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Standard Model of Particle Physics         
     & General Relativity

Spin 0:        Higgs boson   

Spin 1/2:     leptons, quarks 

Spin 1:        gluons, photon, W- & Z-boson      
       
Spin 2:        graviton  

Going beyond known physics

Standard Model of Particle Physics & General Relativity

spin 0: Higgs boson �

spin 1/2 : quarks, leptons  

a

spin 1: gluons, photons, W- & Z-bosons Aµ

spin 2: graviton gµ⌫

9
>>=

>>;

well-known
consistent
theories

“Beyond known physics" can mean . . .

. . . more copies of the known field theories.

. . . new field theories (i.e. higher spin).
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Consistent Field Theories
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Consistent Field Theories

+ Supersymmetry
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Consistent Field Theories

new models are 

usually built using 

more copies of 

these particles

less understood…
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Consistent Field Theories

MASSLESS !

massless 

& massive 

1/16



How do we make a  
spin-2 field massive ?



Massless & Massive  
Spin-2 Fields
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Massless Gravity

General Relativity with Einstein-Hilbert action for metric gµ⌫

SEH[g] = M

2
P

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

Einstein equations: Rµ⌫ � 1
2gµ⌫R+ ⇤gµ⌫ = 0

maximally symmetric solutions: R̄µ⌫ = ⇤ḡµ⌫

linear perturbation theory: gµ⌫ = ḡµ⌫ + �gµ⌫ :

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
= 0

! equation for a massless spin-field with 2 degrees of freedom
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= classical nonlinear field theory for metric tensor

Which metric represents gravity?

Absence of ghost: only one of the metrics couples to matter

Sgf = m

2
g

Z
d4x

p
g R(g) + m

2
f

Z
d4x

p
f R(f)

� m

4

Z
d4x

p
g

4X

n=0

�nen

⇣p
g

�1
f

⌘

+

Z
d4x

p
g Lmatter(g,�)

! only known coupling that does not re-introduce the ghost

! gµ⌫ is the gravitational metric

The gravitational metric is not massless!

18 / 26

General Relativity

describes the two degrees of freedom  
of a self-interacting, massless spin-2 particle

2/16

Massless Theory
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General Relativity

describes the two degrees of freedom  
of a self-interacting, massless spin-2 particle

Massless Theory

 two derivatives  
       kinetic term

2/16



General Relativity 
= 

unique description of  
self - interacting massless 

spin-2 field
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… should not contain derivatives nor loose indices.

Examples:           scalar (spin 0)                         vector (spin 1)

Mass Term

�@µ�@
µ��m2�2 (1)

� Fµ⌫F
µ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�F
µ⌫ �m2gµ⌫AµA⌫ (4)

1

�@µ�@
µ��m2�2 (1)

� Fµ⌫Fµ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�Fµ⌫ �m2gµ⌫AµA⌫ (4)

1

3/16
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1

Examples:           scalar (spin 0)                         vector (spin 1)

Mass Term Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?

10 / 26

For the spin-2 tensor contracting indices of the metric gives:

This is not a mass term.

3/16



This is a slide title

… should not contain derivatives nor loose indices.Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?

10 / 26

For the spin-2 tensor contracting indices of the metric gives:

This is not a mass term.

�@µ�@
µ��m2�2 (1)

� Fµ⌫F
µ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�F
µ⌫ �m2gµ⌫AµA⌫ (4)

1

�@µ�@
µ��m2�2 (1)

� Fµ⌫Fµ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�Fµ⌫ �m2gµ⌫AµA⌫ (4)

1

Examples:           scalar (spin 0)                         vector (spin 1)

Simplest way out: Introduce second “metric” to contract indices:

Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?

10 / 26

Mass Term

3/16



This is a slide title

… should not contain derivatives nor loose indices.Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?

10 / 26

For the spin-2 tensor contracting indices of the metric gives:

This is not a mass term.

