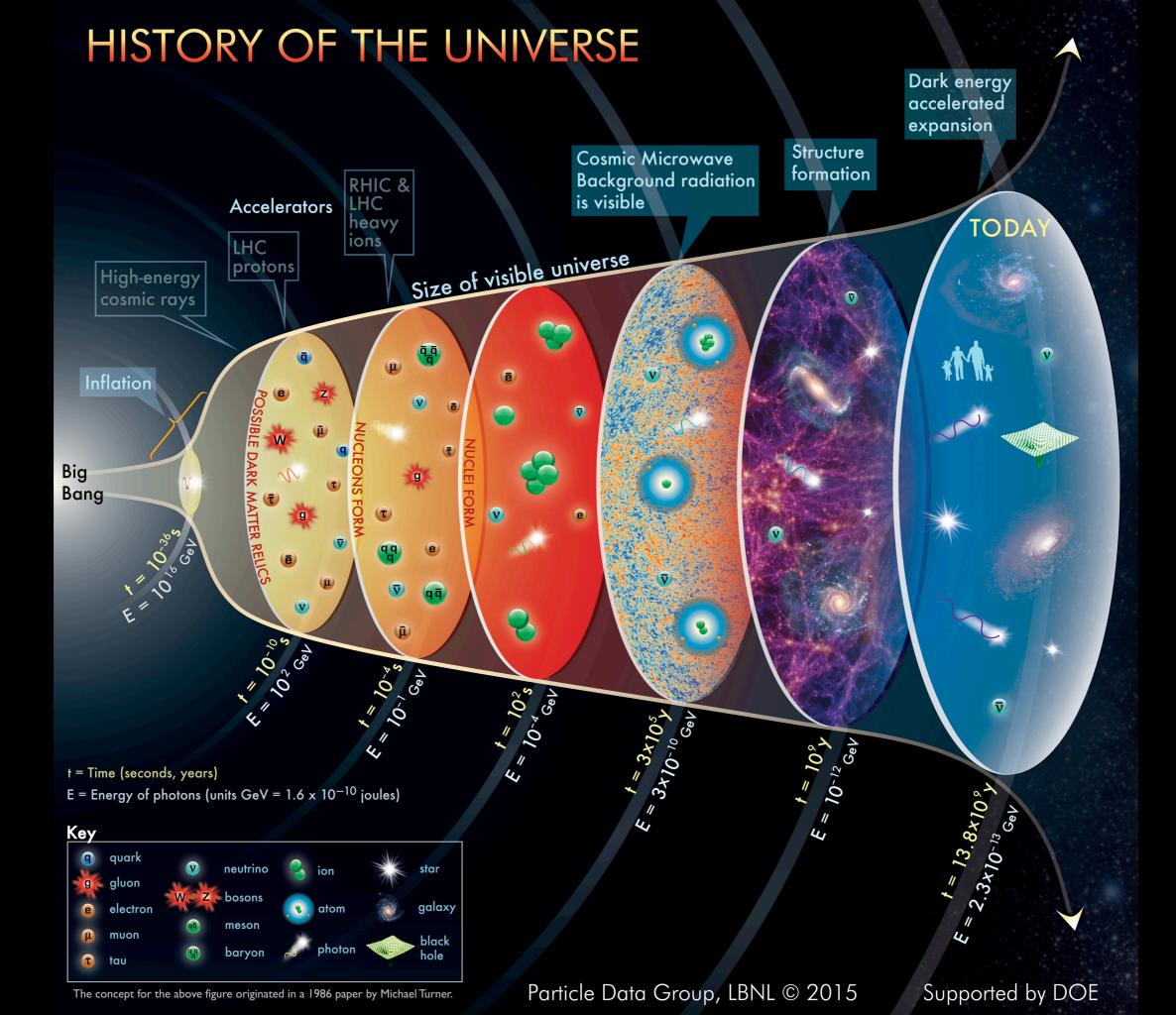
Marco Drewes, Université catholique de Louvain

CMB constraints on the inflation couplings in α-attractor inflation

28.09.2017

DESY Theory Workshop

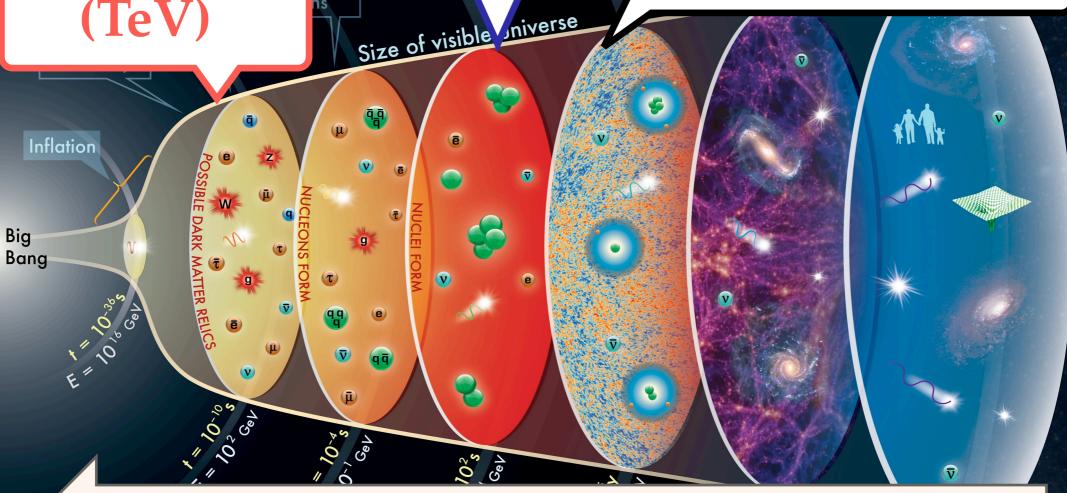
based on arXiv:1708.01197 and arXiv:1511.03280 in collaboration with Jin U Kang and Ui Ri Mun



Large
Hadron
Collider
(TeV)

astro
chemistry
(MeV)

astronomical observations (eV)



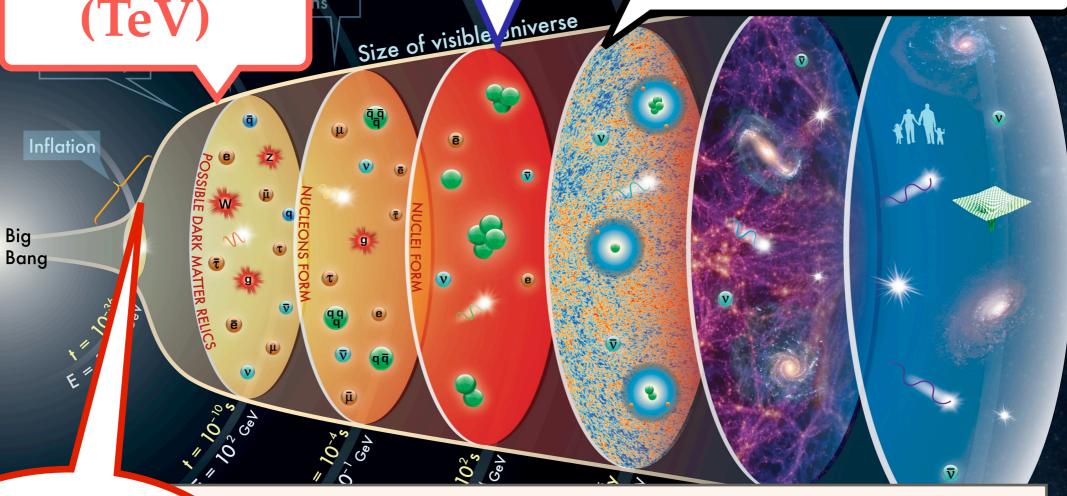
energy density, temperature

cosmic time

Large
Hadron
Collider
(TeV)

astro
chemistry
(MeV)

