The dark side of neutrinos

Aaron Vincent

DESY Theory Meeting Hamburg Sep. 27 2017

Imperial College London

Based on

C. A. Argüelles, A. Kheirandish, A.C.V, Imaging galactic dark matter with high energy cosmic neutrinos 1703.00451 (Accepted, PRL)

The 1:5 relationship between Dark Matter and nuclear (proton, neutron) abundances implies relatively recent creation

...which hints at a stronger connection than just gravity between our sector and the dark world

= direct detection (LUX, LZ, SuperCDMS, ...)

$$\exists \left(\sum_{\text{annihilation}}\right) \text{ implies } \exists \left(\sum_{\text{scattering}}\right)$$

if — = quarks, then

= direct detection (LUX, LZ, SuperCDMS, ...)

But if— too light, or (?) does not talk to quarks, then — could be $\nu, \bar{\nu}$

- [1] C. Boehm, P. Fayet, and R. Schaeffer, Phys.Lett. **B518**, 8 (2001), arXiv:astro-ph/0012504 [astro-ph].
- [2] C. Boehm, A. Riazuelo, S. H. Hansen, and R. Schaeffer, Phys.Rev. **D66**, 083505 (2002), arXiv:astro-ph/0112522 [astro-ph].
- [3] C. Boehm and R. Schaeffer, Astron. Astrophys. 438, 419 (2005), arXiv:astro-ph/0410591 [astro-ph].
- [4] E. Bertschinger, Phys.Rev. **D74**, 063509 (2006), arXiv:astro-ph/0607319 [astro-ph].
- [5] G. Mangano, A. Melchiorri, P. Serra, A. Cooray, and M. Kamionkowski, Phys.Rev. D74, 043517 (2006), arXiv:astro-ph/0606190 [astro-ph].
- [6] P. Serra, F. Zalamea, A. Cooray, G. Mangano, and A. Melchiorri, Phys.Rev. D81, 043507 (2010), arXiv:0911.4411 [astro-ph.CO].
- [7] R. J. Wilkinson, C. Boehm, and J. Lesgourgues, JCAP **1405**, 011 (2014), arXiv:1401.7597 [astro-ph.CO].
- [8] L. G. van den Aarssen, T. Bringmann, and C. Pfrommer, Phys.Rev.Lett. 109, 231301 (2012), arXiv:1205.5809 [astro-ph.CO].

- [9] Y. Farzan and S. Palomares-Ruiz, JCAP **1406**, 014 (2014), arXiv:1401.7019 [hep-ph].
- [10] C. Boehm, J. Schewtschenko, R. Wilkinson, C. Baugh, and S. Pascoli, Mon.Not.Roy.Astron.Soc. 445, L31 (2014), arXiv:1404.7012 [astro-ph.CO].
- [11] J. F. Cherry, A. Friedland, and I. M. Shoemaker, (2014), arXiv:1411.1071 [hep-ph].
- [12] B. Bertoni, S. Ipek, D. McKeen, and A. E. Nelson, JHEP **1504**, 170 (2015), arXiv:1412.3113 [hep-ph].
- [13] J. Schewtschenko, R. Wilkinson, C. Baugh, C. Boehm, and S. Pascoli, Mon.Not.Roy.Astron.Soc. 449, 3587 (2015), arXiv:1412.4905 [astro-ph.CO].

(a few references)

DM-neutrino interactions: two constraints from cosmology

Extra radiation N_{eff}

If DM is light (< 10 MeV) it can dump entropy into neutrino sector as it becomes non-relativistic

BBN

neutrons less boltzmann suppressed at FO: more D, He

CMB

Shifted peaks from different sound propagation length

upper limit on DM mass

DM-neutrino interactions: two constraints from cosmology

Extra radiation N_{eff}

If DM is light (< 10 MeV) it can dump entropy into neutrino sector as it becomes non-relativistic

BBN

neutrons less boltzmann suppressed at FO: more D, He

CMB

Shifted peaks from different sound propagation length

upper limit on DM mass

Perturbation damping

Scattering damps power spectrum of primordial fluctuations

Boehm et. al 1404.7012

Upper limit on cross section

DM-neutrino interactions: cosmology (I)

DM dump E into neutrino sector:

$$H^2 = \frac{8\pi}{3}\rho$$

faster expansion during and after BBN

DM-neutrino interactions: cosmology (I)

DM dump E into neutrino sector:

$$H^2 = \frac{8\pi}{3}\rho$$

faster expansion during and after BBN

Faster expansion:

