Circuit Complexity in QFT

arXiv: 1707.08570

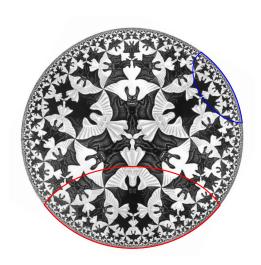
Ro Jefferson and Rob Myers

Albert Einstein Institute

DESY Theory Workshop September 28th, 2017

AdS/CFT in a hyperbolic nutshell

- Holographic duality between (d+1)-dimensional gravitational theory and d-dimensional CFT
- Question: how to reconstruct the bulk from the boundary?
- Entanglement plays a key role (Ryu-Takayanagi, quantum error correction)
- Problems for non-trivial spacetimes (black holes, holographic shadows)

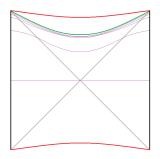


"Entanglement is not enough" (1411.0690)

Consider the thermofield double state as a realization of ER=EPR:

$$|\text{TFD}\rangle = \frac{1}{Z_{\beta}} \sum_{i} e^{-\beta E_{i}/2} |i\rangle_{L} |\tilde{i}\rangle_{R}$$

- ullet Black hole reaches thermal equilibrium quickly, $\sim t_{
 m therm}$
- Distance along maximal slices increases linearly with time



ullet $|{
m TFD}
angle$ continues to evolve for $\sim t_{
m comp}$

Holographic complexity

Susskind proposed "holographic complexity" as the CFT quantity that encodes the continued evolution of the ERB.

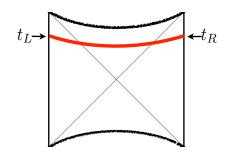
Two proposals for the bulk dual of complexity:

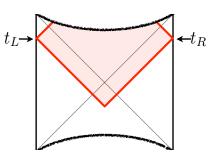
"complexity = volume"

$$C_V(t_L, t_R) = \frac{V(t_L, t_R)}{Gl}$$

"complexity = action"

$$C_A(t_L, t_R) = \frac{A}{\pi \hbar}$$





Computational (circuit) complexity

- Goal: construct the optimum circuit for a given task
- Given a reference state $|\psi_0\rangle$, what is the least complex quantum circuit U that produces a given target state $|\psi_1\rangle$?

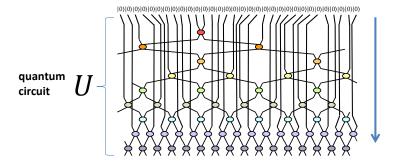
$$|\psi_1\rangle = U |\psi_0\rangle$$

- U consists of a sequence of gates Q_i : $U = Q_1Q_2...$
- ullet Circuit complexity = length of circuit U= number of gates Q_i
- State complexity $\mathcal{C}(\psi)=$ complexity of least complex circuit U that generates the state $|\psi\rangle$
- Defined relative to a reference state, $C(\psi_0) \equiv 0$
- Depends on the set of gates, $\{Q_i\}$

MERA: a quantum circuit

MERA (Mutli-scale Entanglement Renormalization Ansatz) efficiently generates ground-state wavefunction in d=2 critical systems

Vidal 2015:



cMERA describes the ground state of a free scalar field

A free field theory model

Consider a free scalar field as an infinite set of harmonic oscillators:

$$H = \frac{1}{2} \int d^{d-1}x \left[\pi(x)^2 + \vec{\nabla}\phi(x)^2 + m^2\phi(x)^2 \right]$$
$$\rightarrow \frac{1}{2} \sum_{\vec{n}} \left\{ \frac{p(\vec{n})^2}{\delta^{d-1}} + \delta^{d-1} \left[\frac{1}{\delta^2} \sum_i \left(\phi(\vec{n}) - \phi(\vec{n} - \hat{x}_i) \right)^2 + m^2\phi(\vec{n})^2 \right] \right\}$$

Simpler starting point: two oscillators at positions x_1 , x_2 ,

$$H = \frac{1}{2} \left[p_1^2 + p_2^2 + \omega^2 \left(x_1^2 + x_2^2 \right) + \Omega^2 \left(x_1 - x_2 \right)^2 \right]$$
$$= \frac{1}{2} \left(\tilde{p}_+^2 + \tilde{p}_-^2 + \tilde{\omega}_+^2 \tilde{x}_+^2 + \tilde{\omega}_-^2 \tilde{x}_-^2 \right)$$

where
$$\omega=m,~\Omega=1/\delta,~\tilde{x}_{\pm}=\frac{1}{\sqrt{2}}\,(x_1\pm x_2),~\tilde{\omega}_+^2=\omega^2,~\tilde{\omega}_-^2=\omega^2+2\Omega^2.$$

