Quantifying CP-Violation.

in the Complex Two Higgs Doublet Model

Jonas Wittbrodt

D. Fontes M. Mühlleitner J. C. Romao

R. Santos J. P. Silva

DESY Theory Workshop 2017

27.09.2017

The Higgs Boson

- Spin and parity of the Higgs boson have been probed shortly after its discovery.
- > The C and CP nature have only been established assuming that h_{125} is a CP eigenstate.

[1307.1432, ATLAS]

Quantifying CP-Violation – Experiment

Differential Distributions

- Current limits on CP violating couplings to gauge bosons. [1707.00541, CMS]
 - These are ~ 0 in simple CP-violating BSM models.

$$h_{125} = R_{\mathsf{H}}H + R_{\mathsf{A}}A \quad \Rightarrow \quad c(h_{125}\mathit{VV}) = R_{\mathsf{H}}c(h_{\mathsf{SM}}\mathit{VV}) + \mathsf{NLO}$$

> This could be adressed by using the $H
ightarrow auar{ au}$ channel.

[1510.03850, Berge et.al.]

$$c(h_{125}\tau\bar{\tau}) = a(R_H) + i\gamma^5 b(R_A)$$

Electric Dipole Moments

- > Electric Dipole Moments (EDMs) of fermions are CP-violating quantities.
- Good limits on the electron EDM [1310.7534, ACME]

$$d_e = 8.7 \times 10^{-29} e \, \text{cm}$$

and reliable theoretical prediction [1311.4704, Abe et.al].

Coexisting Decay Modes

If a second Higgs boson was discovered, the simultaneous observation of certain decays could establish CP-violation using only inclusive measurements. [1506.06755, Fontes et.al.]

i.e.
$$H_1
ightarrow ZZ$$
 & $H_2
ightarrow ZZ$ & $H_2
ightarrow H_1 Z$

Coexisting Decay Modes

If a second Higgs boson was discovered, the simultaneous observation of certain decays could establish CP-violation using only inclusive measurements. [1506.06755, Fontes et.al.]

i.e.
$$h_{125} \rightarrow ZZ$$
 & $H_2 \rightarrow ZZ$ & $H_2 \rightarrow h_{125}Z$

Quantifications of CP-Violation

Experiment

> direct limits from differential distributions

- current: $h_{125} o ZZ^* o 4I$

future: $h_{125}
ightarrow au au$

- > fermionic EDMs
- > decays of a second Higgs boson

Quantifying CP-Violation – Theory

The Complex 2HDM

The C2HDM is a minimal model with a CP-violating Higgs sector. Two parameters can be complex:

$$\begin{split} V(\textit{h}) &= \textit{m}_{11}^2(\Phi_1^\dagger \Phi_1) + \textit{m}_{22}^2(\Phi_2^\dagger \Phi_2) - (\textit{m}_{12}^2 \Phi_1^\dagger \Phi_2 + \text{h.c.}) \\ &+ \frac{\lambda_1}{2}(\Phi_1^\dagger \Phi_1)^2 + \frac{\lambda_2}{2}(\Phi_2^\dagger \Phi_2)^2 + \lambda_3(\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) \\ &+ \lambda_4(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1) + (\frac{\lambda_5}{2}(\Phi_1^\dagger \Phi_2)^2 + \text{h.c.}) \end{split}$$

but only one of them is independent

$$\operatorname{Im}(m_{12}^2) = \operatorname{Im}(\lambda_5) v_1 v_2.$$

 $\Rightarrow \operatorname{Im}(\lambda_5)$ or $\operatorname{arg}(\lambda_5)$ as a measure of CP-violation

Pseudoscalar Admixture

In the C2HDM the two neutral CP-even doublet states $\rho_{1,2}$ mix with the non-Goldstone pseudoscalar A as

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 = A \end{pmatrix} .$$

Construct quantifications of CP-violation out of R (and $\tan \beta = v_2/v_1$)?

Jarlskogg-like Invariants – Gauge Sector

The simplest variable is [Mendez, Pomoral, 1991]

$$\xi_V = 27 \prod_{i=1}^3 c(H_i V V)^2$$
 with $c(H_i V V) = R_{i1} c_\beta + R_{i2} s_\beta$

which quantifies CP-violation in the Higgs-gauge-sector.

