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Fig. 24. Bayesian movable knot reconstructions of the primordial power spectrum PR(k) using Planck TT data. The plots indicate
our knowledge of the PPS P(PR(k)|k,N) for a given number of knots. The number of internal knots Nint increases (left to right and
top to bottom) from 0 to 8. For each k-slice, equal colours have equal probabilities. The colour scale is chosen so that darker regions
correspond to lower-� confidence intervals. 1� and 2� confidence intervals are also sketched (black curves). The upper horizontal
axes give the approximate corresponding multipoles via ` ⇡ k/Drec, where Drec is the comoving distance to recombination.
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Fig. 25. Bayes factor (relative to the base ⇤CDM model) as a
function of the number of knots for three separate runs. Solid
line: Planck TT. Dashed line: Planck TT,TE,EE. Dotted line:
Planck TT, with priors on the P parameters reduced in width
by a factor of 2 (2.5 < ln(1010P) < 3.5).

Fig. 26. Bayesian reconstruction of the primordial power spec-
trum averaged over different values of Nint (as shown in
Fig. 24), weighted according to the Bayesian evidence. The re-
gion 30 < ` < 2300 is highly constrained, but the resolution is
lacking to say anything precise about higher `. At lower `, cos-
mic variance reduces our knowledge of PR(k). The weights as-
signed to the lower Nint models outweigh those of the higher
models, so no oscillatory features are visible here.
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PRIMORDIAL PERTURBATIONS ARE VERY SIMPLE
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CAN COMPLEX INFLATIONARY PHYSICS GIVE RISE 
TO SIMPLE OBSERVATIONAL SIGNATURES?
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STUDYING COMPLICATED MODELS IS COMPLICATED

Very little is known about inflation with many fields. Challenges:

1. Constructing the model: scaling problem e.g. 
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2. Inflation is extremely rare.

(3. Computing observables: another scaling problem)
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Figure 1. By gluing nearby coordinate charts together, a potential along a path � can be

defined.

sensitive to the unexplored regions, so statistical properties of inflation in an ensemble

of potentials can be deduced by characterizing the potential along trajectories.

A novel, local approach to random potentials

In this paper, we will present a new way of defining random functions locally around a

path in field space: for a given path � in field space,2 we first specify the values of the

potential V , gradient V 0, and Hessian matrix V 00 ⌘ H at a point p0 2 �. The values of

the potential and the gradient vector at a nearby point p1 2 � that is separated from

p0 by a small path length �s may then be obtained to leading order in Taylor expansion

from the (known) values of the potential and its first and second derivatives at p0. The

key element of our proposal is to specify the Hessian matrix at p1 by adding a random

matrix to the Hessian at p0,

H(p1) = H(p0) + �H , (1.1)

where we have yet to define the statistical distribution of the random symmetric matrix

�H. By repeating this process along the entire path, we obtain a random function

defined in the vicinity of �. In the �s ! 0 limit, one obtains a continuous description

of the evolution of the Hessian.
2We will discuss the restrictions on � in §3.1: in particular, it must not self-intersect.
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BASICS OF RANDOM MATRICES

Any large matrix                 with entries          drawn from a random 
distribution (GOE)
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�vab = �Aab � vab
||��||
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DYSON BROWNIAN MOTION

stochastic piece restoring force

Dyson 1962: “A Brownian-Motion Model for the Eigenvalues of a Random Matrix”

vab|p1 = vab|p0 + �vab|p0!p1
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One could construct many di↵erent classes of potentials by modifying the rule (3.5)

governing the evolution of the Hessian.

Figure 4. The random potentials presented in this paper exhibit non-trivial structure on

scales larger than a few ⇤h, as is illustrated above for N = 2 and a path length of 4⇤h. For

illustration purposes we have exaggerated the separation between subsequent charts, though a

smaller separation will be used in §4 to ensure a good approximation to the smooth evolution

of the eigenvalues of the Hessian.

Because our method defines the potential in a semi-local as opposed to global

fashion, it has some obvious drawbacks. First of all, as the random potential is defined

as a sequence of quadratic approximations in a string of coordinate patches, the global

structure of the potential far from the generating path is not readily available with

this method. Constraints on the structure of the potential from e.g. Morse theory are

therefore not immediately applicable to these potentials.