Choosing our states

ullet Target state: ground state oscillators in normal-mode basis x_\pm

$$\psi_1(\tilde{x}_+, \tilde{x}_-) = \psi_1(\tilde{x}_+)\psi_1(\tilde{x}_-)$$

$$= \frac{(\tilde{\omega}_+ \tilde{\omega}_-)^{1/4}}{\sqrt{\pi}} \exp\left[-\frac{1}{2} \left(\tilde{\omega}_+ \tilde{x}_+^2 + \tilde{\omega}_- \tilde{x}_-^2\right)\right]$$

Equivalently, in physical coordinates x_1, x_2

$$\psi_1(x_1, x_2) = \frac{\left(\omega_1 \omega_2 - \beta^2\right)^{1/4}}{\sqrt{\pi}} \exp\left[-\frac{\omega_1}{2}x_1^2 - \frac{\omega_2}{2}x_2^2 - \beta x_1 x_2\right]$$

where
$$\omega_1 = \omega_2 = \frac{1}{2} \left(\tilde{\omega}_+ + \tilde{\omega}_- \right), \quad \beta \equiv \frac{1}{2} \left(\tilde{\omega}_+ - \tilde{\omega}_- \right) < 0$$

Natural reference state: factorized Gaussian

$$\psi_0(x_1, x_2) = \sqrt{\frac{\omega_0}{\pi}} \exp\left[-\frac{\omega_0}{2} (x_1^2 + x_2^2)\right]$$

Choosing our gates

Sufficient set of gates to produce ψ_1 from ψ_0 :

$$Q_{00} = e^{i\epsilon p_0 x_0} , \qquad Q_{i0} = e^{i\epsilon x_i p_0} , \qquad Q_{0i} = e^{i\epsilon x_0 p_i} ,$$

$$Q_{ij} = e^{i\epsilon x_i p_j} , \qquad Q_{ii} = e^{\frac{i\epsilon}{2} (x_i p_i + p_i x_i)} = e^{\epsilon/2} e^{i\epsilon x_i p_i} .$$

These act on an arbitrary state $\psi(x_1, x_2)$ as follows:

$$\begin{aligned} Q_{00} \, \psi(x_1, x_2) &= e^{i\epsilon p_0 x_0} \psi(x_1, x_2) & \text{global phase change} \\ Q_{10} \, \psi(x_1, x_2) &= e^{i\epsilon p_0 x_1} \psi(x_1, x_2) & \text{local phase change} \\ Q_{01} \, \psi(x_1, x_2) &= \psi(x_1 + \epsilon x_0, x_2) & \text{shift } x_1 \text{ by } \epsilon x_0 \\ Q_{21} \, \psi(x_1, x_2) &= \psi(x_1 + \epsilon x_2, x_2) & \text{shift } x_1 \text{ by } \epsilon x_2 \text{ (entangling)} \\ Q_{11} \, \psi(x_1, x_2) &= e^{\epsilon/2} \psi\left(e^\epsilon x_1, x_2\right) & \text{rescale } x_1 \text{ to } e^\epsilon x_1 \text{ (scaling)} \end{aligned}$$

Example

Consider the simple circuit U defined as

$$U\psi_0 = Q_{22}^{\alpha_3} Q_{21}^{\alpha_2} Q_{11}^{\alpha_1} \psi_0 = \psi_1$$

Length of circuit U given by *circuit depth*:

$$\mathcal{D}_1 = \sum_{i} |\alpha_i| = \frac{1}{\epsilon} \left[\frac{1}{2} \ln \left(\frac{\tilde{\omega}_+}{\omega_0} \right) + \frac{1}{2} \ln \left(\frac{\tilde{\omega}_-}{\omega_0} \right) + \frac{\tilde{\omega}_- - \tilde{\omega}_+}{\sqrt{\tilde{\omega}_+ + \tilde{\omega}_-}} \sqrt{\frac{\omega_0}{2\tilde{\omega}_+ \tilde{\omega}_-}} \right]$$

where $\omega_1\omega_2-\beta^2>\omega_0^2$, $\tilde{\omega}_->\tilde{\omega}_+.$

Cannot identify $\mathcal{D}_1(U)$ with $\mathcal{C}(\psi_1)$: no guarantee that this is the shortest circuit.

