The Sommerfeld Effect at Finite Temperature

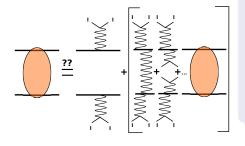
Tobias Binder

(ITP, Göttingen)
in collaboration with K. Mukaida (IPMU, Tokyo)

Ph.D. Advisor: Prof. L. Covi

DESY Workshop

September 27, 2017


neutrinos, dark matter & dark energy physics

Sommerfeld enhanced annihilation at the freeze-out.

$$\mathcal{L}\supset g\bar{\chi}\gamma^{\mu}\chi A_{\mu}+g_{I}\bar{I}\gamma^{\mu}IA_{\mu}$$

Impact of a hot and dense plasma environment on DM long-range self-interactions

- Conceptional question
 No formal description available in the community beyond equilibrium linear response theory estimates
- Refinement of relic abundance prediction
 Planck precision era:
 Ω, h² = 0.1198 ± 0.0015 (!)

Thermal field theory in a nutshell

Two-point correlation function at finite temperature:

$$G_O(x,y) \equiv \langle \hat{\rho} T[O(x)O^{\dagger}(y)] \rangle$$

$$= \langle T_{\mathscr{C}}[O(x)O^{\dagger}(y)] \rangle$$

$$= \begin{pmatrix} G_O^{++}(x,y) & G_O^{+-}(x,y) \\ G_O^{-+}(x,y) & G_O^{--}(x,y) \end{pmatrix}$$

 $\langle ... \rangle$ denotes sum over all particle states weighted by density matrix $\hat{\rho}$.

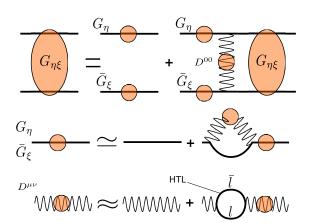
- ► Closed-Time-Path formalism: QFT of non-equilibrium states.
- ► Flattening of time contour at finite temperature not possible
 - → LSZ reduction formula not applicable, cross section does not exist!
- ► Computation of rates derived from EoM of components $G^{++}, G^{+-},...$

$$\begin{split} S_{\text{NR}} &\simeq \int_{\mathscr{C}} \left[\eta^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2M} \right) \eta + \xi^{\dagger} \left(i \partial_t - \frac{\nabla^2}{2M} \right) \xi \right] \\ &+ i \frac{g^2}{2} \int_{x,y \in \mathscr{C}} J(x) D(x,y) J(y) \\ &+ i \int_{x,y \in \mathscr{C}} O^{\dagger}(x) \Gamma(x,y) O(y), \end{split}$$

where η, ξ NR fields, $J \equiv \eta^{\dagger} \eta + \xi^{\dagger} \xi$, $O \equiv \xi^{\dagger} \eta$.

D contains thermal corrections arising from I interaction. D independent of η, ξ due to Boltzmann suppression.

$$D_{\mu\nu} = D^0_{\mu\nu} + g_I^2 \int D^0_{\mu\alpha} \text{Tr} \left[\gamma^\alpha S_I^0 \gamma^\beta S_I^0 \right] D_{\beta\nu}$$


- Γ contains hard (~ M) annihilation processes,
 e.g. obtained from cutting 'thermal box diagram'.
 - \rightarrow thermal corrections (typically $\lesssim T$) can be neglected in Γ computation for thermal freeze-out.

From η, ξ EoM we derive

$$\begin{split} &\dot{n}_{\eta} + 3Hn_{\eta} = -(\sigma v_{\rm rel})^{\text{s-wave}}_{T=0} G_{\eta\xi}^{++--}(x,x,x,x), \\ &\dot{n}_{\xi} + 3Hn_{\xi} = -(\sigma v_{\rm rel})^{\text{s-wave}}_{T=0} G_{\eta\xi}^{++--}(x,x,x,x), \end{split}$$

where $G_{n\xi}^{++--}$ is a component of the 4 by 4 matrix

$$G_{\eta\xi}(x,y,z,w) \equiv \left\langle T_{\mathscr{C}} \eta(x) \xi^{\dagger}(y) \xi(w) \eta^{\dagger}(z) \right\rangle.$$

$$\begin{split} G_{\eta\xi}^{++-} &= G_{\eta}^{+-} \bar{G}_{\xi}^{+-} + g^2 \int \left[G_{\eta}^{++} \bar{G}_{\xi}^{++} D^{++} G_{\eta\xi}^{++--} \right] \\ &- G_{\eta}^{+-} \bar{G}_{\xi}^{++} D^{-+} G_{\eta\xi}^{-+--} \\ &- G_{\eta}^{++} \bar{G}_{\xi}^{+-} D^{+-} G_{\eta\xi}^{-+--} \\ &- G_{\eta}^{++} \bar{G}_{\xi}^{+-} D^{+-} G_{\eta\xi}^{-+--} \right] \\ G_{\eta\xi}^{-+--} &= G_{\eta}^{--} \bar{G}_{\xi}^{+-} + g^2 \int \left[G_{\eta}^{-+} \bar{G}_{\xi}^{++} D^{++} G_{\eta\xi}^{++---} \right] \\ &- G_{\eta}^{--} \bar{G}_{\xi}^{++} D^{++} G_{\eta\xi}^{-+---} \\ &- G_{\eta}^{--} \bar{G}_{\xi}^{+-} D^{-+} G_{\eta\xi}^{-+---} \\ &+ G_{\eta}^{--} \bar{G}_{\xi}^{+-} D^{-+} G_{\eta\xi}^{-+---} \right] \\ G_{\eta\xi}^{+---} &= G_{\eta}^{+-} \bar{G}_{\xi}^{--} + g^2 \int \left[G_{\eta}^{++} \bar{G}_{\xi}^{-+} D^{++} G_{\eta\xi}^{++---} \right] \\ &- G_{\eta}^{+-} \bar{G}_{\xi}^{--} D^{+-} G_{\eta\xi}^{-+---} \\ &+ G_{\eta}^{+-} \bar{G}_{\xi}^{--} D^{-+} G_{\eta\xi}^{----} \right] \\ G_{\eta\xi}^{---} &= G_{\eta}^{--} \bar{G}_{\xi}^{--} + g^2 \int \left[G_{\eta}^{-+} \bar{G}_{\xi}^{-+} D^{++} G_{\eta\xi}^{++----} \right] \\ &- G_{\eta}^{--} \bar{G}_{\xi}^{--} D^{-+} G_{\eta\xi}^{----} \\ &- G_{\eta}^{--} \bar{G}_{\xi}^{--} D^{-+} G_{\eta\xi}^{----} \\ &- G_{\eta}^{--} \bar{G}_{\xi}^{--} D^{-+} G_{\eta\xi}^{----} \\ &- G_{\eta}^{-+} \bar{G}_{\xi}^{--} D^{--} G_{\eta\xi}^{----} \right] \\ &+ G_{\eta}^{--} \bar{G}_{\xi}^{--} D^{--} G_{\eta\xi}^{----} \right] \end{split}$$