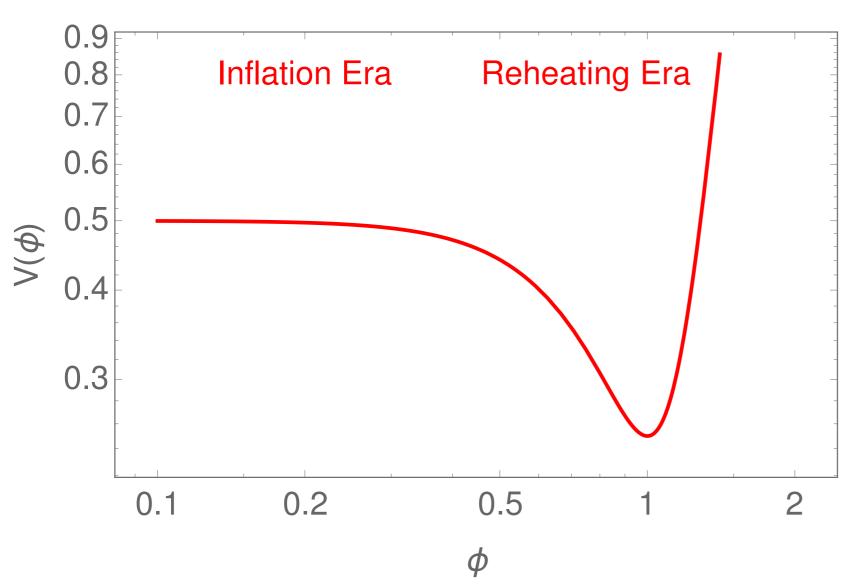
astronomical observations (eV)



Cosmic Inflation

rgy density, temperature

cosmic time



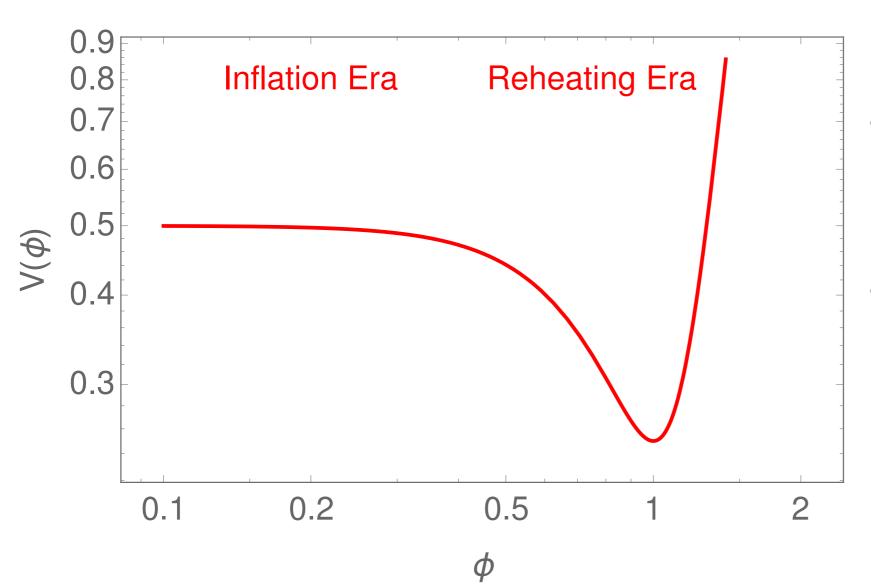
Inflation

- explains homogeneity, isotropy and flatness of the universe
- explains origin of density fluctuations from blown-up quantum fluctuations

Reheating

dissipative processes fill the universe with radiation ("hot big bang")

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + \partial_{\phi}V(\phi) = 0$$



Inflation

- explains homogeneity, isotropy and flatness of the universe
- explains origin of density fluctuations from blown-up quantum fluctuations

Reheating

dissipative processes fill the universe with radiation ("hot big bang")

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + \partial_{\phi}V(\phi) = 0$$

dissipation rate

effective potential

The Reheating Era

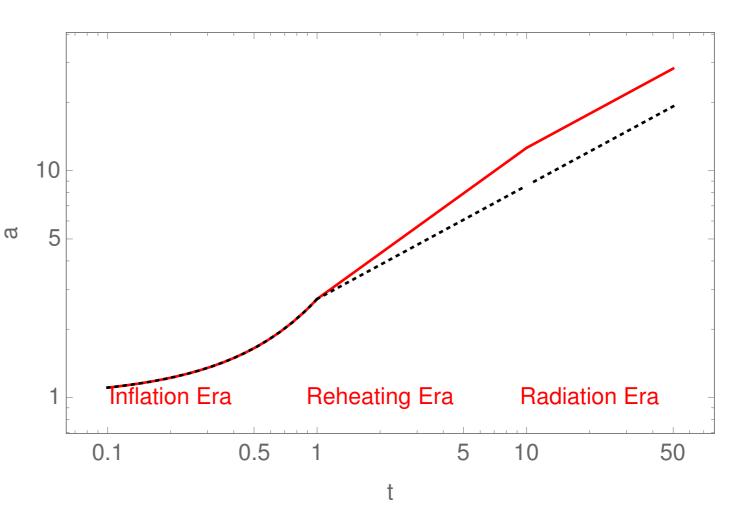
$$\ddot{\phi} + (3H + \Gamma_{\varphi})\dot{\phi} + \partial_{\phi}V(\phi) = 0$$

 inflation ends when kinetic energy is sizeable

$$w > -1/3$$

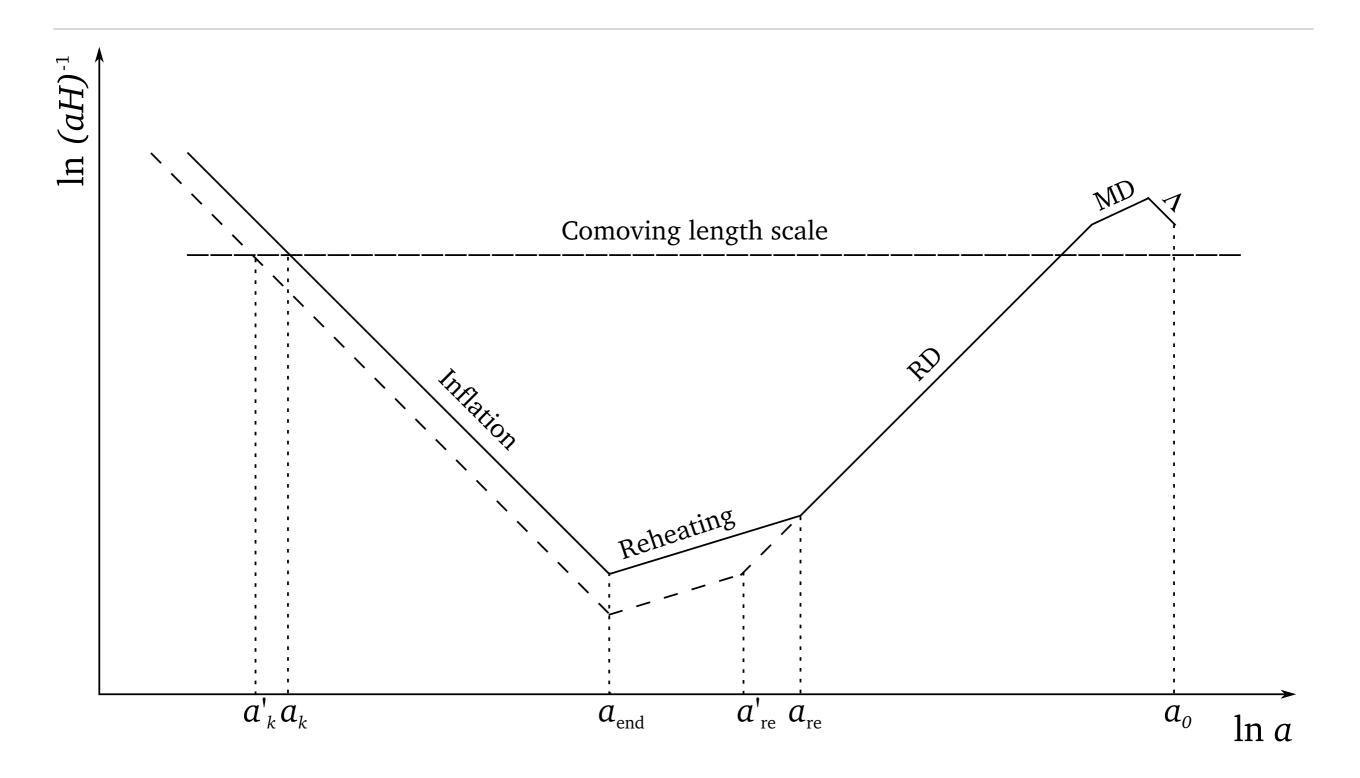
 reheating ends when dissipation exceeds Hubble damping