Example

Consider the simple circuit U defined as

$$U\psi_0 = Q_{22}^{\alpha_3} Q_{21}^{\alpha_2} Q_{11}^{\alpha_1} \psi_0 = \psi_1$$

Length of circuit U given by *circuit depth*:

$$\mathcal{D}_1 = \sum_{i} |\alpha_i| = \frac{1}{\epsilon} \left[\frac{1}{2} \ln \left(\frac{\tilde{\omega}_+}{\omega_0} \right) + \frac{1}{2} \ln \left(\frac{\tilde{\omega}_-}{\omega_0} \right) + \frac{\tilde{\omega}_- - \tilde{\omega}_+}{\sqrt{\tilde{\omega}_+ + \tilde{\omega}_-}} \sqrt{\frac{\omega_0}{2\tilde{\omega}_+ \tilde{\omega}_-}} \right]$$

where $\omega_1\omega_2 - \beta^2 > \omega_0^2$, $\tilde{\omega}_- > \tilde{\omega}_+$.

Cannot identify $\mathcal{D}_1(U)$ with $\mathcal{C}(\psi_1)$: no guarantee that this is the shortest circuit.

Question: How do we find the minimal length circuit?

A geometric approach (quant-ph/0502070)

• Restrict to Gaussian states \implies space of 2×2 matrices

$$\psi_0(x_1, x_2) \simeq \exp\left[-\omega_0(x_1^2 + x_2^2)\right] \psi_1(x_1, x_2) \simeq \exp\left[-\omega_1 x_1^2 - \omega_2 x_2^2 - 2\beta x_1 x_2\right]$$
 $\psi \simeq \exp\left[-x_i A_{ij} x_j\right]$

- Set of unitary gates $Q_{ij} = \exp[\epsilon\,M_{ij}]$ act as $A' = Q_{ij}\,A\,\,Q_{ij}^T$
- \bullet Can think of circuits U as paths in $\mathrm{GL}(2,\mathbb{R})$
- Introduce a metric $\langle \cdot, \cdot \rangle$ on $GL(2, \mathbb{R})$
- ullet Circuit depth $\mathcal{D}_1\left(U
 ight)$ then becomes geometric length
- Allows one to apply variational calculus to quantum circuit design

 → optimum circuit is minimum geodesic

Geometrizing the problem

Reference and target states given by

$$A_0 = \omega_0 \mathbb{1}$$
, $A_1 = \begin{pmatrix} \omega_1 & \beta \\ \beta & \omega_2 \end{pmatrix}$, with $\omega_1 \omega_2 - \beta^2 > 0$

Circuit U a path in the space of (positive) quadratic forms

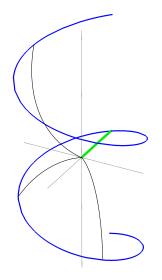
$$A_1 = U(1)A_0U^T(1)$$
, $U(s) = \overleftarrow{\mathcal{P}}\exp\left[\int_0^s ds' Y^I(s')M_I\right]$

Parametrize $U \in \mathrm{GL}\,(2,\mathbb{R})$, components $Y^I = \mathrm{tr}(\mathrm{d} U U^{-1} M_I)$ allow construction of Euclidean geometry $\mathrm{d} s^2 = G_{IJ} Y^I Y^J$:

$$\begin{split} \mathrm{d}s^2 &= 2\mathrm{d}y^2 + 2\mathrm{d}\rho^2 + 2\cosh(2\rho)\cosh^2\rho\,\mathrm{d}\tau^2 \\ &\quad + 2\cosh(2\rho)\sinh^2\rho\,\mathrm{d}\theta^2 - 2\sinh^2(2\rho)\,\mathrm{d}\tau\mathrm{d}\theta \end{split}$$

Geodesics on circuit space

1-parameter family of solutions:



For our problem, minimal geodesic has

$$\tau(s) = 0$$
, $\Delta \theta = 0 \implies \theta(s) = \theta_1 = \pi$

Minimum path given by

$$U(s) = \exp\left[\begin{pmatrix} y_1 & -\rho_1 \\ -\rho_1 & y_1 \end{pmatrix} s\right]$$

Complexity $C = \min D$:

$$C = \sum_{I} |Y^{I}(1)| = 2 (\rho_{1} + y_{1})$$
$$= \frac{1}{2} \ln \left(\frac{\tilde{\omega}_{+}}{\omega_{0}} \right) + \frac{1}{2} \ln \left(\frac{\tilde{\omega}_{-}}{\omega_{0}} \right)$$

Normal-mode basis

Examine circuit in normal-mode basis, $\tilde{x}_{\pm} = (x_1 \pm x_2)/\sqrt{2}$ ($\tilde{x} = Rx$):

 Both reference and target states are diagonal in the normal-mode basis:

$$\tilde{A}_1 = R A_1 R^T = \begin{pmatrix} \tilde{\omega}_+ & 0 \\ 0 & \tilde{\omega}_- \end{pmatrix} , \qquad \tilde{A}_0 = R A_0 R^T = \begin{pmatrix} \omega_0 & 0 \\ 0 & \omega_0 \end{pmatrix}$$

