Algebraic properties of the monopole formula

Marcus Sperling

Fakultät für Physik, Universität Wien

September 28, 2017

Based on arXiv:1605.00010 & 1611.07030 with A.Hanany

Outline

1 SUSY vacua and Hilbert series

- 2 Monopole formula
- 3 Algebraic properties
- 4 Conclusions and outlook

Outline

- 1 SUSY vacua and Hilbert series
- 2 Monopole formula
- 3 Algebraic properties
- 4 Conclusions and outlook

- gauge group G: vector multiplets V_a
- matter content: representation $\mathcal R$ for chiral multiplets X_i
- superpotential W: G-invariant polynomial in X_i

- gauge group G: vector multiplets V_a
- matter content: representation $\mathcal R$ for chiral multiplets X_i
- superpotential W: G-invariant polynomial in X_i
- scalar potential: $V(X,X^{\dagger})=\sum_{i}|F_{i}|^{2}+\frac{g^{2}}{2}\sum_{a}(D_{a})^{2}$ with $F_{i}:=\frac{\partial W}{\partial X_{i}}$ and $D_{a}:=\sum_{i,j}X_{i}^{\dagger}(T^{a})_{j}^{i}X^{j}$

- gauge group G: vector multiplets V_a
- matter content: representation $\mathcal R$ for chiral multiplets X_i
- ullet superpotential $W\colon \operatorname{G-invariant}$ polynomial in X_i
- scalar potential: $V(X,X^{\dagger})=\sum_{i}|F_{i}|^{2}+\frac{g^{2}}{2}\sum_{a}(D_{a})^{2}$ with $F_{i}:=\frac{\partial W}{\partial X_{i}}$ and $D_{a}:=\sum_{i,j}X_{i}^{\dagger}(T^{a})_{j}^{i}X^{j}$
- Moduli space of SUSY vauca [Luty, Taylor '95]

$$\mathcal{M} \coloneqq \left\{ (X, X^{\dagger}) \mid V(X, X^{\dagger}) = 0 \right\} / G$$

- gauge group G: vector multiplets V_a
- matter content: representation $\mathcal R$ for chiral multiplets X_i
- ullet superpotential $W\colon \operatorname{G-invariant}$ polynomial in X_i
- scalar potential: $V(X,X^{\dagger})=\sum_{i}|F_{i}|^{2}+\frac{g^{2}}{2}\sum_{a}(D_{a})^{2}$ with $F_{i}:=\frac{\partial W}{\partial X_{i}}$ and $D_{a}:=\sum_{i,j}X_{i}^{\dagger}(T^{a})_{j}^{i}X^{j}$
- Moduli space of SUSY vauca [Luty, Taylor '95]

$$\mathcal{M} = \left\{ (X, X^{\dagger}) \mid F_i = 0 \ \forall i, \ D_a = 0 \ \forall a \right\} / G$$

Ex: $4d \mathcal{N} = 1$ theory

- gauge group G: vector multiplets V_a
- matter content: representation $\mathcal R$ for chiral multiplets X_i
- ullet superpotential $W\colon \operatorname{G-invariant}$ polynomial in X_i
- scalar potential: $V(X,X^{\dagger})=\sum_{i}|F_{i}|^{2}+\frac{g^{2}}{2}\sum_{a}(D_{a})^{2}$ with $F_{i}:=\frac{\partial W}{\partial X_{i}}$ and $D_{a}:=\sum_{i,j}X_{i}^{\dagger}(T^{a})_{j}^{i}X^{j}$
- Moduli space of SUSY vauca [Luty, Taylor '95]

$$\mathcal{M} \cong \{X \mid F_i = 0 \; \forall i\} / \mathbf{G}^{\mathbb{C}}$$

 $\Longrightarrow \mathcal{M}$ is Kähler

• gauge-inv. scalar chiral operator \mathcal{O} , i.e. $\bar{\mathcal{Q}}_{\dot{\alpha}}\mathcal{O}(x)=0$ $\longrightarrow \text{VEV} \langle \mathcal{O} \rangle = \text{holomorphic fct. on } \mathcal{M}$