�@µ�@
µ��m2�2 (1)

� Fµ⌫F
µ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�F
µ⌫ �m2gµ⌫AµA⌫ (4)

1

�@µ�@
µ��m2�2 (1)

� Fµ⌫Fµ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�Fµ⌫ �m2gµ⌫AµA⌫ (4)

1

Examples:           scalar (spin 0)                         vector (spin 1)

Simplest way out: Introduce second “metric” to contract indices:

Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?

10 / 26

Mass Term

kinetic term mass term 

Massive gravity action:
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Mass Term

Massive gravity action:

What determines        ? 
Shouldn’t it be dynamical ? 

Nonlinear Massive Gravity
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kinetic term mass term 
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Massive Gravity
nondynamical background metric fµ⌫ , fixed by hand

! 5 d.o.f.

dynamical fµ⌫ , determined by its equation of motion
! 5 + 2 = 7 d.o.f. [Rosen, 1940; Isham, Salam & Strathdee,1971/77]

Bimetric action:

Sb[g, f ] = m

2
g

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

+ m

2
f

Z
d4x

p
f

⇣
R(f)� 2⇤̃

⌘
�

Z
d4x V (g, f)

But there’s still a problem . . .

both metrics are dynamical and treated on equal footing

should describe massive & massless spin-2 field (5+2 d.o.f.)

Nonlinear action for two interacting tensors:

4/16

Bimetric Theory
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But there’s still a problem . . .

both metrics are dynamical and treated on equal footing

should describe massive & massless spin-2 field (5+2 d.o.f.)

Nonlinear action for two interacting tensors:

Bimetric Theory

This looks good, but there is a major problem…    

Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability

6 / 26
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Ghost  =  field with negative kinetic energy

explicit check for ghosts by computing the Hamiltonian

Ghosts in field theory

Ghost ⌘ field with negative kinetic energy

L = (@t�)
2 · · · (healthy)

L = �(@t�)
2 · · · (ghost)

consequences: classical instabilities, negative probabilities in
quantum theory ! must be avoided!

explicit check for ghosts by computing the Hamiltonian

massive spin-2 ghost: 6 degrees of freedom instead of 5

! need extra constraint to remove the ghost

in linear Fierz-Pauli theory the constraint arises only for a = 1

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�

7 / 26

healthy

ghost

consequences: classical instability, negative probabilities at quantum level
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2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g
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For generic interaction potentials the theory suffers from a ghost. 
Is there a particular potential which avoids the ghost ?

Massive Gravity
nondynamical background metric fµ⌫ , fixed by hand

! 5 d.o.f.

dynamical fµ⌫ , determined by its equation of motion
! 5 + 2 = 7 d.o.f. [Rosen, 1940; Isham, Salam & Strathdee,1971/77]

Bimetric action:

Sb[g, f ] = m

2
g

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

+ m

2
f

Z
d4x

p
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⇣
R(f)� 2⇤̃

⌘
�

Z
d4x V (g, f)

But there’s still a problem . . .

Linear mass term avoiding the ghostFierz & Pauli (1939):        
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Boulware & Deser (1972):

Avoiding the Ghost ?

6/16



The Ghost-Free 
Theory



This is a slide title

Based on

ASM, M. von Strauss
1412.3812

S.F. Hassan, ASM, M. von Strauss
1208.1515
1203.5283

S.F. Hassan, R. Rosen, ASM
1109.3230

↵
⌦

�
 V (g, f) = m4pg

4X

n=0

�n en

✓q
g�1f

◆
= m4pf

4X

n=0

�4�n en

✓q
f�1g

◆
(1)

Sb[g, f ] = m

2
g

Z
d4x

p
g R(g)

+ m

2
f

Z
d4x

p
f R(f) �

Z
d4x V (g, f)

◆
✓

⇣
⌘V (g, f) = m

4p
g

4X

n=0

�n en

⇣p
g

�1
f

⌘

e1(S) = Tr[S] e2(S) =
1
2

⇣
(Tr[S])2 � Tr[S2]

⌘

e3(S) =
1
6

⇣
(Tr[S])3 � 3Tr[S2]Tr[S] + 2Tr[S3]

⌘

) Consistent theory for massless & massive spin-2

arbitrary spin-2 mass scale

Ghost-free interaction potential

◆
✓

⇣
⌘V (g, f) = m

4p
g

3X

n=1

�n en

⇣p
g

�1
f

⌘

[de Rham, Gabadadze & Tolley, 2010; Hassan & Rosen, 2011; Hassan, ASM & Rosen, 2011]

The potential involves . . .

