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AdS/CFT in a hyperbolic nutshell

@ Holographic duality between
(d + 1)-dimensional
gravitational theory and
d-dimensional CFT

@ Question: how to
reconstruct the bulk from
the boundary?

@ Entanglement plays a key
role (Ryu-Takayanagi,
quantum error correction)

@ Problems for non-trivial
spacetimes (black holes,
holographic shadows)
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“Entanglement is not enough” (1411.0690)

Consider the thermofield double state as a realization of ER=EPR:

1 -
- = —BE;/2|; ;
ITFD) = 7 Zi:e i)y |2)
@ Black hole reaches thermal equilibrium quickly, ~ tiherm

@ Distance along maximal slices increases linearly with time

v

e |TFD) continues to evolve for ~ tcomp
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Holographic complexity

Susskind proposed “holographic complexity” as the CFT quantity
that encodes the continued evolution of the ERB.

Two proposals for the bulk dual of complexity:

“complexity = volume” “complexity = action”

Cv (tr,tr) = % Ca(trtr) = %

tr—> «~lp  t;—> «lR
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Computational (circuit) complexity

@ Goal: construct the optimum circuit for a given task

e Given a reference state |t)g), what is the least complex
quantum circuit U that produces a given target state [¢1)7?

|1h1) = U |vo)

o U consists of a sequence of gates Q;: U = Q1Q> ...

o Circuit complexity = length of circuit U = number of gates @);

e State complexity C(1)) = complexity of least complex circuit
U that generates the state [¢))

o Defined relative to a reference state, C(¢)p) =0

@ Depends on the set of gates, {Q;}
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MERA: a quantum circuit

MERA (Mutli-scale Entanglement Renormalization Ansatz)
efficiently generates ground-state wavefunction in d = 2 critical

systems

Vidal 2015:

10)[0)]0)[0)10)|0)|0)[0)10)|0)|0)| 0)|0)|0){0I0)|0)|0)|0)[0)|0)[0)|0)|0)|0)|0)[0)| 0}|0)|0)|0|0)

quantum
circuit U 7

cMERA describes the ground state of a free scalar field
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A free field theory model

Consider a free scalar field as an infinite set of harmonic oscillators:
1 =
H= 3 /ddlx [71'(1’)2 + Vo(z)? + mzqﬁ(x)ﬂ
1 p(ﬁ)2 _
— 5 Z { 5d71 2 Z (i — CCz))Q + m2p(i1)?

Simpler starting point: two oscillators at positions x1, a2,

1
H = 5 |:p% —|—p% +w2 ($% +$%) +Q2 (:El —932)2}

1, . 9 ~9 ~
=35 (p%r + P2+ wixi + wzxz,)
where w =m, Q=1/6, ji:%($1i$2), 02 = w?,

o2 = w? + 202
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Choosing our states

@ Target state: ground state oscillators in normal-mode basis z4

V1(Z4,T-) = 1(T4 )P (3-)

(@@ )4 1

~ ~2 | o~ =2
=-—————exp|—= _
N Xp|: 2( +23 tw x)}
Equivalently, in physical coordinates z1, x5
VY1(z1, 22) =

where wy =wy = 3 (W4 + @), B=3 (04 —@-) <0

@ Natural reference state: factorized Gaussian

Yo(x1,x2) = ﬁexp[—? ( %%—x%)}
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Choosing our gates

Sufficient set of gates to produce 1 from 1)g:

__ _i€epoxg L _LExT;Po . _ieTop;
Qoo = e"Po*0 Qip = "0 | Qo; = e"“"oPi

Qij = e Qi; = €3 @iPitPiTi) — o¢/2gicwipi

These act on an arbitrary state ¢ (x1, z2) as follows:

Qoo Y (1, T2) = “PO¥0Y(xy, 19) global phase change

10 r1,T9) = I1,x2 oca ase cnange
Quow(a1,32) = PP gh(z1,m5)  local phase chang
QOI ¢(Z’1,x2) = w(xl + €xo, T 2) shift T by €EXQ
Q21 Y (21, 22) = VY(z1 + €2, x2) shift z; by exa (entangling)
Q11 (x1, w9) = /%9 (21, 29) rescale z1 to e“z; (scaling)
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Consider the simple circuit U defined as
Utpo = Q33 Q57 Q1 Yo = 11
Length of circuit U given by circuit depth:
111 Wy 1 w_ Ww_— Wy wo
=2 lail = [2 n<w >+2 n<w0> Vot o\ 20,0

where wjwy — % > w%, W_ > wWy.