- gauge-inv. scalar chiral operator \mathcal{O} , i.e. $\mathcal{Q}_{\dot{\alpha}}\mathcal{O}(x)=0$ $\longrightarrow \mathsf{VEV} \langle \mathcal{O} \rangle = \mathsf{holomorphic} \ \mathsf{fct.} \ \mathsf{on} \ \mathcal{M}$
- chiral ring $\mathfrak R$ spanned by $[\mathcal O]_\sim$ subject to relations $F_i=\partial_{X_i}W(X)|_{\mathfrak R}=0$ [Lerche, Vafa, Warner '89]

- gauge-inv. scalar chiral operator \mathcal{O} , i.e. $\mathcal{Q}_{\dot{\alpha}}\mathcal{O}(x)=0$ $\longrightarrow \mathsf{VEV} \langle \mathcal{O} \rangle = \mathsf{holomorphic} \ \mathsf{fct.} \ \mathsf{on} \ \mathcal{M}$
- chiral ring \Re spanned by $[\mathcal{O}]_{\sim}$ subject to relations $F_i=\partial_{X_i}W(X)|_{\Re}=0$ [Lerche, Vafa, Warner '89]
- ullet physics assumption: chiral ring = coordinate ring of ${\cal M}$
 - → Hilbert series [Pouliot '99; Benvenuti, Feng, Hanany, He '06]

- gauge-inv. scalar chiral operator \mathcal{O} , i.e. $\bar{\mathcal{Q}}_{\dot{\alpha}}\mathcal{O}(x)=0$ \longrightarrow VEV $\langle \mathcal{O} \rangle =$ holomorphic fct. on \mathcal{M}
- chiral ring \Re spanned by $[\mathcal{O}]_{\sim}$ subject to relations $F_i=\partial_{X_i}W(X)|_{\Re}=0$ [Lerche, Vafa, Warner '89]
- physics assumption: chiral ring = coordinate ring of $\mathcal M$
 - → Hilbert series [Pouliot '99; Benvenuti, Feng, Hanany, He '06]

$$\mathfrak{R} = \bigoplus_{r} \mathcal{H}_{r} , \quad \mathcal{H}_{r} = \{ \mathcal{O}_{i} \mid \bar{\mathcal{Q}}\mathcal{O}_{i} = 0 , R\mathcal{O}_{i} = r\mathcal{O}_{i} \}$$

R-charge:
$$[R, \bar{Q}] = \bar{Q}$$
, $RW = 2W$



- gauge-inv. scalar chiral operator \mathcal{O} , i.e. $\bar{\mathcal{Q}}_{\dot{\alpha}}\mathcal{O}(x)=0$ $\longrightarrow \text{VEV} \langle \mathcal{O} \rangle = \text{holomorphic fct. on } \mathcal{M}$
- chiral ring \Re spanned by $[\mathcal{O}]_{\sim}$ subject to relations $F_i=\partial_{X_i}W(X)|_{\Re}=0$ [Lerche, Vafa, Warner '89]
- physics assumption: chiral ring = coordinate ring of $\mathcal M$

$$\mathfrak{R} = \bigoplus_{r} \mathcal{H}_{r} , \quad \mathcal{H}_{r} = \{ \mathcal{O}_{i} \mid \bar{\mathcal{Q}}\mathcal{O}_{i} = 0 , R\mathcal{O}_{i} = r\mathcal{O}_{i} \}$$

$$H_{\mathfrak{R}}(t) := \sum_{r} \dim(\mathcal{H}_r) t^r = \frac{Q(t)}{\prod_{i} (1 - t^{d_i})}$$