. . . an arbitrary mass scale m, 3 free parameters �n

. . . the elementary symmetric polynomials

en(S) =
2

n!(4� n)!
✏µ1...µn�n+1...�4✏

⌫1...⌫n�n+1...�4
S

µ1
⌫1 . . . S

µn
⌫n

. . . a square-root matrix S defined through S

2 = g

�1
f

13 / 26

3 interaction parameters

Ghost-free interaction potential

◆
✓

⇣
⌘V (g, f) = m

4p
g

3X

n=1

�n en

⇣p
g

�1
f

⌘

[de Rham, Gabadadze & Tolley, 2010; Hassan & Rosen, 2011; Hassan, ASM & Rosen, 2011]

The potential involves . . .

. . . an arbitrary mass scale m, 3 free parameters �n

. . . the elementary symmetric polynomials

en(S) =
2

n!(4� n)!
✏µ1...µn�n+1...�4✏

⌫1...⌫n�n+1...�4
S

µ1
⌫1 . . . S

µn
⌫n

. . . a square-root matrix S defined through S

2 = g

�1
f

13 / 26

square-root matrix      defined through 

Ghost-free interaction potential

◆
✓

⇣
⌘V (g, f) = m

4p
g

3X

n=1

�n en

⇣p
g

�1
f

⌘

[de Rham, Gabadadze & Tolley, 2010; Hassan & Rosen, 2011; Hassan, ASM & Rosen, 2011]

The potential involves . . .

. . . an arbitrary mass scale m, 3 free parameters �n

. . . the elementary symmetric polynomials

en(S) =
2

n!(4� n)!
✏µ1...µn�n+1...�4✏

⌫1...⌫n�n+1...�4
S

µ1
⌫1 . . . S

µn
⌫n

. . . a square-root matrix S defined through S

2 = g

�1
f

13 / 26

Ghost-free interaction potential

◆
✓

⇣
⌘V (g, f) = m

4p
g

3X

n=1

�n en

⇣p
g

�1
f

⌘

[de Rham, Gabadadze & Tolley, 2010; Hassan & Rosen, 2011; Hassan, ASM & Rosen, 2011]

The potential involves . . .

. . . an arbitrary mass scale m, 3 free parameters �n

. . . the elementary symmetric polynomials

en(S) =
2

n!(4� n)!
✏µ1...µn�n+1...�4✏

⌫1...⌫n�n+1...�4
S

µ1
⌫1 . . . S

µn
⌫n

. . . a square-root matrix S defined through S

2 = g

�1
f

13 / 26

Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field
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+
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�gµ⌫ � a ḡµ⌫�g
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= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability

6 / 26

- free Bimetric Theory
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de Rham, Gabadadze, Tolley (2010); 
Hassan, Rosen, ASM, von Strauss (2011/12)
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Hassan, ASM, von Strauss (2012)

Perturbations around proportional backgrounds:

massless (2 d.o.f.)
massive (5 d.o.f.)

Can be diagonalised into mass eigenstates (                  ):

Massless Gravity

General Relativity with Einstein-Hilbert action for metric gµ⌫

SEH[g] = M

2
P

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

Einstein equations: Rµ⌫ � 1
2gµ⌫R+ ⇤gµ⌫ = 0

maximally symmetric solutions: R̄µ⌫ = ⇤ḡµ⌫

linear perturbation theory: gµ⌫ = ḡµ⌫ + �gµ⌫ :

Ē ⇢�
µ⌫ �g⇢� = 0 Ē ⇠ rr+ ⇤

! equation for a massless spin-field with 2 degrees of freedom
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with mass                                and kinetic operator

Linearised equations: 