Cannot identify D1 (U) with C(¢1): no guarantee that this is the
shortest circuit.
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Consider the simple circuit U defined as
Uho = @35 Q51 Q11 o = 1
Length of circuit U given by circuit depth:
111 + 1 w— w_— W4 wo
=D, leil = ¢ [21“ <w> g <wo> Voo 2@+@]

where wiwy — % > wg, W_ > Wy.

Cannot identify D1 (U) with C(¢1): no guarantee that this is the
shortest circuit.

Question: How do we find the minimal length circuit?
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A geometric approach (quant-ph/0502070)

Restrict to Gaussian states — space of 2 X 2 matrices

o(x1, 22) =~ exp [—wo(x% + m%)}

1(x1,x2) >~ exp [—wlx% — wor? — 2Bx172

] } 1/) ~ exp[—a:i Aij 1']']

Set of unitary gates Q;; = exple My;] act as A’ = Qi A QF;
Can think of circuits U as paths in GL(2,R)

Introduce a metric (-,-) on GL(2,R)

Circuit depth D (U) then becomes geometric length

Allows one to apply variational calculus to quantum circuit design
— optimum circuit is minimum geodesic
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Geometrizing the problem

Reference and target states given by

w1

s

Circuit U a path in the space of (positive) quadratic forms

A():WO]la A1—< 52) s with LUICUQ—B2>O

A =UM)AUTA),  U(s) = Pexp [ /0 ) ds’Y[(s’)MI]

Parametrize U € GL (2,R), components Y/ = tr(dUU ~' M)
allow construction of Euclidean geometry ds*> = G;Y'Y”/:

ds? = 2dy? + 2dp? + 2 cosh(2p) cosh?p dr?
+ 2 cosh(2p) sinh?p d? — 2sinh*(2p) drdf
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Geodesics on circuit space

1-parameter family of solutions:

For our problem, minimal geodesic has
7(s)=0, A0=0 = 0(s) =61 =
Minimum path given by
yu P
U p—
(s) =exp [(-m " ) s}
Complexity C = min D:
_ 1 _
c=3Y V') =200 +9)

1 @4 1 "
e Y s e
2 n<W0>+2 n(w0>
|
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Normal-mode basis

Examine circuit in normal-mode basis, 7+ = (71 £ 22)/v/2 (¥ = Rz):

@ Both reference and target states are diagonal in the normal-mode
basis:

A = RART = (©+ 0 ’ Ay= RA RT = (“0 0
0 w— 0 wo

@ Minimal circuit simply scales up diagonal entries:

11, @+
N Y1 —p1 0 _ 3 In 5 0
U(s) = exp K 0 y1+p1> s] —exp[< 0 %lnf}—g s

@ Normal-mode subspace is flat:

U(s) =exp { [Myy (y1 — p1) + M__ (51 + p1)] s},
My, M__]=0 = ds?=2dy*+ 2dp?
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Generalization to N oscillators

Reference and target states described by N x N matrices Ay, Ay

) N/4 s
Yo (Tk) = <ﬂ> exp [xTAol‘] : Ag = wol
™
N-1 3 1/2 1 ~ ~
U1 (Ty) = H <7r> exp [—255”114 , Ay = diag (@o, ..., ON-1)
k=0

Optimum circuit scales-up diagonal entries

ST 1 an
U(s) = exp [YIMf], YINI; = diag lnﬂ R Pt
2 CL)O 2 wo

Complexity for one-dimensional lattice of NV oscillators:
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The continuum limit

Extend to (d—1)-dimensional lattice of N9~! oscillators:

N-1

1 . k;
~2 2 2 .9 TR
5 s CUE—W +4Q ZSIH W
{kz}:(] =1
Field theory parameters w = m, = 1/6.
Continuum limit: N — oo, § — 0 with N¢ fixed.
Leading order dominated by UV modes, &y ~ 1/§ =
Nt 1 1% 1
Cr~ In— |~ —— |In— V = Nitgdt
2 | owo| 04T | Sw
UVscalee /6 = C~= O—(SdL*l (C=A)
w0 IRscaleﬁ«% = C%&Kl ln% (C=V)
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Summary & outlook

@ Preliminary steps towards defining (circuit) complexity in
quantum field theories

@ Geometrical approach: optimum circuit a geodesic in the
space of circuits

@ Simple interpretation in normal-mode basis (Chapman et al.)
o Locality: penalty factors, more general metrics Gy;?

@ More general (non-Gaussian) states, interacting theories,
fermions?

@ Deeper relations to MERA, path-integral approach (Caputa et
al., Czech)?
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