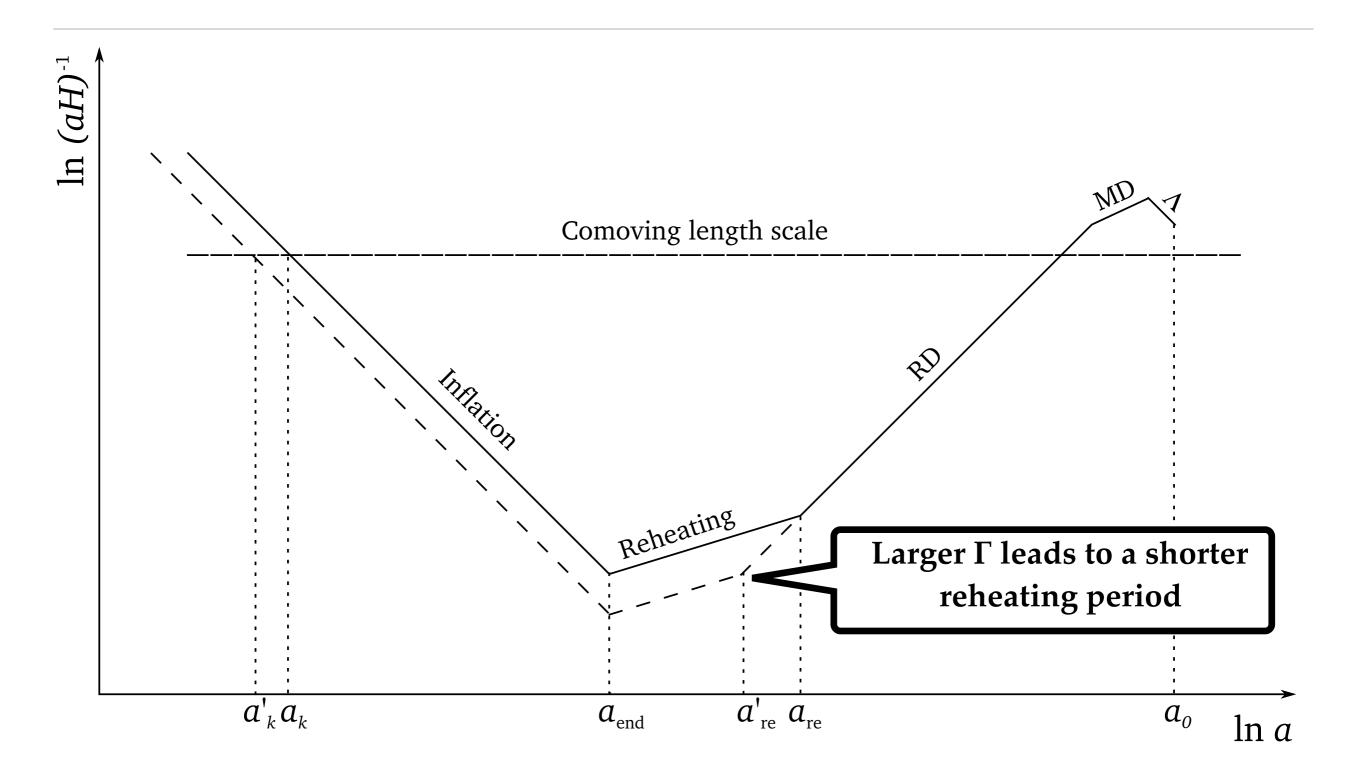
$$\Gamma = H$$

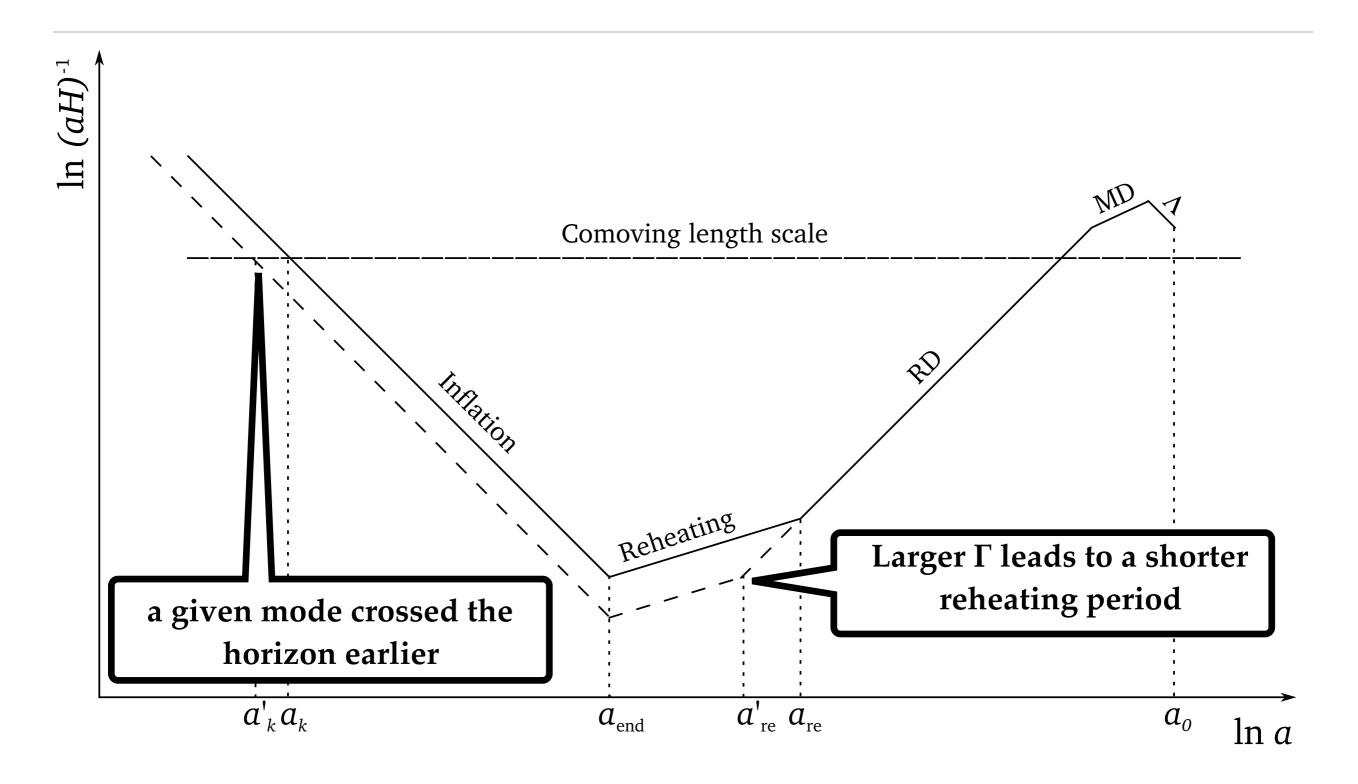


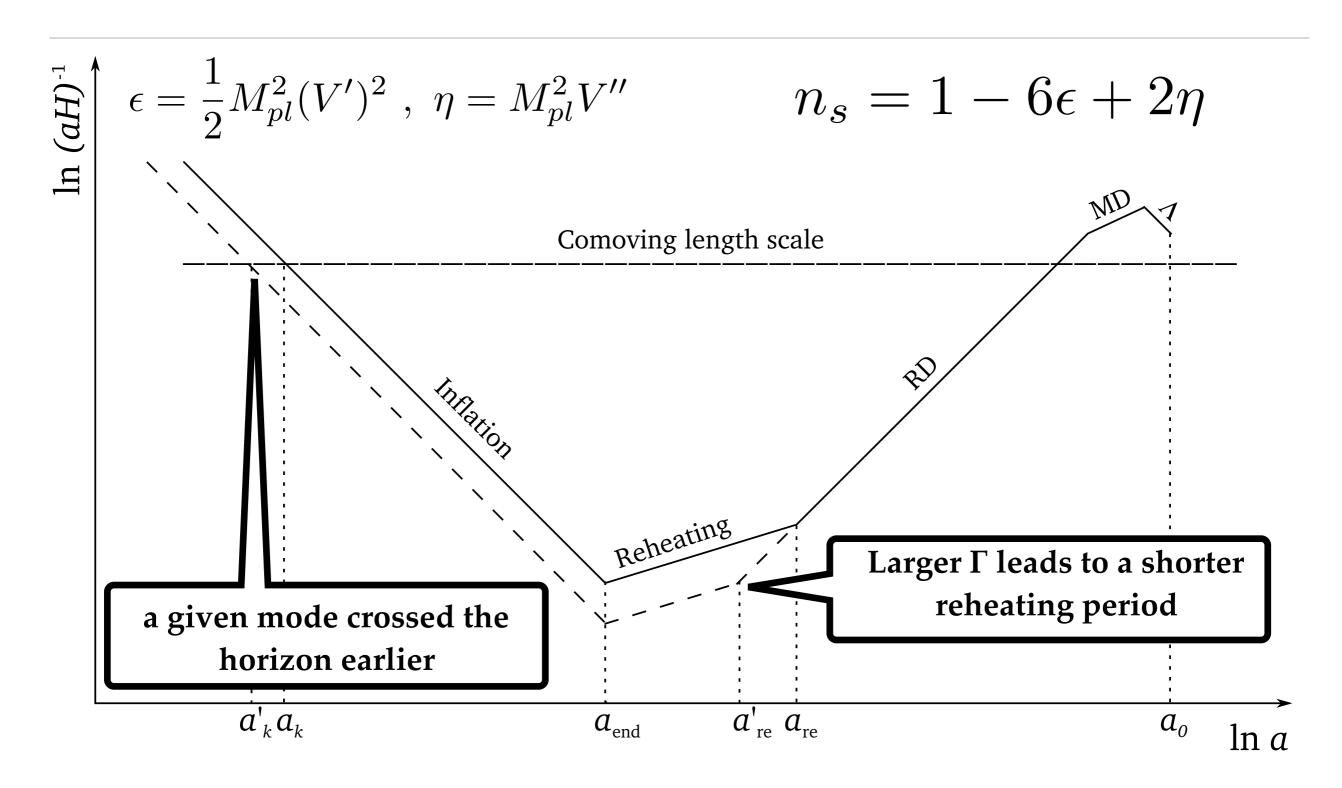