Furthermore, the path length along a curve � does not always give a good measure

of distance in field space. In particular, self-intersecting trajectories will generally not

give rise to single-valued potentials. For trajectories that are nearly self-intersecting —

which is not uncommon for low-dimensional field spaces, but is extremely rare at large

N — a more careful analysis is required.
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Figure 7. Example power spectra for the scales leaving the horizon between 50 and 60
efolds before the end of inflation for Nf = 2 (left) and Nf = 100 (right). Here ⇤

h

= 0.4M
Pl

,
✏V 0

= 10�11 and ⌘V 0

= �10�4.

particular relevance for comparison with CMB experiments is the window of roughly
10 efolds around the pivot scale. Over these scales, the power spectrum is well fitted by
a simple power law with spectral index ns = 0.959 and running ↵s = �0.003, clearly
compatible with current observational bounds from Planck: ns = 0.965 ± 0.005 and
↵s = �0.006± 0.007 [63]. This provides an explicit example of a non-trivial 100-field
model that is compatible with CMB observations.

Our model has sub-Planckian field displacements, and happens therefore at rather
low energy scale with H2 ⇠ 10�18M2

Pl

. The tensor to scalar ratio for this example is
extremely low, r = 8 ⇥ 10�12, which is a common feature across all of our ensembles.
The ‘Lyth bound’ [69], which relates the field displacement during inflation to the
tensor-to-scalar ratio in single-field models, states that,

r = 16✏V < 8
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if ✏ is constant or monotonically increasing. For our model this bound is r < 3⇥ 10�5,
which is clearly far from being saturated. There are two reasons for this: the first
is related to the evolution of ✏, which remains small for most of the trajectory, only
growing towards the end of inflation. The second reason is related to the superhorizon
evolution of ⇣ — as tensor modes are insensitive to isocurvature, superhorizon evolution
necessarily decreases the value of r compared to a single-field estimate.

To summarise, this analysis of a single realisation highlights the importance of
multifield e↵ects in determining the phenomenology of our model. It also demonstrates
how complex dynamics can result in Planck compatible inflation. We now turn to the
study of ensembles of inflationary realisations and the resulting probability distribu-
tions for observables.
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SUM-UP:

• Can complex inflationary physics give rise to simple 

observational signatures? 
• Phenomenological simplicity and universality can emerge from 

complex physics 
• Random potentials give rise to simple observables in the large N 

limit 
• Other mechanisms? Geometry of manifold?
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Figure 5. The field evolution (left) and the eigenvalues of vab (right) as functions of the
number of efolds. The region between horizontal black lines correspond to modes with
�H2

?  m2  +H2

? .

4.1 Case study: 100-field inflation

We consider a randomly generated model of inflation with Nf = 100 fields and ⇤
h

=
0.4M

Pl

, constructed according to the DBM prescription §2.1. The initial conditions
at the approximate inflection point were taken to be ✏V 0

= 10�11 and ⌘V 0

= �10�4,
with the spectrum of the Hessian matrix given by the ‘fluctuated’ spectrum discussed
in §2.2.2. These initial conditions were chosen so that randomly generated models
supporting at least 60 efolds of inflation are not overly rare (the mean value of the
total number of efolds is 71.5, and 49.9% of the 2,600 examples tested support at least
60 efolds of inflation). This particular example yields a total of 63.2 efolds of slow-roll
inflation with a total field space displacement of 0.28⇤

h

= 0.11M
Pl

. It takes 1031
patches to construct this example.

Figure 4 shows the evolution of the value of the potential and the eigenvalues
of the Hessian matrix as a function of the path length s = ��/⇤

h

along the inflaton
trajectory. Two characteristic features are worth highlighting: first, despite the random
nature of the DBM potentials, the evolution of the value of the scalar potential maps
out a very smooth approximate saddle-point. The absence of large features in the
sampled potential is not surprising: the ‘gradient flow’ field evolution of the inflaton
seeks out the locally steepest path away from the inflection point, making ‘bumps’,
‘steps’ and other large features in the sampled potential highly unlikely.

Second, many of the eigenvalues of the Hessian matrix rather quickly ‘drop’ to
negative values, thereby erasing the details of the initial, ‘fluctuated’ spectrum. Multi-
ple fields get tachyonic eigenvalues of the Hessian during inflation, and towards the end
of inflation, very nearly half of the eigenvalues are negative. Moreover, Fig. 4 illustrates
the continuity of the evolution of the Hessian eigenvalues as well as the intrinsic yet
regulated ‘raggedness’ that is characteristic of Brownian motions, cf. our discussion in
§2.3.

The field is ‘rolling’ very slowly during inflation, and most the evolution evident in
Fig. 4 occurs during the last few efolds. Fig. 5 shows the evolution of the components
of the vector �a during inflation (with respect to a fixed basis in which �̇a(0) / �a

1

).
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CAN COMPLEX INFLATIONARY PHYSICS GIVE RISE 
TO SIMPLE OBSERVATIONAL SIGNATURES?

OTHER MECHANISMS?