Jarlskogg-like Invariants – Fermion Sector

The top Yukawa coupling is:

$$c(H_i t \bar{t}) = \frac{1}{s_{\beta}} \left(R_{i2} - i \gamma^5 \frac{R_{i3}}{c_{\beta}} \right)$$

which is CP-violating if $R_{i2}R_{i3} \neq 0$.

Jarlskogg-like Invariants in the C2HDM

This gives us 3 invariants normalized $\in [0, 1]$:

$$\xi_{V} = 27 \prod_{i} c(H_{i}VV)^{2},$$

$$\gamma_{t} = 1024 \prod_{i} (R_{i2}R_{i3})^{2},$$

$$\gamma_{b} = 1024 \prod_{i} (R_{i1}R_{i3})^{2}.$$

These quantify CP-violation in the gauge, u-type and d-type/lepton sector, respectively (for a type II Yukawa).

Quantifications of CP-Violation

Experimental

- > direct limits from differential distributions
 - current: $H \rightarrow ZZ^* \rightarrow 4I$
 - future: $H \rightarrow \tau \tau$
- > fermionic EDMs: d_e
- > decays of a second Higgs boson: $H_{\downarrow} o ZZ$, $H_{\downarrow} o Zh_{125}$

Theory

- > phases of the Lagrangian: $arg \lambda_5$, $Im(\lambda_5)$
- > Jarlskogg-like invariants: ξ_V , γ_t , γ_b

Phenomenology of CP-Violation

Parameter Scan in the C2HDM

Search for allowed C2HDM parameter points using SCANNERS [1703.07750, Mühlleitner, JW et.al.]

- > bounded and absolutely stable tree-level vacuum
- > perturbative unitarity
- > electroweak precision constraints (STU)
- > B physics constraints
- > Higgs search exclusion bounds (${
 m HIGGSBOUNDS}$)
- > Higgs boson signal strengths
- > electron EDM

Constraints from EDMs – Type II

Coexisting Decay Modes – Type II

Large Pseudoscalar Yukawas – Type II

$$c(h_{125}f\bar{f}) = c_e(h_{125}f\bar{f}) + i\gamma^5 c_o(h_{125}f\bar{f})$$

Conclusion

- Even in a minimal model, different CP-violating quantities are not necessarily strongly correlated.
- Measurements of the Higgs couplings and constraints on EDMs provide the strongest bounds on CP-violating Higgs sectors.
- > Large pseudoscalar couplings of h_{125} might be observable at LHC.

Outlook

- CP-violation in Type II Yukawa sectors is more strongly constrained than in the other types. [171x.xxxx, Fontes, JW et.al.]
- The C2HDM can provide an $\mathcal{O}(\pi/2)$ CP-phase for EW-Baryogenesis. [171x.xxxx, Basler, JW et.al.]

Thanks for your attention.

C2HDM Yukawa couplings

	<i>u</i> -type	<i>d</i> -type	leptons
type I	$rac{R_{i2}}{s_{eta}}-irac{R_{i3}}{t_{eta}}\gamma_{5}$	$rac{R_{i2}}{s_{eta}}+irac{R_{i3}}{t_{eta}}\gamma_{5}$	$rac{R_{i2}}{s_{eta}}+irac{R_{i3}}{t_{eta}}\gamma_{5}$
type II	$\frac{R_{i2}}{s_{\beta}}-i\frac{R_{i3}}{t_{\beta}}\gamma_5$	$\frac{R_{i1}}{c_{\beta}}-it_{\beta}R_{i3}\gamma_{5}$	$\frac{R_{i1}}{c_{\beta}} - it_{\beta}R_{i3}\gamma_5$
lepton-specific	$\frac{R_{i2}}{s_{\beta}} - i \frac{R_{i3}}{t_{\beta}} \gamma_5$	$\frac{R_{i2}}{s_{\beta}} + i \frac{R_{i3}}{t_{\beta}} \gamma_5$	$\frac{R_{i1}^{\circ}}{c_{\beta}} - it_{\beta}R_{i3}\gamma_{5}$
flipped	$\frac{R_{i2}}{s_{\beta}} - i \frac{R_{i3}}{t_{\beta}} \gamma_5$		$\frac{c_{\beta}}{\frac{R_{i2}}{s_{\beta}}} + i \frac{R_{i3}}{t_{\beta}} \gamma_5$