In between: -1/3 < w < 1/3

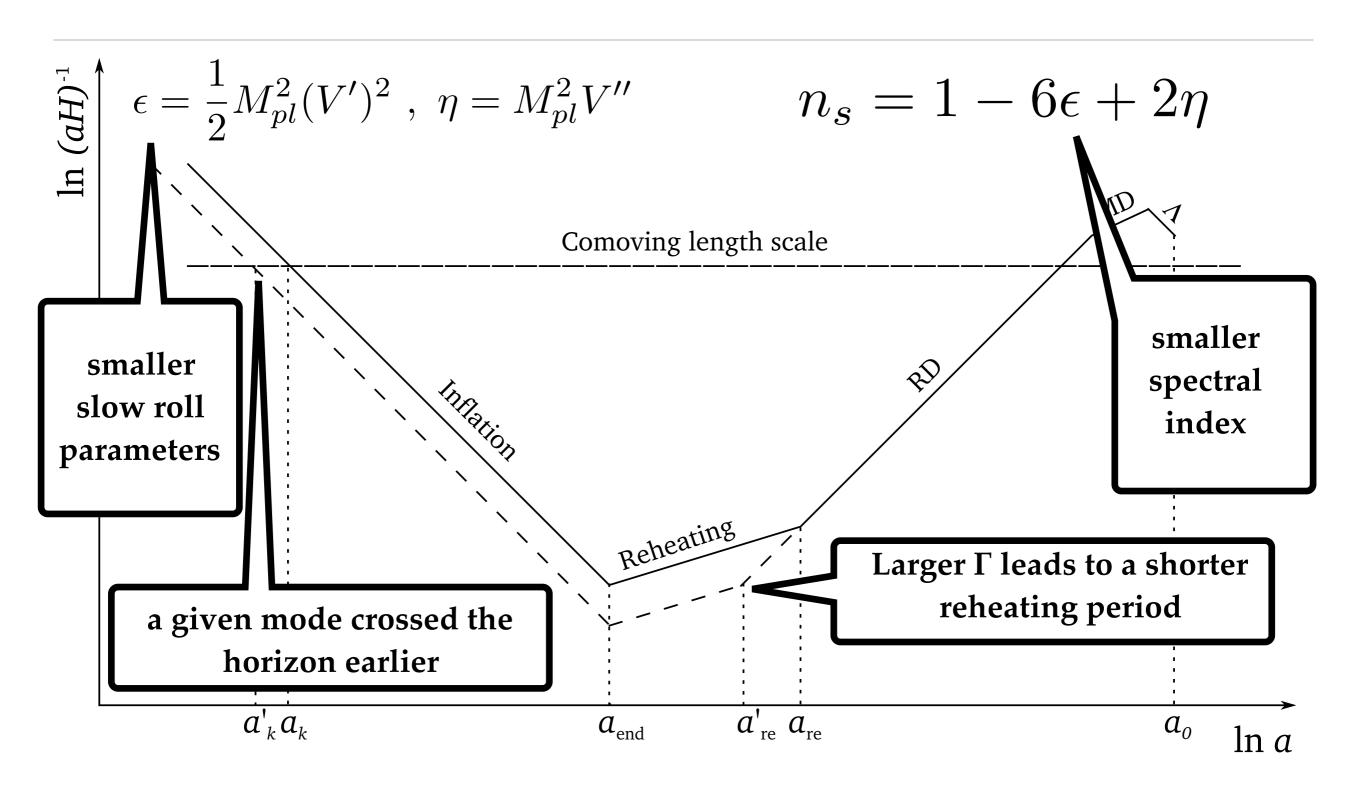
⇒ affects expansion history and redshirting of CMB modes!

