Cooling sterile neutrino dark matter

Stefan Vogl

based on 1706.02707

in collaboration with Rasmus S. L. Hansen

Why would you want to make dark matter colder?

Sterile neutrinos

- sterile neutrinos interact with the SM only via mixing with SM neutrinos
- produced non-thermally through oscillations (Dodelson-Widrow/Shi-Fuller mechanism)

other productions mechanisms exist (production from decays, thermal freeze-out + dilution ..)

- sterile neutrinos are warm dark matter
 - non-negligible kinetic energy/characteristic momentum
 - impact on structure formation

testable with astrophysical observations, i.e subhalo counts, Lyman-alpha forest ...

Too much of a good thing

Two parameter: sterile neutrino mass m_{ν_s} and the mixing with active neutrinos $\sin^2(2\theta)$

combination of X-ray and warm dark matter bounds from A. Schneider [1601.07553]

region preferred by tentative 3.5 keV X-ray line seems disfavored

Cooling sterile neutrinos

 \rightarrow reduce $\langle p \rangle$ by making the distribution thermal

New interactions for sterile neutrinos

• starting point: ν_s with a mass m_{ν_s} and mixing $\sin \theta$

New ingredients:

• new scalar φ interacts with sterile neutrinos

$$\mathcal{L}_{\mathrm{int}} = \mathbf{y} \bar{\nu}_{\mathbf{s}} \nu_{\mathbf{s}} \varphi$$

scalar self-interactions

$$\mathcal{L}_{\varphi} = ... - \frac{\lambda}{4} \varphi^4$$

 $\Rightarrow \varphi$ decays and number changing $2\varphi \leftrightarrow 4\varphi$ processes

Stages of thermalization

I. $T \sim$ 100 MeV: initial abundance of sterile neutrinos produced by oscillations (resonant or non-resonant)

we use the public code sterile-dm by Venumadhav et al. [1507.06655]

- II. 100 MeV $\gtrsim T \gtrsim$ 10 MeV: φ produced by inverse decays, self-thermalizes due to efficient number changing interactions
- III. 10 MeV $\gtrsim T \gtrsim$ 1 MeV: once sufficient φ abundance has been built up decays produce ν_s efficiently
 - $ightarrow
 u_s$ driven towards thermal equilibrium
- IV. $T\lesssim$ 1 MeV: φ becomes massive and drops out of thermal bath
 - ⇒ entropy production in sterile sector

Quantitative estimate

- for illustration $f_{\nu_s} \approx \frac{1}{\Lambda} f_{\nu}$
- argument holds for realistic energy densities
- energy conservation in an expanding universe $ho \propto a^{-4}$

$$ho_i a_i^4 =
ho_{arphi} a_{arphi}^4 \ ext{ or } \ C rac{1}{\Lambda} T_{\gamma}^4 = C (1 + rac{4}{7} g_{arphi}) T_{arphi}^4$$

• once $m_{\varphi} \approx T$ entropy transferred from φ to ν_s (similar to photon heating by electron decoupling in SM)

$$s_{arphi}a_{arphi}^3=s_fa_f^3$$
 or $K(1+rac{4}{7}g_{arphi})T_{arphi}^3=KT_{arphi_s}^3$

final expectation:

$$T_{
u_s} = (1 + rac{4}{7}g_{arphi})^{1/12} \Lambda^{-1/4} T_{\gamma} \quad ext{(colder)}$$
 $n_f = (1 + rac{4}{7}g_{arphi})^{1/4} \Lambda^{1/4} n_i \quad ext{(more abundant)}$

Allowed parameter space

X-ray and warm dark matter bounds substantially relaxed

Does this qualitative picture hold?

Constraints

Don't want an impact on initial production

- contribution of inverse decays to collision rate needs to be small
- potential from sterile neutrino asymmetry V_{ν_s} needs to be small quantitative:

$$\blacktriangleright \frac{\Gamma_{new}(T_{new})}{H(T_{new})} < \frac{1}{10} \frac{\Gamma_{DW}(T_{DW})}{H(T_{DW})}$$

 $ightharpoonup V_{
u_s} < rac{1}{10} \, V_L$

depending on $m_{\nu_s}, \ m_{\varphi}$ this implies $\Rightarrow y < 10^{-6} - 10^{-7}$

S. Vogl (MPIK Heidelberg)

Momentum averaged Boltzmann equations

Assumptions

- ▶ all particle species (ν , $\bar{\nu}$, φ) in local thermal equilibrium
- $2\varphi \rightarrow 4\varphi$ process efficient
- \Rightarrow system characterized by 5 quantities (3 energy densities and 2 number densities)

$$\begin{split} \dot{\rho}_{\varphi} + CH\rho_{\varphi} &= \Gamma_{\rho_{\nu s}}\rho_{\nu_s} + \Gamma_{\rho_{\bar{\nu}s}}\rho_{\bar{\nu}_s} - \Gamma_{\rho_{\varphi}}\rho_{\varphi} \\ \dot{\rho}_{\nu_s} + 4H\rho_{\nu_s} &= \Gamma_{\rho_{\varphi}}\rho_{\varphi}/2 - \Gamma_{\rho_{\nu s}}\rho_{\nu_s} \\ \dot{\rho}_{\bar{\nu}_s} + 4H\rho_{\bar{\nu}_s} &= \Gamma_{\rho_{\varphi}}\rho_{\varphi}/2 - \Gamma_{\rho_{\bar{\nu}_s}}\rho_{\bar{\nu}_s} \\ \dot{n}_{\nu_s} + 3Hn_{\nu_s} &= \Gamma_{n_{\varphi}}n_{\varphi} - \Gamma_{n_{\nu_s}}n_{\nu_s} \\ \dot{n}_{\bar{\nu}_s} + 3Hn_{\bar{\nu}_s} &= \Gamma_{n_{\varphi}}n_{\varphi} - \Gamma_{n_{\bar{\nu}_s}}n_{\bar{\nu}_s} \end{split}$$

- Fs are thermally averaged rates
- C parametrizes the redshift behavior of a massive species
- simplification: Boltzmann statistics

Thermalization

Here: $m_{\nu_s}=7$ keV, $m_{\varphi}=100$ keV, $y=7\times 10^{-9}$, $n_{\bar{\nu}_s}/n_{\nu_s}=3\times 10^{-2}$ perfect agreement with analytic result

Conclusion

- keV sterile neutrinos constitute an intriguing warm dark matter candidate
- sterile neutrinos thermalization can be achieved in simple models
- compact description in terms of energy conservation
- parameter space in reach of future observational efforts

Production by oscillations

Boltzmann equation for sterile neutrinos

$$rac{\partial}{\partial t}f_{
u_s}(oldsymbol{
ho},t)-Holdsymbol{p}rac{\partial}{\partial oldsymbol{
ho}}f_{
u_s}(oldsymbol{
ho},t)pprox [f_{
u_a}(oldsymbol{
ho},t)-f_{
u_s}(oldsymbol{
ho},t)].$$

rate given by

$$\frac{1}{4} \frac{\Gamma_a \Delta^2 \sin^2 2\theta}{\Delta^2 \sin^2 2\theta + \frac{\Gamma_a^2}{4} + [\Delta \cos 2\theta - V_T - V_L]^2}$$

- ightharpoons $\Delta pprox rac{m_{
 u_{
 m S}}^2}{2p}$
- Γ_a collision rate with plasma
- $V_T \propto
 ho_e$ and $V_L \propto n_{
 u_e} n_{ar{
 u}_e}$ medium potential