Outline

SUSY vacua and Hilbert series

- 2 Monopole formula
- 3 Algebraic properties
- 4 Conclusions and outlook

for 3d $\mathcal{N}=2$ theories: new class of chiral operators

→ 't Hooft monopole operators ['t Hooft '78; Borokhov, Kapustin, Wu '02]

for 3d $\mathcal{N}=2$ theories: new class of chiral operators

→ 't Hooft monopole operators ['t Hooft '78; Borokhov, Kapustin, Wu '02]

bare $\mathcal{N}=2$ monopole operator V_m :

$$A_{\pm} \sim \frac{m}{2} (\pm 1 - \cos(\theta)) d\phi$$

$$\sigma \sim \frac{m}{2r}$$

for 3d $\mathcal{N}=2$ theories: new class of chiral operators

→ 't Hooft monopole operators ['t Hooft '78; Borokhov, Kapustin, Wu '02]

bare $\mathcal{N}=2$ monopole operator V_m :

$$A_{\pm} \sim \frac{m}{2} (\pm 1 - \cos(\theta)) d\phi$$
$$\sigma \sim \frac{m}{2r}$$

Dirac quantisation condition [Englert & Windey]

$$e^{2\pi im} = \mathbb{1}_{\mathcal{G}} \quad \Leftrightarrow \quad m \in \Gamma_{\widehat{\mathcal{G}}}$$

 $\Gamma_{\widehat{G}} = \text{weight lattice of GNO dual group}$ [Goddard, Nuyts, Olive '77]

for 3d $\mathcal{N}=2$ theories: new class of chiral operators

→ 't Hooft monopole operators ['t Hooft '78; Borokhov, Kapustin, Wu '02]

bare $\mathcal{N}=2$ monopole operator V_m :

$$A_{\pm} \sim \frac{m}{2} (\pm 1 - \cos(\theta)) d\phi$$
$$\sigma \sim \frac{m}{2r}$$

Dirac quantisation condition [Englert & Windey]

$$e^{2\pi im} = \mathbb{1}_{\mathcal{G}} \quad \Leftrightarrow \quad m \in \Gamma_{\widehat{\mathcal{G}}}$$

 $\Gamma_{\widehat{G}} = \text{weight lattice of GNO dual group}$ [Goddard, Nuyts, Olive '77]

- $\mathcal{N}=2$ v-plet (A,σ) \longrightarrow chiral multiplet V_m for each m
- for each $m \in \Gamma_{\widehat{\mathbf{G}}}$ exists a single N=2 bare monopole V_m

Specialise to ${\cal N}=4$

$$G: \quad (\mathcal{N}{=}4 \text{ vector}) = (\mathcal{N}{=}2 \text{ vector}) \oplus (\mathcal{N}{=}2 \text{ chiral } \Phi \in adj)$$

$$\mathcal{R}: \quad (\mathcal{N}{=}4 \text{ hyper}) = (\mathcal{N}{=}2 \text{ chiral } X \in \mathcal{R}) \oplus (\mathcal{N}{=}2 \text{ chiral } X \in \bar{\mathcal{R}})$$

with
$$W = \bar{X}\Phi X \rightarrow \text{locally } \mathcal{M} = \mathcal{M}_C + \mathcal{M}_H$$

Specialise to ${\cal N}=4$

$$G: (\mathcal{N}=4 \text{ vector}) = (\mathcal{N}=2 \text{ vector}) \oplus (\mathcal{N}=2 \text{ chiral } \Phi \in adj)$$

$$\mathcal{R}: \quad (\mathcal{N}{=}4 \text{ hyper}) = (\mathcal{N}{=}2 \text{ chiral } X \in \mathcal{R}) \oplus (\mathcal{N}{=}2 \text{ chiral } X \in \bar{\mathcal{R}})$$

with
$$W = \bar{X}\Phi X \rightarrow \text{locally } \mathcal{M} = \mathcal{M}_C + \mathcal{M}_H$$