GEOMETRY OF MANIFOLD



GEOMETRY OF THE MANIFOLD
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Figure 1. Random potential V (�) of a single field � in the theory with 6↵ = 1.

up to the higher order terms O
�
e
�2

q
2
3↵'�. At ' �

p
↵, these terms are exponentially small

as compared to the terms ⇠ e
�
q

2
3↵', and the potential acquires the following asymptotic

form:
V (') = V0 � 2

p
6↵V 0

0 e
�
q

2
3↵'

. (2.5)

Note that the constant 2
p
6↵V 0

0 in this expression can be absorbed into a redefinition (shift) of
the field '. This implies that if inflation occurs at large ' �

p
↵, all inflationary predictions

in this class of models are determined only by the value of the potential V0 at the boundary
and the constant ↵. For ↵ = O(1), the predictions for the amplitude As requires

V0

↵
⇠ 10�10 . (2.6)

The prediction for ns and r are

1� ns ⇡
2

N
, r ⇡ 12↵

N2
. (2.7)

For the number of e-foldings N ⇠ 55, these predictions match the observational data without
any fine-tuning for all of these models. In the future, when we will know ns and r with better
accuracy, subtle distinctions between various models, including the shape of the potential
at small ' and the mechanism of reheating, will become important, which will help us to
distinguish between different models, see e.g. [37, 38].

To develop an intuitive understanding of the properties of ↵-attractors, we will follow
[15] and illustrate what is going on there using as an example a random potential of the field
� in the theory with 6↵ = 1, as shown in Fig. 1. In that case, the theory is defined for
�1 < � < 1.

If the field � were canonically normalized as in (1.1), inflation in the theory with the
potential shown in Fig. 1 would be impossible. In the theory (2.1), (2.3) the situation changes
dramatically because of the stretching of the potential in terms of the canonically normalized
field ', as shown in Fig. 2. This stretching does for the inflation potential the same as
what inflation does for the universe: It makes the potential exponentially flat. Then inflation
becomes possible, and it makes the universe exponentially large, flat and homogeneous.

Now it is time to issue some warning: Random potentials would not place the inflaton
field to the Minkowski or dS vacuum with the tiny cosmological constant V = 10�120. In this
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Figure 2. The same potential in terms of the canonical inflaton field ' (2.2). As we see, the shape
of the potential at � ⌧ 1 practically did not change. Meanwhile the vicinity of the boundary of the
moduli space at |�| = 1 is infinitely stretched. The height of the potential V (') at ' ! ±1 coincides
with V (�) at the boundaries of the moduli space � = ±1.

single-field inflation model I do not make any attempts to address the cosmological constant
problem, I am just assuming that it is small in one of the string theory vacua. To reflect this
assumption, I appropriately uplifted the otherwise random potential. Fortunately, due to the
magic of ↵ attractors, this uplifting does not change the predictions for ns and r.

3 Two-field ↵-attractors

Now we will generalize these results for the theory of two field inflation, � and �, with the
Lagrangian

1p
�g

L =
R

2
� (@µ�)2

2(1� �2

6↵)
2
� (@µ�)2

2
� V (�,�). (3.1)

In terms of canonical fields ' with the kinetic term (@µ')2

2 , the potential is

V (',�) = V (
p
6↵ tanh

'p
6↵

,�). (3.2)

During inflation at |'| �
p
↵, one can use the asymptotic equation

V (',�)|'|�
p
6↵ ⇡ V (�,�)�=±

p
6↵ , (3.3)

which means that asymptotically V (',�) is given by the values of the original potential
V (�,�) at the boundaries of the moduli space. The same is true for the curvature of the
potential in the � direction, i.e. for the effective mass squared of the field �, which asymp-
totically approaches a constant value [23]

V�,�(',�)|'|�
p
6↵ ⇡ V�,�(�,�)�=±

p
6↵ . (3.4)

To illustrate the implications of this result, we will consider again the case 6↵ = 1 and
generate a random potential V (�,�) of the original fields � and � in the Planck size box
1 < �,� < 1, see Fig. 3. Just as in the single field case, the potential V (�,�) shown in
Fig. 3 is very steep, so it would not support slow roll inflation if both fields were canonically
normalized. (We could always generate a smooth potential with the super-Planckian field
variations, but we want to analyze the most difficult case when the potential V (�,�) is very
steep.)
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GEOMETRY OF THE MANIFOLD

Figure 3. Randomly generated potential V (�,�) in the theory with 6↵ = 1.

Figure 4. The same potential in terms of the field � and the canonical inflaton field '. One can
see, in particular, that the tops of the three hills in the upper corner of the previous figure become
converted into three infinitely long ridges, and the two minima separating them at � = 1 in Fig. 3
become two inflationary valleys.

