this is the
shortest circuit.
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Example

Consider the simple circuit U defined as
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Cannot identify D
1

(U) with C( 
1

): no guarantee that this is the
shortest circuit.

Question: How do we find the minimal length circuit?
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A geometric approach (quant-ph/0502070)

Restrict to Gaussian states =) space of 2⇥ 2 matrices
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Set of unitary gates Q
ij

= exp[✏M
ij

] act as A0
= Q

ij

A QT

ij

Can think of circuits U as paths in GL(2,R)

Introduce a metric h·, ·i on GL(2,R)

Circuit depth D
1

(U) then becomes geometric length

Allows one to apply variational calculus to quantum circuit design
�! optimum circuit is minimum geodesic
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Geometrizing the problem

Reference and target states given by

A
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Geodesics on circuit space

1-parameter family of solutions:

For our problem, minimal geodesic has
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Normal-mode basis

Examine circuit in normal-mode basis, x̃± = (x
1

± x
2

)/
p

2 (x̃ = Rx):

Both reference and target states are diagonal in the normal-mode
basis:
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Minimal circuit simply scales up diagonal entries:
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Generalization to N oscillators

Reference and target states described by N⇥N matrices ˜A
0

, ˜A
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Complexity for one-dimensional lattice of N oscillators:
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The continuum limit

Extend to (d�1)-dimensional lattice of Nd�1 oscillators:
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Summary & outlook

Preliminary steps towards defining (circuit) complexity in
quantum field theories

Geometrical approach: optimum circuit a geodesic in the
space of circuits

Simple interpretation in normal-mode basis (Chapman et al.)

Locality: penalty factors, more general metrics G
IJ

?

More general (non-Gaussian) states, interacting theories,
fermions?

Deeper relations to MERA, path-integral approach (Caputa et
al., Czech)?
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