Coulomb branch \mathcal{M}_C :

dressing of bare monopole V_m by residual gauge theory ${\it T_m}$

- ▶ residual gauge group $H_m = Stab_G(m)$
- residual matter fields Φ_{α} for $\alpha(m) = 0$

Monopole formula counts dressed $\mathcal{N}=2$ monopole operators

$$H(t) = \sum_{m \in \Gamma_{\hat{G}}/\mathcal{W}} t^{\Delta(m)} P(t, m)$$

[Cremonesi, Hanany, Zafferoni '13]

Monopole formula counts dressed $\mathcal{N}=2$ monopole operators

$$H(t) = \sum_{m \in \Gamma_{\hat{G}}/\mathcal{W}} t^{\Delta(m)} P(t, m)$$

[Cremonesi, Hanany, Zafferoni '13]

ightharpoonup R-charge of bare monopole V_m

$$\Delta(m) = \frac{1}{2} \sum_{\rho \in \mathcal{R}} |\rho(m)| - \sum_{\alpha \in \Phi_+} |\alpha(m)|$$

[Borokhov, Kapustin, Wu '02; Gaiotto, Witten '08; ...]

Monopole formula counts dressed $\mathcal{N}=2$ monopole operators

$$H(t) = \sum_{m \in \Gamma_{\hat{G}}/\mathcal{W}} t^{\Delta(m)} P(t, m)$$

[Cremonesi, Hanany, Zafferoni '13]

ightharpoonup R-charge of bare monopole V_m

$$\Delta(m) = \frac{1}{2} \sum_{\rho \in \mathcal{R}} |\rho(m)| - \sum_{\alpha \in \Phi_+} |\alpha(m)|$$

[Borokhov, Kapustin, Wu '02; Gaiotto, Witten '08; ...]

• Dressing by residual gauge theory T_m

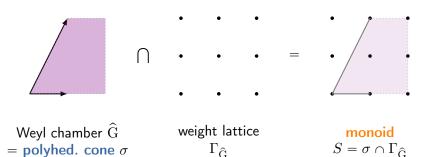
$$P(t,m) = \frac{1}{\prod_{i=1}^{r} (1 - t^{d_i(m)})} = H_{T_m}(t)$$

Outline

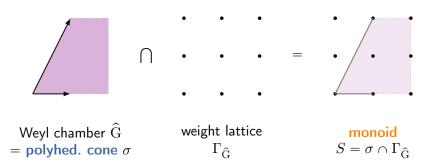
SUSY vacua and Hilbert series

- 2 Monopole formula
- 3 Algebraic properties
- 4 Conclusions and outlook

Summation range $S = \Gamma_{\widehat{\mathbf{G}}}/\mathcal{W}$

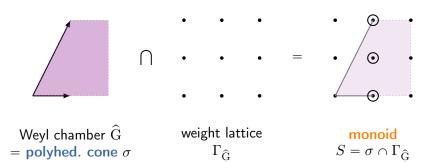


Summation range $S=\Gamma_{\widehat{\mathbf{G}}}/\mathcal{W}$



- cone σ generated by its edges
- ▶ monoid S generated by Hilbert basis

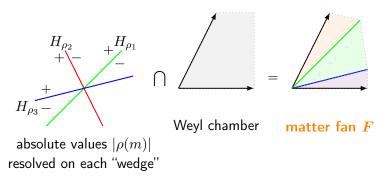
Summation range $S = \Gamma_{\widehat{\mathbf{G}}}/\mathcal{W}$



- ightharpoonup cone σ generated by its edges
- ▶ monoid S generated by Hilbert basis

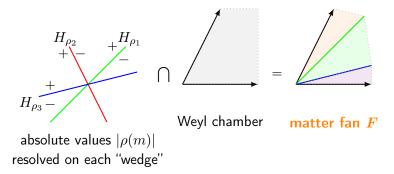
Problem: absolute values $|\rho(m)|$ need be resolved

→ turn into guiding principle!