- 1) During BBN: neutrons less boltzmann-suppressed at freeze-out: can form more Deuterium, helium
- 2) During recombination: acoustic peaks are shifted since sound propagation changed

DM-neutrino interactions: cosmology (I)

DM dump E into neutrino sector:

$$H^2 = \frac{8\pi}{3}\rho$$

faster expansion during and after BBN

Faster expansion:

- 1) During BBN: neutrons less boltzmann-suppressed at freeze-out: can form more Deuterium, helium
- 2) During recombination: acoustic peaks are shifted since sound propagation changed

DM-neutrino interactions: cosmology (II)

Power "bled away" on small scales by neutrinos streaming away; increased correlations on large scales

Generic scattering cross section:

$$E_{\nu} \ll m_{\chi}$$

 $E_{
u} \ll m_{\chi}$ Perturbation damping limits:

1)
$$\sigma \rightarrow const.$$

$$\sigma_{\mathrm{DM}-\nu,0}^{(WiggleZ)} \lesssim 4 \times 10^{-31} \left(m_{\mathrm{DM}} / \mathrm{GeV} \right) \mathrm{cm}^2$$

2)
$$\sigma o const. imes E_{
u}^2$$

2)
$$\sigma \to const. \times E_{\nu}^2$$
 $\sigma_{\mathrm{DM}-\nu,2}^{(WiggleZ)} \lesssim 1 \times 10^{-40} (m_{\mathrm{DM}}/\mathrm{GeV}) \mathrm{cm}^2 \times (T_{\nu}/T_{\mathrm{today}})^2$

Escudero+ACV++

$$c.f. \sigma_{Thomson} = 10^{-26} \text{cm}^2$$

$$\sigma_{DM-\nu} \propto E_{\nu}^2$$

IceCube has seen events above a PeV....

$$\left(\frac{\text{PeV}}{T_{\nu,recomb.}}\right)^2 \sim 10^{30}$$

Let's look there!

Neutrinos

Neutrinos

Cosmic rays

10^{2} 1 particle/m²/second 10-1 104 Flux (m² sr s GeV)-1 Knee 1 particle/m²/year 10-1 10-23 10-25 Ankle 1 particle/km²/year Energy (eV)

Neutrinos

We see high-energy (>> TeV) cosmic rays and gamma rays, and evidence suggests these are extragalactic.. We know associated neutrinos must be produced

53 high-energy neutrinos in 4 years

IceCube Neutrino Observatory

53 high-energy neutrinos in 4 years **IceCube** South Pole Station **AMANDA** Skiway Dark sector Geographic South Pole IceCube Lab **IceTop** IceCube Array **AMANDA II Array** 1450 m (precursor to IceCube) DeepCore Eiffel Tower 2450 m 2820 m **Bedrock**

IceCube Neutrino Observatory

1) Neutrino arrives

3) DOMs see Čerenkov light from electrons, muons

IceCube High Energy Starting Events (HESEs)

IceCube High Energy Starting Events (HESEs)

Arrival direction

Isotropic arrival extragalactic

13

Isotropic extragalactic neutrino flux

Isotropic extragalactic neutrino flux

Anisotropic deflection/energy loss

In practice

b, I: galactic latitude, longitude

column density:
$$\tau(b,l) = \int_{l.o.s} n_{\chi}(x;b,l) \ dx.$$

$$\frac{d\Phi(E,\tau)}{d\tau} = -\sigma(E)\Phi(E,\tau) + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma(\tilde{E},E)}{dE} \Phi(\tilde{E},\tau)$$

to any energy

scattering **from** *E* scattering **to** *E* from any energy \tilde{E}

Solve to find flux at earth at energy E and direction (b,l)

What about cross section?

$$\sigma_{DM-\nu} \propto E_{\nu}^2 \quad \xrightarrow{??} \quad \left(\frac{\text{PeV}}{T_{\nu,recomb.}}\right)^2 \sim 10^{30}$$

What about cross section?

$$\sigma_{DM-\nu} \propto E_{\nu}^2 \longrightarrow \left(\frac{\text{PeV}}{T_{\nu,recomb.}}\right)^2 \sim 10^{30}$$
 No!

What about cross section?

$$\sigma_{DM-
u} \propto E_{
u}^2 \quad \xrightarrow{??} \left(\frac{\mathrm{PeV}}{T_{
u,recomb.}} \right)^2 \sim 10^{30}$$
 No! $E \to \Lambda_{New \, physics}$

The low energy approximation does not work at a PeV!!