The situation looks dramatically different if one plots the same potential in terms of the
canonically normalized inflaton field ', see Fig. 4. Just as in the one-field case, the part of
the potential V (�,�) close to the boundaries � = ±1 becomes infinitely stretched, see Fig.

– 5 –

Figure 5. The random potential shown in Fig. 3 acquires two families of inflationary flat directions
in terms of the canonical fields ' and � in the context of the double-attractor model (3.5), (3.6). The
potential is shown for particular values ↵ = � = 1/6.

4 Multifield ↵-attractors

The results of the previous two sections can be trivially generalized to the case with many
different canonically normalized fields �i, i = 1, ...,K, with the Lagrangian

1p
�g

L =
1

2
R� 1

2

(@µ�)2

(1� �2

6↵)
2
� (@µ�i)2

2
� V (�,�1, ...�K) . (4.1)

Just as in the previous section, one should consider two boundaries, at � = ±
p
6↵, and

find all minima with respect to all fields �i at each boundary. If there is at least one such
minimum, and the potential grows when the field � approaches the boundary in the vicinity
of this minimum, then the minimum corresponds to the beginning of an infinitely long and
stable inflationary valley in terms of the canonically normalized inflaton field '.

This multi-valley structure of the potentials in the theory of cosmological attractors
appears not only in the theory of ↵-attractors, but also in the theory with non-minimal
coupling of the fields to gravity, and in multi-field conformal cosmological attractors; see in
particular Figs. 9 and 10 in [18].

How many such minima - and such inflationary trajectories - can we find in the random
multifield potentials? The answer depends on our assumptions of the statistics of the minima
and maxima in the randomly generated potential. In this paper, I described the theory of one
or two fields. I performed an investigation of a theory of three fields and found very similar
results. Cosmological attractors involving extremely large number of fields [24–32] should be
a subject of a separate investigation.
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Figure 10: The Einstein frame potential corresponding to the random function F (zi) shown in Figure 9. Yellow
and light green valleys are inflationary directions with V > 0, blue valleys correspond to V < 0.

F (z
i

), the more of these minima fit near the boundary, the greater is the variety of inflationary valleys

we are going to obtain. If a typical size of such sharp minima is equal to �z, the number of di↵erent

inflationary valleys slowly bending towards di↵erent Minkowski or dS minima should be proportional

to (�z)n�1, where n is the total number of the di↵erent moduli. For �z ⌧ 1 and n � 1, one can get

an exponentially large variety of di↵erent possibilities, reminiscent of the string theory landscape.

It is instructive to compare this scenario with the more conventional multi-field scenario. If one

assumes that from the very beginning we deal with a random Einstein frame potential without any

symmetries protecting its flat directions, one may conclude that such flat directions are rather unlikely,

see e.g. [32]. On the other hand, the more chaotic is the function F in terms of the original conformal

variables z
i

, and the greater number such fields we have, the greater is the variety of inflationary

valleys which naturally and nearly unavoidably emerge in the scenario outlined in our paper.

Now let us turn to the predictions of this class of theories. As we already mentioned in the previous

section, barring some fine-tuning of initial conditions and parameters of the theory, the field ✓ usually

has plenty of time to roll down to one of the inflationary valleys, and after that the classical evolution

is entirely determined by the single-field evolution of the field '. The main reason is that the speed

of motion of both fields ✓ and ' is suppressed by the same exponent e�
p

2/3', but the range of the

evolution of the field ✓ is �✓ = O(1), whereas the evolution of the field � may start at its indefinitely

large values, as one may conclude by looking at Figure 10. As a result, the field ✓ typically rolls down

exponentially closely to the minimum of its potential long before the last 60 e-foldings of inflation, see

(3.20), and the subsequent evolution is determined by the field '. This leads to universal observational

predictions 1� n
s

= 2/N , r = 12/N2, just as for the single-field attractors studied in [1].
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Figure 3. Randomly generated potential V (�,�) in the theory with 6↵ = 1.

Figure 4. The same potential in terms of the field � and the canonical inflaton field '. One can
see, in particular, that the tops of the three hills in the upper corner of the previous figure become
converted into three infinitely long ridges, and the two minima separating them at � = 1 in Fig. 3
become two inflationary valleys.

The situation looks dramatically different if one plots the same potential in terms of the
canonically normalized inflaton field ', see Fig. 4. Just as in the one-field case, the part of
the potential V (�,�) close to the boundaries � = ±1 becomes infinitely stretched, see Fig.
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universal attractor, independent of 
the number of fields or c’s

K = � ln(1�
X

ci�i�̄i)
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