

Primordial black holes from inflaton and spectator field perturbations in a matter-dominated era

Tommi Tenkanen in collaboration with B. Carr and V. Vaskonen

Queen Mary University of London

Talk based on arXiv:1706.03746

COSMO'17 28/9/2017

Primordial Black Holes (PBHs) – How do they form?

- ▶ PBHs can easily form in the early Universe from sufficiently large density perturbations – already within the GR
- ▶ In a radiation-dominated Universe, they can form when large enough perturbations ($\delta \gtrsim 0.5$) enter the horizon (tails of the Gaussian $\delta_{\bf k}$'s).
- ▶ In a matter-dominated Universe, perturbations grow as $\delta \propto a$ ⇒ if there was enough time, even small perturbations can grow large, $\delta \sim 1$.

Primordial Black Holes - FAQ

- Q: OK, but isn't that gauge-dependent?
 A: It is. Most importantly, in a matter-dominated Universe the Jeans pressure does not prevent PBHs from forming.
- Q: Why do not all regions collapse?
 A: Initial asphericities will be amplified and this prevents BH formation.
- ▶ Q: Why do not PBHs form in today's Universe? A: They could, but the formation probability is negligible, $\rho_{\text{PBH}}(M)/\rho_{\text{tot}} \simeq 0.01 \, \delta_0^5(M)$.

Primordial Black Holes – Why are they interesting?

- ▶ Especially the LIGO observation of $\mathcal{O}(10)M_{\odot}$ BH mergers and seeds for supermassive BHs are interesting for PBHs
- ▶ PBHs might constitute all DM, although this possibility is very constrained (see 1705.05567 and the talk by V. Vaskonen)

Constraining Primordial Power Spectrum

- In any case, PBHs provide for an effective way to constrain curvature perturbations at small scales
- ▶ Let us assume that the are two components that contribute to the curvature power spectrum: the inflaton φ and a spectator field s

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{P}_{\mathcal{R},\varphi}(k) + \mathcal{P}_{\mathcal{R},s}(k)$$

Primordial Power Spectrum with two components

► The inflaton perturbations produce a nearly flat spectrum at small *k*,

$$\mathcal{P}_{\mathcal{R},\varphi}(k) = A\left(\frac{k}{k_*}\right)^{n-1+\frac{1}{2}\mathrm{d}n/\mathrm{d}\ln k\ln\left(\frac{k}{k_*}\right)},$$

where k_* is a pivot scale, $A \simeq 10^{-9}$, and $n \simeq 0.968$.

▶ Perturbations in the *s* field dominate at large *k*

$$\mathcal{P}_{\mathcal{R},s}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1 + \frac{1}{2} dn_s/d\ln k \ln \left(\frac{k}{k_*}\right)}$$

The total power spectrum

The total curvature power spectrum (black solid lines).

Black dashed line: inflaton. Grey dashed lines: spectator field for different choices of parameters.

Primordial Black Hole formation: theory

- ▶ Assume there was an early matter-dominated phase (MD) at $T > T_{\rm BBN} \simeq \mathcal{O}(1)$ MeV.
- ► Possible cause: reheating, massive metastable particles...
- ▶ PBH formation starts when δ grows large enough¹(δ \sim 1) and ends when the MD ends
- ▶ In MD, PBHs form with an energy $\rho_{\rm PBH}(M)/\rho_{\rm tot} \simeq 0.01 \delta_0^5(M)$

¹ Recall that in MD $\delta \propto a$ in Newtonian gauge.

Primordial Black Hole formation: results

► Five parameters: A_s , n_s , $dn_s/d\ln k$, T_{MD} , T_{reh} (+ $dn/d\ln k$)

An example of the total curvature power spectrum (left) and the corresponding PBH mass function (right).

Constraints on primordial perturbations

Left panel: Constraints on monochromatic PBH mass function.

Right panel: constraints on the amplitude of power spectrum. Gray dashed line: RD case. Red lines: MD case.

Thin black line: blue-tilted spectator field. Thick black line: inflaton with positive running.

Constraints on running of the spectral tilt

 We derive new constraints on the running of the inflaton field's spectral tilt. Red lines: Planck results.

► For constraints on spectral features of the spectator field and PBH DM, see 1706.03746.

Conclusions

- Primordial black holes are a compelling alternative to particle DM and may constitute all DM
- PBHs provide for an effective way to constrain curvature perturbations at small scales
 - \Rightarrow we placed new constraints on spectator fields and on the running of the spectral tilt, $dn/d\ln k \lesssim 0.001$.