Begin to resolve microphysics: need more concrete model

Two fiducial simplified models

Fermion DM, vector mediator: Scales strongly with *E*

Scalar DM, fermionic mediator:

e.g. sneutrino dark matter, neutralino mediator. Resonant Behaviour (s-channel)

IceCube HESE analysis

Dark matter column density seen from Earth

Dark matter column density seen from Earth

Simulation including effects of detector, Earth

no interaction strong interaction

Energy & morphology

Angle from galactic centre

IceCube HESE events

Energy & morphology

Energy Atmospheric muons 10^{2} Atmospheric ν $Atm + Astro. \nu$, no DM $(S_{\chi}, S_{\phi}) = (1/2, 1), g = 1$ $(S_{\chi}, S_{\phi}) = (1/2, 1), g = \sqrt{5}$ $(S_{\chi}, S_{\phi}) \equiv (0, 1/2)$ 10^{-2} 10^{-3} 10^{2} 10^{4} 10^{1} E_{dep}/TeV Resonance @ 810 TeV

Angle from galactic centre

IceCube HESE events

Compare Likelihood to real events

$$\mathcal{L}(\lbrace t, E, \vec{x} \rbrace | \vartheta) = e^{-\sum_b N_b} \prod_{i=1}^{N_{obs}} \sum_a N_a P_a(t_i, E_i, \vec{x}_i | \vartheta).$$

Parameters:

$$m_\chi \ m_\phi \ g \ N_{astro} \ N_{atmo} \ N_{\mu^\pm} \ \gamma$$

Limits from IceCube

New limits on dark force carriers

²³

Summary

- No reason to believe DM-neutrino interactions aren't there
- Isotropy of the signal can be used to constrain such interactions
- Can even do better than cosmology in some ranges
- Need more stats —> more data next year + forecasts for Gen2 & much more to come

Thank you

Four-year HESE sample

Backgrounds

Neutrinos from atmospheric showers can fail to trigger the vetos. These are mostly upgoing (from the north), but concentrated around the horizon.

HESE: ~ 12/53 atmospheric neutrinos

Muons from atmospheric showers can slip through the veto region. These occur at low energies, and only from the southern (downgoing) direction

HESE: ~ 10/53 atmospheric muons

Attenuation by Earth

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = - \left(\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\text{CC}}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}, \tilde{E}_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}$$

d flux at E = - Scattering from E

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = - \left(\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\text{CC}}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}, \tilde{E}_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}$$

d flux at E = - Scattering from E

$$E_{\nu} \to \vec{E}_{\nu} \qquad \qquad \phi \to \vec{\phi}$$

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = - \left(\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\text{CC}}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}, \tilde{E}_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}$$

d flux at E = - Scattering from E

$$E_{\nu} \to \vec{E}_{\nu} \qquad \qquad \phi \to \vec{\phi}$$

$$\frac{d\vec{\phi}}{dx} = (-\operatorname{diag}(\vec{\sigma}) + C)\vec{\phi} = M\vec{\phi}$$

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = - \left(\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\text{CC}}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}, \tilde{E}_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}$$

d flux at E = - Scattering from E

$$E_{\nu} \to \vec{E}_{\nu} \qquad \qquad \phi \to \vec{\phi}$$

$$\frac{d\vec{\phi}}{dx} = (-\operatorname{diag}(\vec{\sigma}) + C)\vec{\phi} = M\vec{\phi} \qquad \vec{\phi} = \sum c_i \hat{\phi}_i e^{\lambda_i x}$$

- λ_i Eigenvalues of M
- $\hat{\phi}_i$ Eigenvectors of M
- c_i Initial conditions

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = - \left(\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\text{CC}}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}, \tilde{E}_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}$$

d flux at E = - Scattering from E

+ Scattering to E

$$E_{\nu} \to \vec{E}_{\nu} \qquad \qquad \phi \to \vec{\phi}$$

$$\frac{d\vec{\phi}}{dx} = (-\operatorname{diag}(\vec{\sigma}) + C)\vec{\phi} = M\vec{\phi} \qquad \vec{\phi} = \sum c_i \hat{\phi}_i e^{\lambda_i x}$$

 λ_i Eigenvalues of M

 $\hat{\phi}_i$ Eigenvectors of M

 c_i Initial conditions

Small modifications allow tau regen + secondaries

vFATE: average attenuation of upgoing flux

vFATE: average attenuation of upgoing flux

Earth composition uncertainty

10% uncertainty constrained by total mass & moment of inertia

Parton distribution functions (PDFs)

PDFs: errors

PDFs: errors

Probably underestimated: most PDF sets don't go to very low *x*