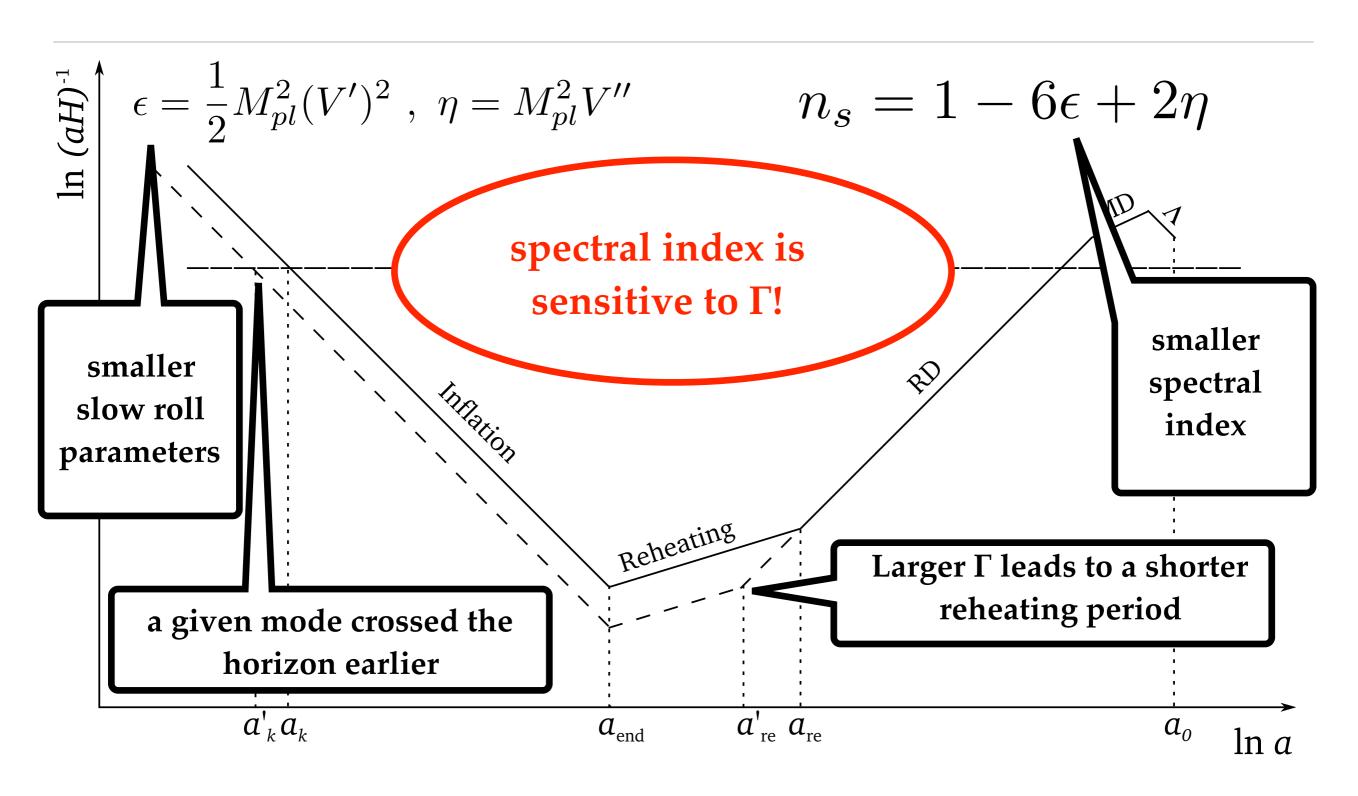












This is not really new, see e.g. Kinney/Riotto 2006.

But one may ask

Can one translate a "measurement" of Γ into a "measurement" of microphysical parameters?

Inflaton Decay

Consider a simple scalar interaction $g\phi\chi^2$

In vacuum, the inflaton decays via $1 \rightarrow 2$ decays

But what about the feedback of the produced particles on Γ ?

Feedback will lead to a very complicated relation between g and $\Gamma(t)$.

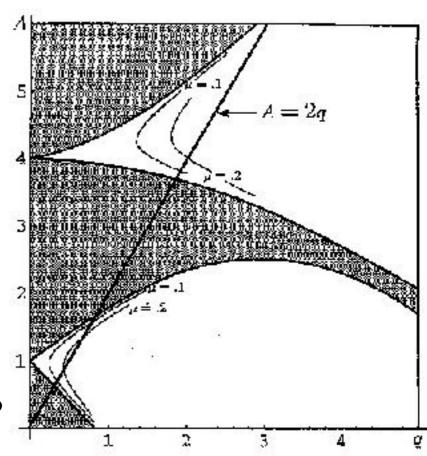
Mode equation for produced particles

$$\ddot{\chi}_k + \left[k^2 + m_{\chi}^2 + 2\tilde{g}m_{\phi}\Phi\sin(m_{\phi}t)\right]\chi_k = 0$$

Can are rewritten as Mathieu equation

$$\chi_k'' + [A_k - 2q\cos(2x)]\chi_k = 0$$

with
$$A_k = 4(k^2 + m_{\chi}^2)/m_{\phi}^2$$
, $q = 4\tilde{g}\Phi/m_{\phi}^2$



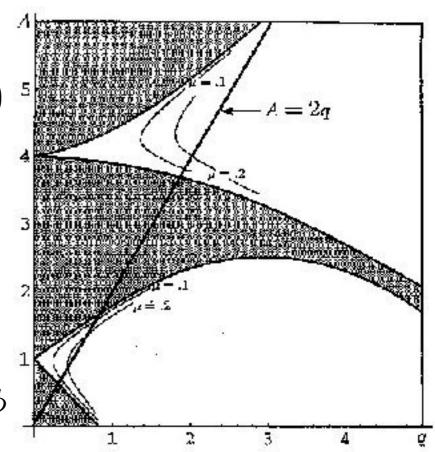
Mode equation for produced particles

$$\ddot{\chi}_k + \left[k^2 + m_{\chi}^2 + 2\tilde{g}m_{\phi}\Phi\sin(m_{\phi}t)\right]\chi_k = 0$$

Can are rewritten as Mathieu equation

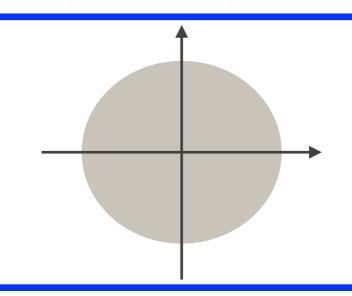
$$\chi_k'' + [A_k - 2q\cos(2x)]\chi_k = 0$$

with
$$A_k = 4(k^2 + m_{\chi}^2)/m_{\phi}^2$$
, $q = 4\tilde{g}\Phi/m_{\phi}$



"broad resonance" for q>1, i.e. $\tilde{g}>m_{\phi}/\Phi$

non-perturbative production of particles with momenta $k < (m_\phi^2 \tilde{g} \Phi)^{1/3}$



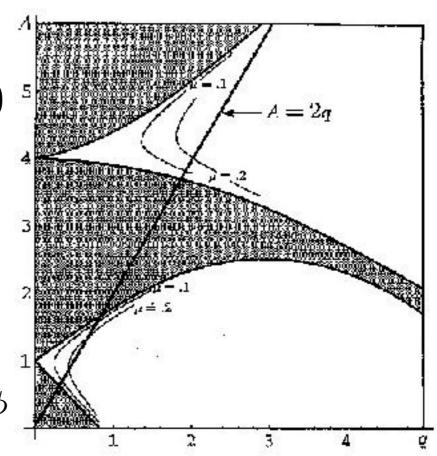
Mode equation for produced particles

$$\ddot{\chi}_k + \left[k^2 + m_{\chi}^2 + 2\tilde{g}m_{\phi}\Phi\sin(m_{\phi}t)\right]\chi_k = 0$$

