The Sommerfeld Effect at Finite Temperature
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Sommerfeld enhanced annihilation at the freeze-out.

£ > gZY“XAu + g//)/“/AM Impact of a hot and dense plasma
environment on DM long-range
self-interactions

— > Conceptional question
No formal description available in the
community beyond equilibrium linear

response theory estimates

> Refinement of relic
abundance prediction

Planck precision era:

Q, h? =0.1198 +0.0015 (!)




Thermal field theory in a nutshell

Two-point correlation function at finite temperature:
Go(x,y) = (P T[O(x)O"(y)])
= (Tx[0(x)0"(y)])
_ (GS+(X,y) GS_(XJ))
Go (xy) Gy (xy)
(...) denotes sum over all particle states weighted by density matrix §.
> Closed-Time-Path formalism: QFT of non-equilibrium states.
> Flattening of time contour at finite temperature not possible
— LSZ reduction formula not applicable, cross section does not exist!

derived from EoM of components
GtH,GT ..
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where 1, £ NR fields, J=nTn+ &7, O=&n.

» D contains thermal corrections arising from / interaction.

D independent of 71, due to Boltzmann suppression.
_ 1o 2 0 ac0,,Bco
D,,=D,,+g J Do Tr [Y*S/v"S/|Dg,

> T contains hard (~ M) annihilation processes,
e.g. obtained from cutting 'thermal box diagram'.

— thermal corrections (typically S T) can be neglected in I' computation for thermal freeze-out.



From n,& EoM we derive

i, +3Hn, = L CA) G;Er—_(x, X, X, X),
ng +3Hn; = —(0v,y)75%° G;?'”(X, X, X, X),

where Gj}?’” is a component of the 4 by 4 matrix

Gye(,y, 2,w) = (Ten(x)E (y)E(w)n'(2)).
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We obtain analytic (formal) so-
lutions for in the cases:

> Standard SE
Approximations: DM dilute limit,
free correlators, zero temperature

and static D.

> Kinetic equilibrium
Approximations: KMS condition,
DM dilute limit. Further taking
chemical equilibrium limit we
recover similar results derived from
linear response theory (M. Laine et
al. 2017).

> General out of equilibrium
Approximations: DM dilute limit,

static D.



Effective in-medium potential

In equilibrium case we find S o< SG:;**(0,0; E), solution of

A2
(-5 + vatr))- |6z i =),

where the effective potential V4 consists of temperature corrections from
dressed single particle propagators AND dressed photon propagator:
Vei(r) = 27 + EF —ig? Dt (r)

a — [mm2 . m
= —a,/mi—l—m% e Vmetmr —laT—D<I>(1/mi+mf)r)
TL | L —N r , mi + m%

gain in kinetic energy screened Yukawa potential

I

thermal width

where mp ~ 0(g, T) electric Debye screening mass and (0) =0, &(c0) =1
Gy
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Enhancement factor vs. €y is shown for fixed

€, = 10715, Different lines correspond to different
temperatures €p = [0,0.1,20] (r.g,b) , where
e =20€ep is fixed everywhere.
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Dimensionless parameters: €p =
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Numerical Results
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Enhancement factor vs. €, is shown for fixed
€y = 6/n? (First on-resonance peak). Red:
Sommerfeld enhancement in vacuum. Green:
Sommerfeld enhancement at DM freeze-out
temperature T = m, /25.

v = MD T

E' €p = myv?' €r = myv’




> Developed non-equilibrium description of SE at finite
temperature for simplified U(1) DM model.

applicable to DM freeze-out, extending existing linear response theory results.

» Two independent (checks!) numerical strategies to obtain SE:
1.) T-matrix approach: integral equation (boundary condition independent).

2.) G;fJrJr approach: differential equation, finite temp. boundary conditions.
> Leading real part corrections in Vg @(amp).

> Leading imaginary part corrections in Vg < 0(aT).

Large contribution due to resummation of soft plasma interactions in HTL approximation.
> Thermal effects able to modify SE significantly.

> Close future: Temperature dependent phenomenology and
impact on the relic density.
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