Bimetric mass spectrum [Hassan, ASM & von Strauss, 2012]

perturb bimetric equations around proportional backgrounds:

gµ⌫ = ḡµ⌫ + �gµ⌫ fµ⌫ = c

2
ḡµ⌫ + �fµ⌫

fluctuations diagonalizable into mass eigenstates:

massless �Gµ⌫ / �gµ⌫ + ↵

2
�fµ⌫

massive �Mµ⌫ / �fµ⌫ � c

2
�gµ⌫

) linear equations:

Ē ⇢�
µ⌫ �G⇢� = 0

Ē ⇢�
µ⌫ �M⇢� +

m2
FP
2 (�Mµ⌫ � ḡµ⌫�M) = 0

with mass mFP = mFP(↵,�n, c)
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Mass spectrum

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :

m

2
g

Z
d4x

p
g R(g) +m

2
f

Z
d4x K(g,M) +

Z
d4x V (g,M)

+

Z
d4x

p
g Lmatter(g,�)

Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory

19 / 26
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What is the physical metric ? 

How does matter couple  
to the tensor fields ?
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Which metric represents gravity?

Absence of ghost: only one of the metrics couples to matter
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! only known coupling that does not re-introduce the ghost

! gµ⌫ is the gravitational metric

The gravitational metric is not massless!
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) Consistent theory for massless & massive spin-2
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Yamashita, de Felice, Tanaka;  
de Rham, Heisenberg, Ribeiro (2015)
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Absence of ghosts: only one metric can couple to matter!

Matter Coupling
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Mass Eigenstates

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :
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) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory
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massless      massive

(linearised) gravitational metric:

Proportional backgrounds [Hassan, ASM & von Strauss, 2012]

Particularly important solution to equations of motion:

f̄µ⌫ = c

2
ḡµ⌫ with c = const.

– gives two copies of Einstein’s equations (↵ ⌘ mf/mg)

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤g(↵,�n, c)ḡµ⌫ = 0

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤f (↵,�n, c)ḡµ⌫ = 0

– consistency condition: ⇤g(↵,�n, c) = ⇤f (↵,�n, c) determines c

) maximally symmetric backgrounds with Rµ⌫(ḡ) = ⇤g ḡµ⌫
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Hassan, ASM, von Strauss (2012) 
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Mass Eigenstates Hassan, ASM, von Strauss (2012) 

The gravitational metric is not massless but a superposition of mass eigenstates. 
Max, Platscher, Smirnov (2017): analysis of gravitational wave oscillations

Physical interpretation [Hassan, ASM & von Strauss, 2012]
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Which metric represents gravity?

Absence of ghost: only one of the metrics couples to matter
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! only known coupling that does not re-introduce the ghost

! gµ⌫ is the gravitational metric

The gravitational metric is not massless!
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ḡµ⌫ with c = const.

– gives two copies of Einstein’s equations (↵ ⌘ mf/mg)

Rµ⌫(ḡ)� 1
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Recovery of GR



Ghost-free bimetric theory 
= 

General Relativity + 
additional tensor field 



What are the consequences 
for cosmology ?
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and the General Relativity limit of bimetric theory:

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :
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Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory
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gravity is weak because the physical Planck mass is large 

massive spin-2 field decouples from matter, interacts only with gravity 

Babichev, Marzola, Raidal, ASM, 
Urban, Veermäe, von Strauss (2016)
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massless      massive
Recall the (linearised) gravitational metric:

Spin-2 Dark Matter
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Babichev, Marzola, Raidal, ASM, 
Urban, Veermäe, von Strauss (2016)

heavy spin-2 field automatically resembles dark matter when gravity  
resembles General Relativity

interactions with baryonic matter are suppressed by the Planck mass

spin-2 mass and interaction scale are on the order of a few TeV

Features



                     may be lowered to MeV by taking into account      
                     self-interactions of massive spin-2

                                   interesting new effects for more than one  
                                   massive spin-2 field