Minimal circuit simply scales up diagonal entries:

$$\tilde{U}(s) = \exp\left[\begin{pmatrix} y_1 - \rho_1 & 0\\ 0 & y_1 + \rho_1 \end{pmatrix} s\right] = \exp\left[\begin{pmatrix} \frac{1}{2} \ln \frac{\tilde{\omega}_+}{\omega_0} & 0\\ 0 & \frac{1}{2} \ln \frac{\tilde{\omega}_-}{\omega_0} \end{pmatrix} s\right]$$

Normal-mode subspace is flat:

$$U(s) = \exp \left\{ \left[M_{++} (y_1 - \rho_1) + M_{--} (y_1 + \rho_1) \right] s \right\},$$

$$[M_{++}, M_{--}] = 0 \implies ds^2 = 2dy^2 + 2d\rho^2$$

Generalization to N oscillators

Reference and target states described by $N \times N$ matrices \hat{A}_0 , \hat{A}_1

$$\psi_0(\tilde{x}_k) = \left(\frac{\omega_0}{\pi}\right)^{N/4} \exp\left[-\frac{1}{2}\tilde{x}^{\dagger}\tilde{A}_0\tilde{x}\right], \qquad \tilde{A}_0 = \omega_0 \mathbb{1}$$

$$\psi_1(\tilde{x}_k) = \prod_{k=0}^{N-1} \left(\frac{\tilde{\omega}_k}{\pi}\right)^{1/2} \exp\left[-\frac{1}{2}\tilde{x}^{\dagger}\tilde{A}_1\tilde{x}\right], \quad \tilde{A}_1 = \operatorname{diag}(\tilde{\omega}_0, \dots, \tilde{\omega}_{N-1})$$

Optimum circuit scales-up diagonal entries

$$\tilde{U}(s) = \exp\left[\tilde{Y}^{\tilde{I}}\tilde{M}_{\tilde{I}}\right], \quad \tilde{Y}^{\tilde{I}}\tilde{M}_{\tilde{I}} = \operatorname{diag}\left(\frac{1}{2}\ln\frac{\tilde{\omega}_0}{\omega_0}, \dots, \frac{1}{2}\ln\frac{\tilde{\omega}_{N-1}}{\omega_0}\right)$$

Complexity for one-dimensional lattice of N oscillators:

$$\mathcal{C} = \sum_{\tilde{I}} \left| \tilde{Y}^{\tilde{I}}(1) \right| = \frac{1}{2} \sum_{k=0}^{N-1} \left| \ln \frac{\tilde{\omega}_k}{\omega_0} \right|$$

The continuum limit

Extend to (d-1)-dimensional lattice of N^{d-1} oscillators:

$$C = \frac{1}{2} \sum_{\{k_i\}=0}^{N-1} \left| \ln \frac{\tilde{\omega}_{\vec{k}}}{\omega_0} \right|, \qquad \tilde{\omega}_{\vec{k}}^2 = \omega^2 + 4\Omega^2 \sum_{i=1}^{d-1} \sin^2 \frac{\pi k_i}{N}$$

Field theory parameters $\omega = m$, $\Omega = 1/\delta$.

Continuum limit: $N \to \infty$, $\delta \to 0$ with $N\delta$ fixed.

Leading order dominated by UV modes, $\tilde{\omega}_{\vec{k}} \sim 1/\delta \implies$

$$\mathcal{C} \approx \frac{N^{d-1}}{2} \left| \ln \frac{1}{\delta \omega_0} \right| \simeq \frac{V}{\delta^{d-1}} \left| \ln \frac{1}{\delta \omega_0} \right|, \qquad V = N^{d-1} \delta^{d-1}$$

$$\omega_0 = \begin{cases} \text{UV scale } e^{-\sigma}/\delta & \implies \mathcal{C} \approx \sigma \frac{V}{\delta^{d-1}} & (\text{C} = \text{A}) \\ \text{IR scale } \frac{\alpha}{\ell_{\text{AdS}}} \ll \frac{1}{\delta} & \implies \mathcal{C} \approx \frac{V}{\delta^{d-1}} \left| \ln \frac{\ell_{\text{AdS}}}{\alpha \delta} \right| & (\text{C} = \text{V}) \end{cases}$$

Summary & outlook

- Preliminary steps towards defining (circuit) complexity in quantum field theories
- Geometrical approach: optimum circuit a geodesic in the space of circuits
- Simple interpretation in normal-mode basis (Chapman et al.)
- Locality: penalty factors, more general metrics G_{IJ} ?
- More general (non-Gaussian) states, interacting theories, fermions?
- Deeper relations to MERA, path-integral approach (Caputa et al., Czech)?