
Marco Drewes,  
Université catholique de Louvain

CMB constraints on the inflaton 
couplings in α-attractor inflation

28.09.2017 

DESY  
Theory  
Workshop

based on arXiv:1708.01197 and arXiv:1511.03280   
in collaboration with Jin U Kang and Ui Ri Mun

http://arxiv.org/abs/arXiv:1708.01197
http://arxiv.org/abs/arXiv:1511.03280




cosmic time 

energy density, temperature

astronomical 
observations

(eV)

astro
chemistry

(MeV)

Large 
Hadron 
Collider 

(TeV)



cosmic time 

energy density, temperature

astronomical 
observations

(eV)

astro
chemistry

(MeV)

Large 
Hadron 
Collider 

(TeV)

Cosmic 
Inflation



0.1 0.2 0.5 1 2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

V
(
)

Inflation Era Reheating Era

• explains homogeneity, 
isotropy and flatness 
of the universe

 

• explains origin of 
density fluctuations 
from blown-up 
quantum fluctuations

Inflation

Reheating
dissipative processes fill the universe with radiation (“hot big bang”)

�̈+ (3H+�)�̇+@�V (�)= 0



0.1 0.2 0.5 1 2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

V
(
)

Inflation Era Reheating Era

• explains homogeneity, 
isotropy and flatness 
of the universe

 

• explains origin of 
density fluctuations 
from blown-up 
quantum fluctuations

Inflation

Reheating
dissipative processes fill the universe with radiation (“hot big bang”)

�̈+ (3H+�)�̇+@�V (�)= 0

effective potentialdissipation rate



The Reheating Era
�̈+ (3H + �')�̇+ @�V (�) = 0

• inflation ends when 
kinetic energy is 
sizeable 

 w > -1/3 
 

• reheating ends when 
dissipation exceeds 
Hubble damping 
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In between: -1/3 < w < 1/3  
⇒ affects expansion history and redshirting of CMB modes!
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This is not really new, see e.g.  Kinney/Riotto 2006.

But one may ask

Can one translate a 
“measurement” of  Γ  

into a “measurement” of 
microphysical parameters? 



Inflaton Decay

Consider a simple scalar interaction g��2

In vacuum, the inflaton decays via 1 → 2 decays  

� =
g2

8⇡m�

But what about the feedback of the produced particles on Γ? 

Feedback will lead to a very complicated relation between g and Γ(t).   
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Perturbative Reheating
But: Big Bang Nucleosynthesis requires T > 10 MeV when Γ=H.  

This implies g̃ > (8⇡m�)
1/2

✓
⇡2g⇤
90Mpl

◆1/4

TBBN

(8⇡m�)
1/2

✓
⇡2g⇤
90Mpl

◆1/4

TBBN < g̃ <
V 1/4
end

⇢end

✓
m�

24Mpl

◆1/2

The vacuum decay rate can be used to describe reheating if 



Example: α Attractor E Model

V = ⇤4

✓
1� e

�
p

2
3↵

�
Mpl

◆2n

Kallosh/Linde 2013 …

unknowns : (⇤,↵, n, g)

observables : (As, ns, r)

• We fix n=1 and study different values of α
• r is uniquely determined by the spectral index
• reheating temperature is fixed by g
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Results for hϕχ³ Interaction



Results for hϕχ³ Interaction
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Results for Yukawa Interaction
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Conclusions
• CMB data allows to constrain the inflaton couplings in a given 

model of inflation 

• We have done this for α Attractor E models 

• The coupling constants can be related to the spectral index via 
simple analytic formulae if they are smaller than ~ 10

• Currently the constraints are weak, but will improve with better 
measurements of the spectral index

PRO:  
“measure” fundamental 
parameters at the scale of inflation!

CON:
Only possible within a given 
model
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