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T'he Reheating Era

¢+ (3H + Pg&)é + 0V (9p) =0

* inflation ends when
kinetic energy is

sizeable
w >-1/3

* reheating ends when
dissipation exceeds
Hubble damping

I'=H

10}

© 5|

1+ Inflation Era Reheating Era Radiation Era

01 | “0.5””1 | “5”“10 | “50“

In between: -1/3<w < 1/3
= affects expansion history and redshirting of CMB modes!
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In (aH)*

smaller
slow roll

Ettect on CMB Modes

€ = §M§l(v')2 ,n=MLV" ne =1—0e+4 2n

spectral index is
sensitive to I'!

smaller
spectral

parameters

a given mode crossed the
horizon earlier




This is not really new, see e.g. Kinney/Riotto 2006.

But one may ask

(Can one translate a
“measurement. of T

Into a “measurement” of
microphysical parameters?



Inflaton Decay

Consider a simple scalar interaction g¢X2

In vacuum, the inflaton decays via 1 — 2 decays

.’ 2
.’ 9

— F_

o N 87qub

But what about the feedback of the produced particles on I'?

Feedback will lead to a very complicated relation between ¢ and I'(t).



Parametric Resonance

Mode equation for produced particles
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Xk + [k 4 m3, + 2gmg ®sin(mgt)]x = 0 oy

Can are rewritten as Mathieu equation

Xz + [Ax — 2qcos(2z)]xr = 0
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Parametric Resonance

Mode equation for produced particles

Can are rewritten as Mathieu equation
Xz + [Ar — 2gcos(2z)]xx = 0

with A, = 4(K* +m3)/m , q =45®/my P
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Yi + [k + mi + 2gmyPsin(meyt)|xr =0 4

“broad resonance” for g >1,i.e. § > My /P

non-perturbative production of particles
with momenta  } - (mégq)) 1/3




Parametric Resonance

Mode equation for produced particles
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Parametric Resonance

Mode equation for produced particles

Xk + [k2 -+ mi -+ 2§m¢@sin(m¢t)]xk =

Can be avoided due to redshifting if ' < H or

1/4 1/2
g < Vé)nd me

Pend \ 24M

“narrow resonance” forg<1,ie. g < my /P

Bose-enhanced production of particles

with momenta k=mg /2




Perturbative Reheating

But: Big Bang Nucleosynthesis requires T > 10 MeV when I'=H.

7_‘_29* 1/4
This implies g > (87Tm¢)1/2 <9OM > IBBN
pl

The vacuum decay rate can be used to describe reheating if

Pend

2 1/4 1/ 1/2
(87ngb)1/2 ( "9 ) Tepn < § < —2¢ ( e )

90Mpl 24Mpl




Example: a Attractor E Model

2 @

V:A4(1—e_ v Mp

2n
l
Kallosh /Linde 2013 ...

unknowns : (A, a,n,g)
observables : (Ag, ng,r)
* We fix n=1 and study different values of

* ris uniquely determined by the spectral index

* reheating temperature is fixed by g
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Results for Yukawa Interaction
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Conclusions

* CMB data allows to constrain the inflaton couplings in a given
model of inflation

* We have done this for «« Attractor E models

* The coupling constants can be related to the spectral index via
simple analytic formulae if they are smaller than ~ 10 >

* Currently the constraints are weak, but will improve with better
measurements of the spectral index

PRO: CON:

“measure” fundamental Only possible within a given

parameters at the scale of inflation! model