We obtain analytic (formal) solutions for $G_{n\xi}^{++-}$ in the cases:

- Standard SE Approximations: DM dilute limit, free correlators, zero temperature and static D.
- ► Kinetic equilibrium

 Approximations: KMS condition,

 DM dilute limit. Further taking

 chemical equilibrium limit we

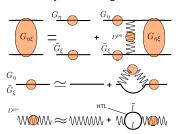
 recover similar results derived from

 linear response theory (M. Laine et

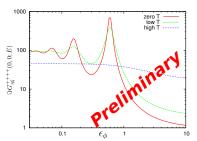
 al. 2017).
- General out of equilibrium Approximations: DM dilute limit, static D.

Effective in-medium potential

In equilibrium case we find $S \propto \Im G_{\eta\xi}^{++++}(0,0;E)$, solution of

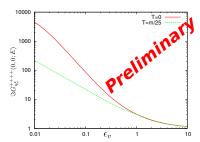

$$\left[\left(-\frac{\Delta_{\mathbf{r}'}^2}{M}+V_{\mathrm{eff}}(\mathbf{r}')\right)-E\right]G_{\eta\xi}^{++++}(\mathbf{r}',\mathbf{r}'';E)=i\delta^3(\mathbf{r}'-\mathbf{r}''),$$

where the effective potential $V_{\rm eff}$ consists of temperature corrections from dressed single particle propagators AND dressed photon propagator:


$$V_{\rm eff}(r) \equiv \Sigma_{\eta}^{R} + \bar{\Sigma}_{\xi}^{R} - ig^{2}D^{++}(\mathbf{r})$$

$$= \underbrace{-\alpha\sqrt{m_{\phi}^{2} + m_{D}^{2}}}_{\text{gain in kinetic energy}} \underbrace{-\frac{\alpha}{r}e^{-\sqrt{m_{\phi}^{2} + m_{D}^{2}}r}}_{\text{screened Yukawa potential}} \underbrace{-i\alpha T \frac{m_{D}}{\sqrt{m_{\phi}^{2} + m_{D}^{2}}} \Phi(\sqrt{m_{\phi}^{2} + m_{D}^{2}}r)}_{\text{thermal width}}$$

where $m_D \sim \mathcal{O}(g_l T)$ electric Debye screening mass and $\Phi(0) = 0$, $\Phi(\infty) = 1$.



Numerical Results

Enhancement factor vs. ϵ_ϕ is shown for fixed $\epsilon_{\rm v}=10^{-1.5}$. Different lines correspond to different temperatures $\epsilon_D = [0, 0.1, 20]$ (r,g,b), where

temperatures
$$\epsilon_D = [0,0.1,20]$$
 (r,g,b) , where $\epsilon_T = 20\epsilon_D$ is fixed everywhere.

Enhancement factor vs. ϵ_{v} is shown for fixed $\epsilon_{\phi} = 6/\pi^2$ (First on-resonance peak). Red: Sommerfeld enhancement in vacuum. Green: Sommerfeld enhancement at DM freeze-out temperature $T = m_{\gamma}/25$.

Dimensionless parameters:
$$\epsilon_{\phi} \equiv \frac{m_{\phi}}{\alpha_{\chi} m_{\chi}}$$
, $\epsilon_{v} \equiv \frac{v}{\alpha_{\chi}}$, $\epsilon_{D} \equiv \frac{m_{D}}{m_{\chi} v}$, $\epsilon_{T} \equiv \frac{T}{m_{\chi} v}$.

Summary

- ▶ Developed non-equilibrium description of SE at finite temperature for simplified U(1) DM model.
 - applicable to DM freeze-out, extending existing linear response theory results.
- ► Two independent (checks!) numerical strategies to obtain SE:
 - 1.) T-matrix approach: integral equation (boundary condition independent).
 - 2.) $G_{n\mathcal{E}}^{++++}$ approach: differential equation, finite temp. boundary conditions.
- ▶ Leading real part corrections in V_{eff} : $\mathcal{O}(\alpha m_D)$.
- Leading imaginary part corrections in $V_{\rm eff}$: $\lesssim \mathcal{O}(\alpha T)$.

 Large contribution due to resummation of soft plasma interactions in HTL approximation.
- ▶ Thermal effects able to modify SE significantly.
- Close future: Temperature dependent phenomenology and impact on the relic density.

Kim, S. and Laine, M. (2017). On thermal corrections to near-threshold annihilation. JCAP, 1701:013.