Problem: absolute values $|\rho(m)|$ need be resolved

→ turn into guiding principle!



restrict to weight lattice --- monoids generated by Hilbert bases

$$\boxed{ H(t) = P(t,0) \quad \sum_{\tau \in F} \quad H_{M_{\tau}^{\mathsf{Dress}}}(t) \quad H_{\omega(S_{\tau})}(t) }$$

$$H(t) = P(t,0) \quad \sum_{\tau \in F} \quad H_{M_{\tau}^{\mathsf{Dress}}}(t) \quad H_{\omega(S_{\tau})}(t)$$

sufficient set of chiral ring generators

$$\boxed{ H(t) = P(t,0) \quad \sum_{\tau \in F} \quad H_{M_{\tau}^{\mathsf{Dress}}}(t) \quad H_{\omega(S_{\tau})}(t) }$$

- sufficient set of chiral ring generators
 - ▶ Casimir invariants of $G \leftrightarrow P(t,0)$

$$H(t) = P(t,0) \quad \sum_{\tau \in F} \quad H_{M_{\tau}^{\mathsf{Dress}}}(t) \quad H_{\omega(S_{\tau})}(t)$$

- sufficient set of chiral ring generators
 - ▶ Casimir invariants of $G \leftrightarrow P(t,0)$
 - ▶ bare monopole operators via Hilbert bases $\leftrightarrow H_{\omega(S_{\pi})}(t)$
 - → identify all charges

$$H(t) = P(t,0) \quad \sum_{\tau \in F} \quad H_{M_{\tau}^{\mathsf{Dress}}}(t) \quad H_{\omega(S_{\tau})}(t)$$

- sufficient set of chiral ring generators
 - ▶ Casimir invariants of $G \leftrightarrow P(t,0)$
 - ▶ bare monopole operators via Hilbert bases $\leftrightarrow H_{\omega(S_{\tau})}(t)$
 - → identify all charges
 - ▶ dressed monopole operators $\leftrightarrow H_{M_{-}^{\mathsf{Dress}}}(t)$
 - → identify their finite number and all charges

$$H(t) = P(t,0) \quad \sum_{\tau \in F} \quad H_{M_{\tau}^{\mathsf{Dress}}}(t) \quad H_{\omega(S_{\tau})}(t)$$

- sufficient set of chiral ring generators
 - ▶ Casimir invariants of $G \leftrightarrow P(t,0)$
 - ▶ bare monopole operators via Hilbert bases $\leftrightarrow H_{\omega(S_{\tau})}(t)$
 - → identify all charges
 - dressed monopole operators $\leftrightarrow H_{M_{\pi}^{Dress}}(t)$
 - → identify their finite number and all charges
- pole structure
 - ▶ order of pole of H(t) at t = 1 is $rk(G) = dim(\mathcal{M}_C)$
 - ▶ order of pole of H(t) at $t\to\infty$ is $\mathrm{rk}(G)=\dim(\mathcal{M}_C)$

Outline

- SUSY vacua and Hilbert series
- 2 Monopole formula
- 3 Algebraic properties
- 4 Conclusions and outlook

Conclusions and Outlook

Geometric structure unveiled

- rewrite monopole formula
 - ► convenient for implementation via Macaulay2
 - prove algebraic properties of HS
 - appearing object mathematically well-studied
- identify sufficient set of chiral ring generators

Conclusions and Outlook

Geometric structure unveiled

- rewrite monopole formula
 - ► convenient for implementation via Macaulay2
 - prove algebraic properties of HS
 - appearing object mathematically well-studied
- identify sufficient set of chiral ring generators

Future directions

- Hilbert series with background charges \longrightarrow resolution of \mathcal{M}_C
- implications for $\mathcal{N}=2$ monopole formula
 - [Cremonesi '15; Cremonesi, Mekareeya, Zafferoni '16]