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Moduli space of supersymmetric vacua

Ex: 4d N' =1 theory
e gauge group G: vector multiplets V,
e matter content: representation R for chiral multiplets X;
e superpotential W: G-invariant polynomial in X;
o scalar potential: V(X, XT) =3, |F;|> + % > o (Dq)? with
Fy= ¥ and D, =, ; XJ(T%)i X7
e Moduli space of SUSY vauca [Luty, Taylor '95]
M= {X | F; =0V} /G®

= M is Kahler
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e gauge-inv. scalar chiral operator O, i.e. 9;0(z) =0
— VEV {(O) = holomorphic fct. on M

e chiral ring R spanned by [O]. subject to relations
F; = 0x,W(X)|s = 0 [Lerche, Vafa, Warner '89]

e physics assumption: chiral ring = coordinate ring of M

—— Hilbert series [Pouliot '99; Benvenuti, Feng, Hanany, He '06]
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R-charge: [R,Q]=Q, RW =2W
Q)

Hg}{(t) = Zdim(ﬂr)tr = W
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for 3d N = 2 theories: new class of chiral operators
— 't Hooft monopole operators [t Hooft '78; Borokhov, Kapustin, Wu '02]

bare N/ = 2 monopole operator V,, :

Af ~ % (+1 — cos()) do
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Dirac quantisation condition [Englert & Windey]
eQmm = ]lG < m e FG
Fé = weight lattice of GNO dual group [Goddard, Nuyts, Olive '77]

» N =2 v-plet (A,0) —> chiral multiplet V,,, for each m

» for each m € I'y exists a single NV = 2 bare monopole V;,
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G: (N=4 vector) = (N=2 vector) ® (N'=2 chiral ® € adj)

R: (N=4 hyper) = (N=2 chiral X € R) ® (N'=2 chiral X e R)
with W = X®X — locally M = M¢c + My

Coulomb branch M¢:

dressing of bare monopole V,,, by residual gauge theory T,
» residual gauge group H,, = Stabg(m)

» residual matter fields ®,, for a(m) =0
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Coulomb branch of 3d N =4

Monopole formula counts dressed N' = 2 monopole operators
Hit)= > t*"P(t,m)
mEFé/W

[Cremonesi, Hanany, Zafferoni '13]

» R-charge of bare monopole V,,,

Apm) = 2 S o)~ ] latm)

pER acd
[Borokhov, Kapustin, Wu '02; Gaiotto, Witten '08; ...]

» Dressing by residual gauge theory T},

Pltm) = L sy = Ha )
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Introduction of fan and Hilbert bases

Problem: absolute values |p(m)| need be resolved

— turn into guiding principle!

Weyl chamber  matter fan F
absolute values |p(m)|
resolved on each “wedge”

restrict to weight lattice — monoids generated by Hilbert bases
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H(t) = P(t,0) Y. Hypress(t) Hys,)(t)
TeF

o sufficient set of chiral ring generators
» Casimir invariants of G < P(¢,0)
» bare monopole operators via Hilbert bases < H,,g,)(t)
—> identify all charges
» dressed monopole operators <> H yoress(t)

— identify their finite number and all charges
e pole structure
» order of pole of H(t) at t = 1 is rk(G) = dim(M¢)
» order of pole of H(t) at t — o0 is tk(G) = dim(M )
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Geometric structure unveiled
e rewrite monopole formula

» convenient for implementation via Macaulay?2
» prove algebraic properties of HS

» appearing object mathematically well-studied
e identify sufficient set of chiral ring generators
Future directions
e Hilbert series with background charges — resolution of Mg

e implications for N' = 2 monopole formula

[Cremonesi '15; Cremonesi, Mekareeya, Zafferoni '16]
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