Can are rewritten as Mathieu equation

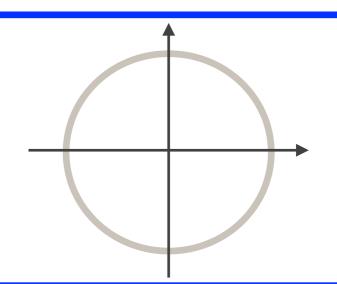
$$\chi_k'' + [A_k - 2q\cos(2x)]\chi_k = 0$$

with
$$A_k = 4(k^2 + m_\chi^2)/m_\phi^2$$
, $q = 4\tilde{g}\Phi/m_\phi$



"narrow resonance" for q < 1, i.e. $\ \, \tilde{g} < m_\phi/\Phi \,$

Bose-enhanced production of particles with momenta $k=m_{\phi}/2$

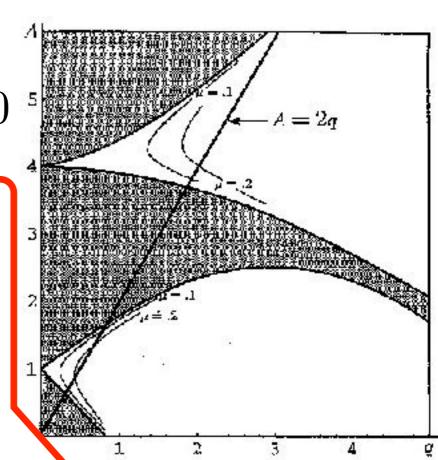


Mode equation for produced particles

$$\ddot{\chi}_k + \left[k^2 + m_{\chi}^2 + 2\tilde{g}m_{\phi}\Phi\sin(m_{\phi}t)\right]\chi_k = 0$$

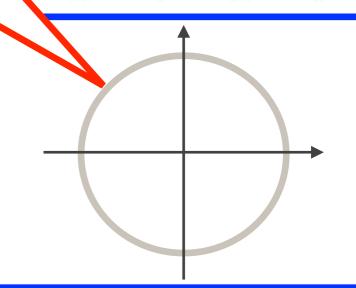
Can be avoided due to redshifting if $\Gamma < H$ or

$$\tilde{g} < \frac{V_{\text{end}}^{1/4}}{\rho_{\text{end}}} \left(\frac{m_{\phi}}{24M_{pl}}\right)^{1/2}$$



"narrow resonance" for q < 1, i.e. $\tilde{g} < m_{\phi}/\Phi$

Bose-enhanced production of particles with momenta $k=m_{\phi}/2$



Perturbative Reheating

But: Big Bang Nucleosynthesis requires T > 10 MeV when $\Gamma = H$.

This implies
$$\tilde{g} > (8\pi m_{\phi})^{1/2} \left(\frac{\pi^2 g_*}{90 M_{pl}}\right)^{1/4} T_{\rm BBN}$$

The vacuum decay rate can be used to describe reheating if

$$(8\pi m_{\phi})^{1/2} \left(\frac{\pi^2 g_*}{90M_{pl}}\right)^{1/4} T_{\text{BBN}} < \tilde{g} < \frac{V_{\text{end}}^{1/4}}{\rho_{\text{end}}} \left(\frac{m_{\phi}}{24M_{pl}}\right)^{1/2}$$

Example: \(\alpha \) Attractor E Model

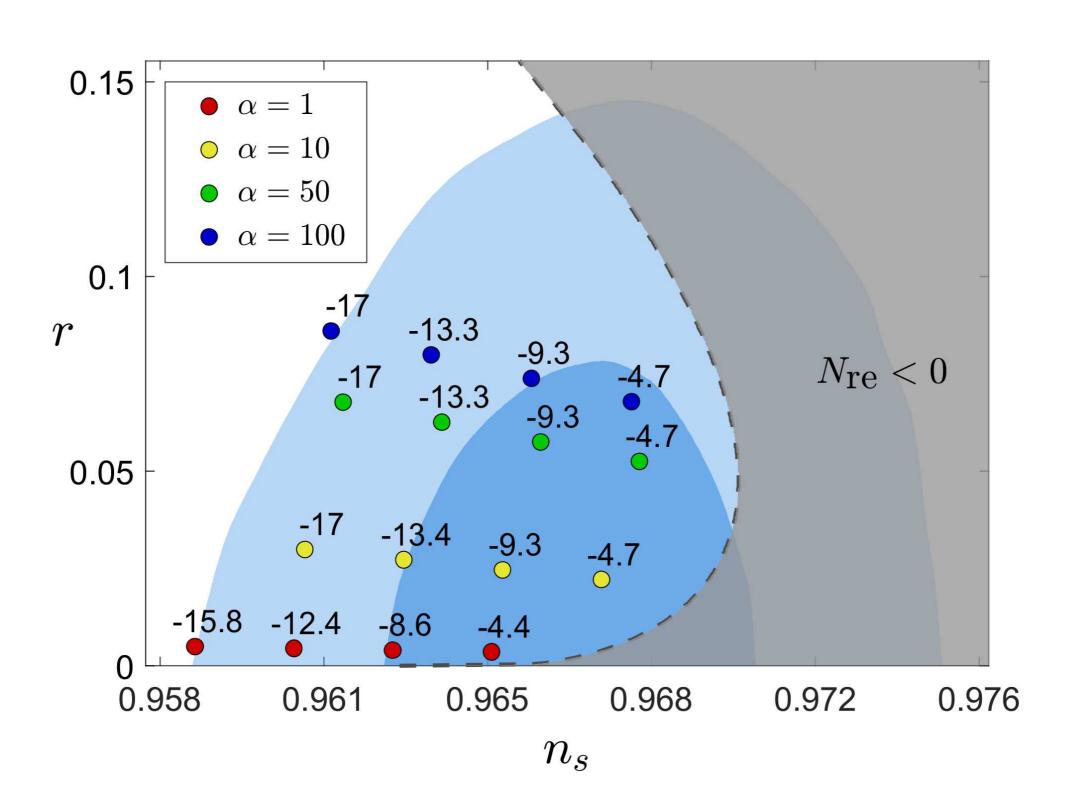
$$V = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}} \frac{\phi}{M_{pl}}}\right)^{2n}$$
 Kallosh/Linde 2013 ...

unknowns : (Λ, α, n, g)

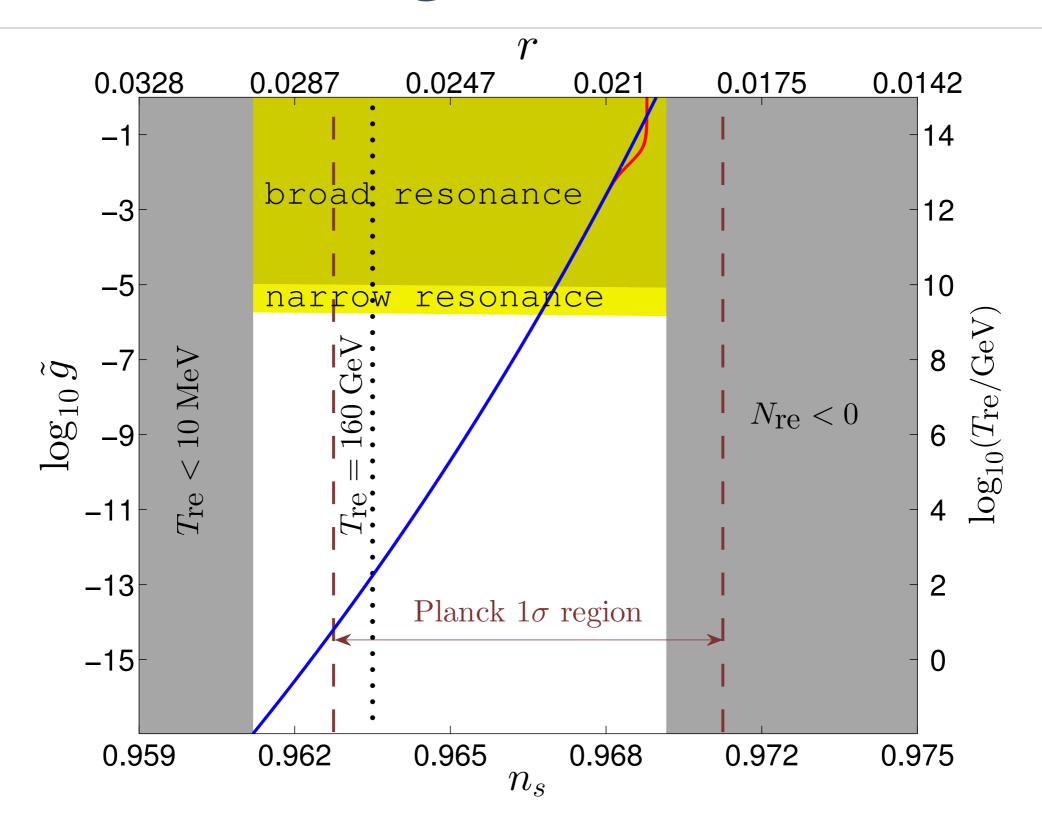
observables : (A_s, n_s, r)

- We fix n=1 and study different values of α
- *r* is uniquely determined by the spectral index
- reheating temperature is fixed by g

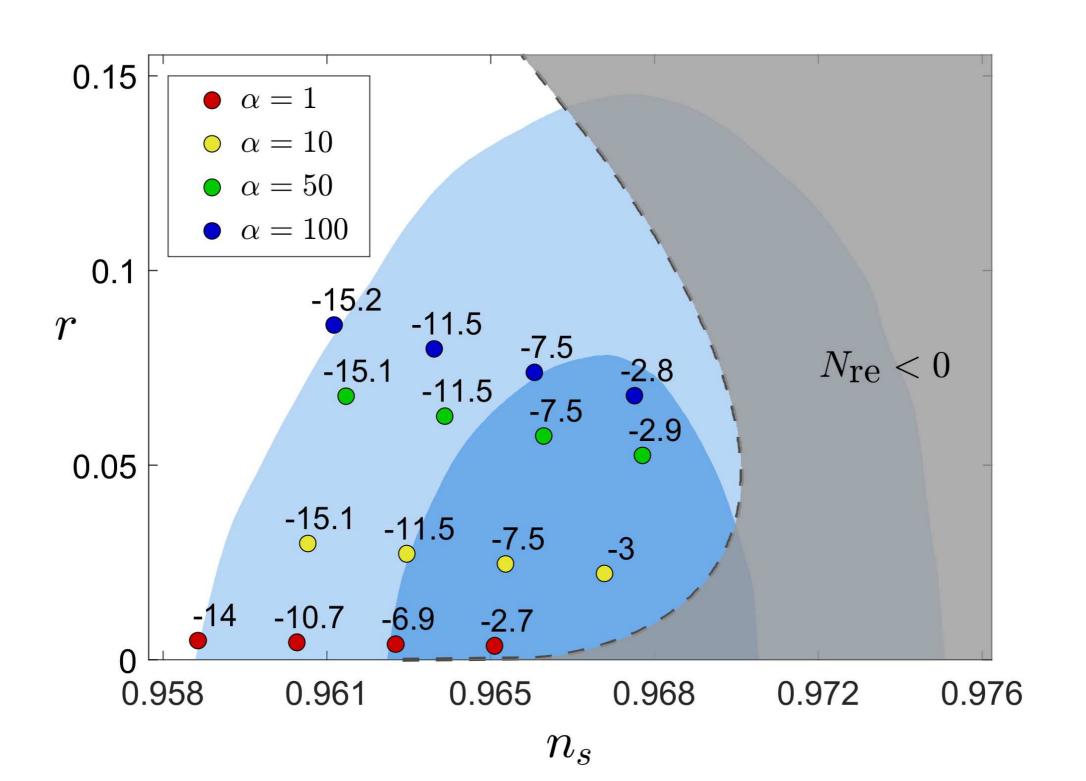
Results for g\phi\gamma^2 Interaction



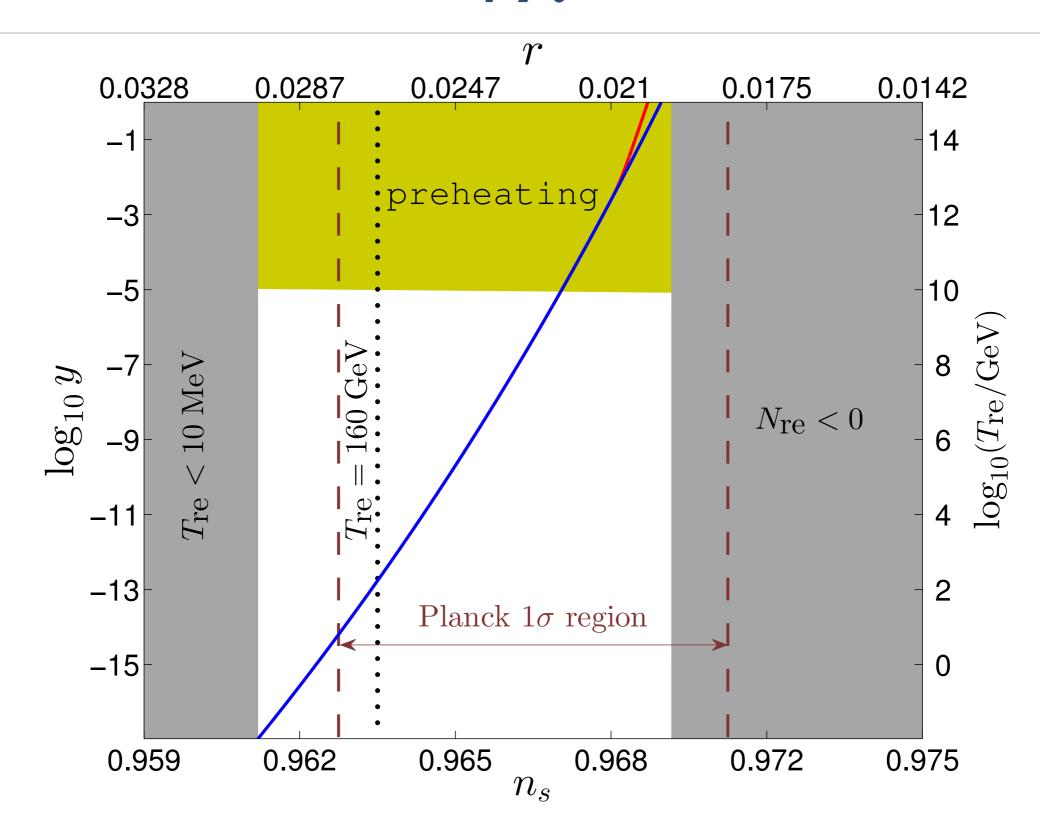
Results for g\phi\chi^2 Interaction



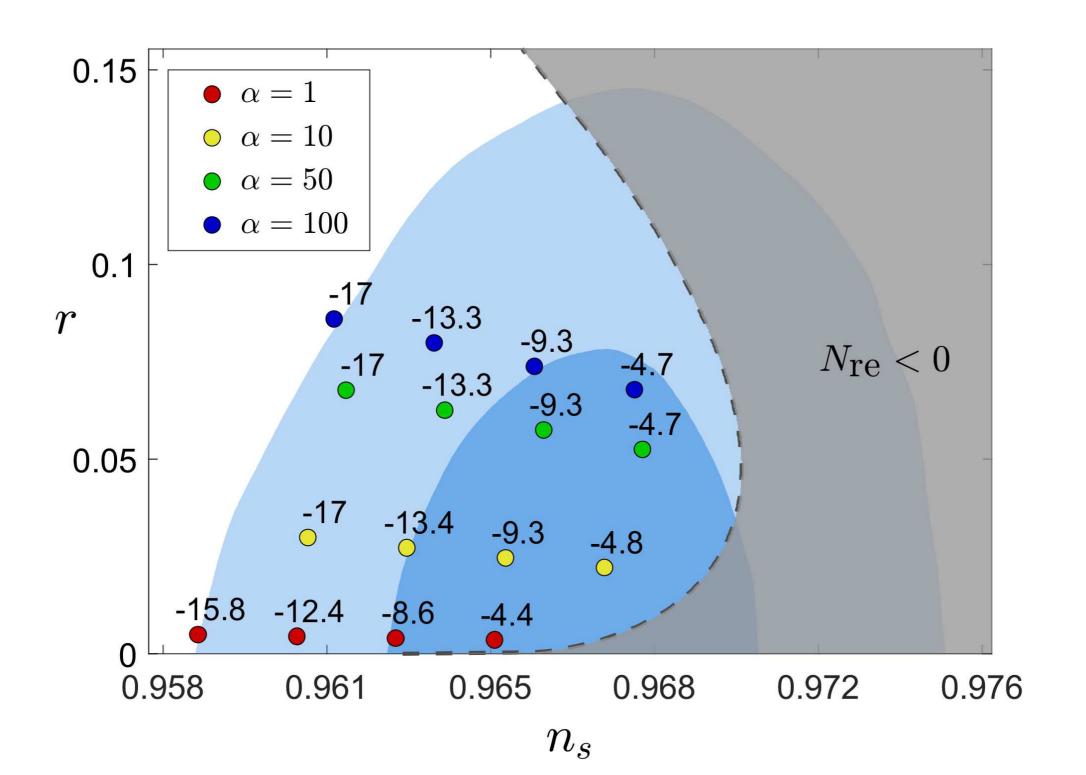
Results for h\phi\gamma^3 Interaction



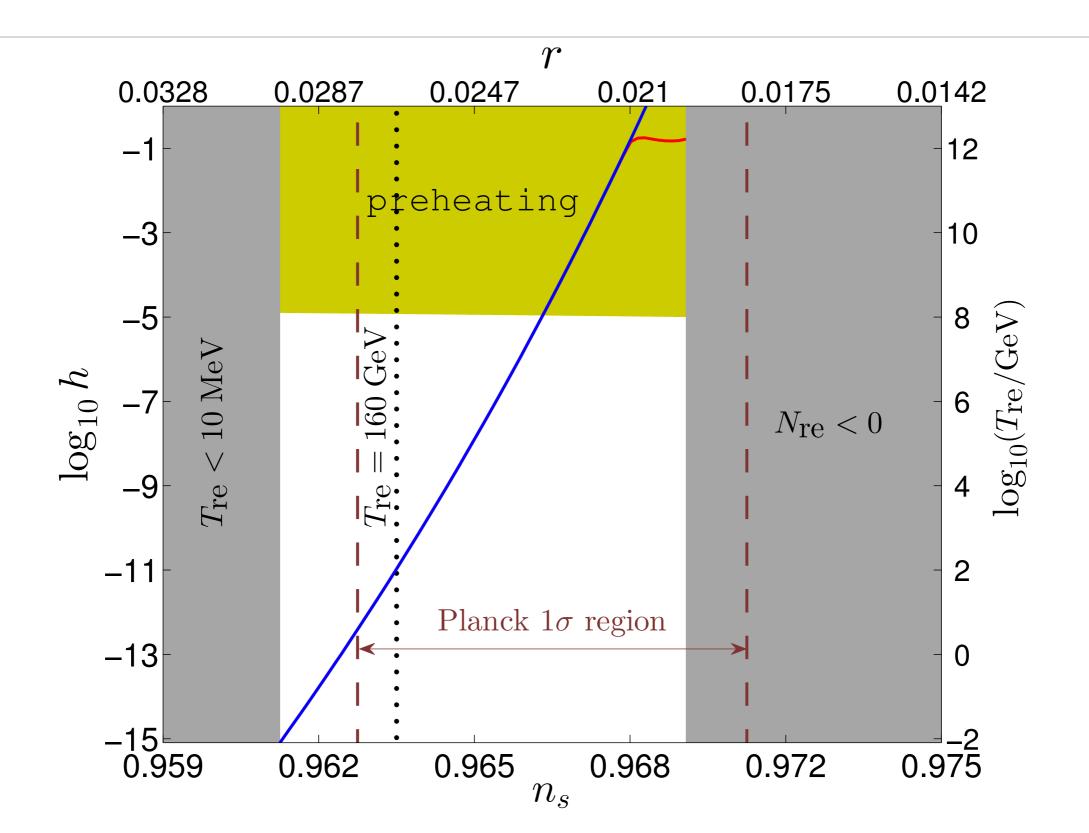
Results for h\phi\gamma^3 Interaction



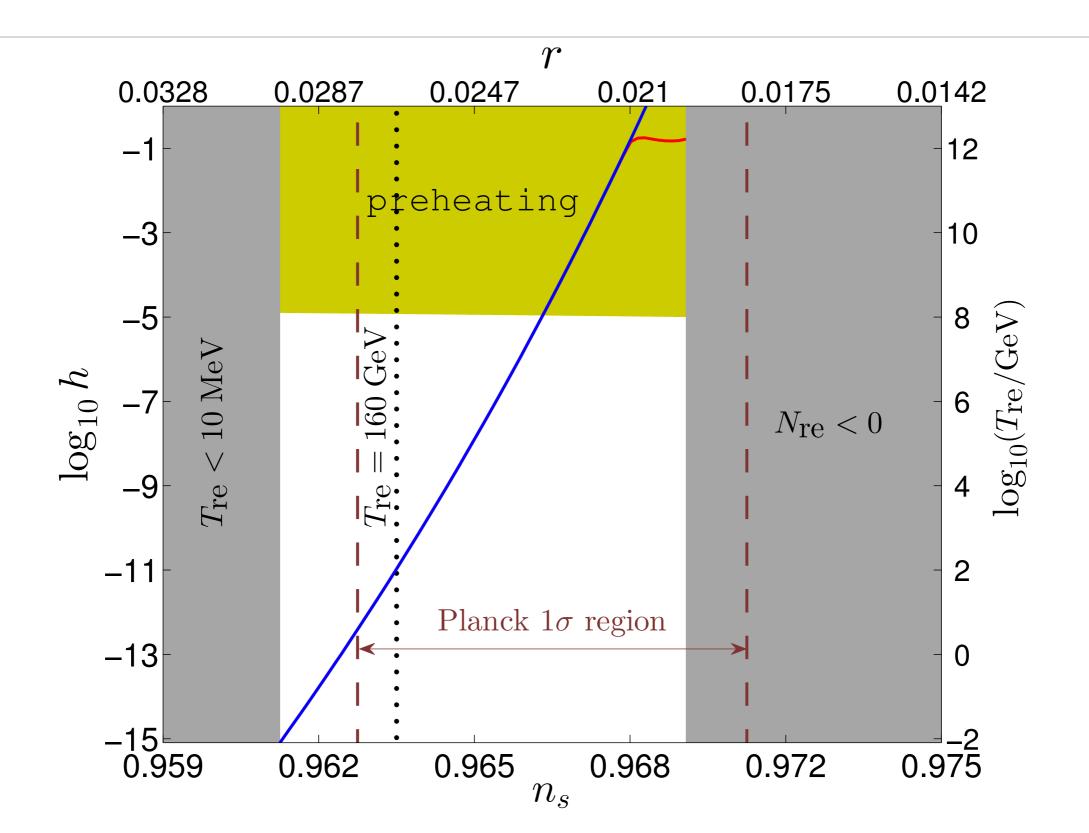
Results for Yukawa Interaction



Results for Yukawa Interaction



Results for Yukawa Interaction



Conclusions

- CMB data allows to constrain the inflaton couplings in a given model of inflation
- We have done this for α Attractor E models
- The coupling constants can be related to the spectral index via simple analytic formulae if they are smaller than $\sim 10^{-5}$
- Currently the constraints are weak, but will improve with better measurements of the spectral index

PRO:

"measure" fundamental parameters at the scale of inflation!

CON:

Only possible within a given model