This is a slide title

Babichev, Marzola, Raidal, ASM, 
Urban, Veermäe, von Strauss (2016)

heavy spin-2 field automatically resembles dark matter when gravity  
resembles General Relativity

interactions with baryonic matter are suppressed by the Planck mass

spin-2 mass and interaction scale are on the order of a few TeV

Features
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Gonzalez, ASM, von Strauss (2017):
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Babichev, Marzola, Raidal, ASM, 
Urban, Veermäe, von Strauss (2016)

heavy spin-2 field automatically resembles dark matter when gravity  
resembles General Relativity

interactions with baryonic matter are suppressed by the Planck mass

spin-2 mass and interaction scale are on the order of a few TeV

Features

         no need for extra fields, artificial symmetries or fine tuning 

         bimetric theory could explain dark matter in the context of gravity 

         massive spin-2 field is a natural addition to the Standard Models

15/16



Summary



is one of the few known consistent modifications of General Relativity

can be interpreted as gravity in the presence of an extra spin-2 field

contains an interesting dark matter candidate whose coupling to  
baryonic matter is suppressed by the Planck scale

Bimetric Theory …

Can we detect/observe the massive spin-2 ? 

Larger theoretical framework: String Theory ?

  

 review:  ASM, Mikael von Strauss; 1512.00021 
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Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability
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Proportional solutions

Proportional backgrounds [Hassan, ASM & von Strauss, 2012]

Particularly important solution to equations of motion:

f̄µ⌫ = c

2
ḡµ⌫ with c = const.

– gives two copies of Einstein’s equations (↵ ⌘ mf/mg)

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤g(↵,�n, c)ḡµ⌫ = 0

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤f (↵,�n, c)ḡµ⌫ = 0

– consistency condition: ⇤g(↵,�n, c) = ⇤f (↵,�n, c) determines c

) maximally symmetric backgrounds with Rµ⌫(ḡ) = ⇤g ḡµ⌫

16 / 26

Proportional backgrounds [Hassan, ASM & von Strauss, 2012]

Particularly important solution to equations of motion:

f̄µ⌫ = c

2
ḡµ⌫ with c = const.

– gives two copies of Einstein’s equations (↵ ⌘ mf/mg)

Rµ⌫(ḡ)� 1
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– consistency condition: ⇤g(↵,�n, c) = ⇤f (↵,�n, c) determines c

) maximally symmetric backgrounds with Rµ⌫(ḡ) = ⇤g ḡµ⌫
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Rµ⌫(ḡ)� 1
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Maximally symmetric backgrounds with 

Ansatz:



Dark Energy

Homogeneous & isotropic ansatz for both metrics

Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?

10 / 26

Use bimetric equations to eliminate components of 

Obtain modified Friedmann equation for scale factor of physical metric:

Use full bimetric equations to compute linearised perturbations

Cosmological solutions in analogy to GR

Volkov; von Strauss, ASM, Enander, Mörtsell, Hassan; 
Comelli, Crisostomi, Nesti, Pilo (2011)

Nonlinear interactions for massive spin-2 fields Angnis Schmidt-May

4. Applications to cosmology

Generically, massive gravity and bimetric theory are expected to make predictions for gravita-
tional phenomena that differ from those of GR. Since the most pressing problems of the latter are
found in cosmology, it is interesting to analyse whether the novel theories are able to address the
dark energy, dark matter or the cosmological constant problems.

A lot of effort has been spent on cosmological solutions in bimetric theory.3 Before we sum-
marise their features, let us very briefly review some of the main ingredients standard cosmology
in GR. Solving Einstein’s equations (2.3) with a homogeneous and isotropic ansatz for the metric
g

µn

, one obtains the Friedmann equation,

✓
ȧ
a

◆2

=
L
3
+

r(t)
3m2

P
. (4.1)

Here, a(t) is the scale factor describing the expansion of space, the dot denotes a time derivative and
r(t) =�T 0

0 is the energy density. The presence of a small L in Einstein’s equations is necessary to
achieve ä > 0 and thus describe the observed accelerated expansion. This gives rise to two major
problems: (i) One needs to explain what happens to the large value for L that one would expect
from quantum field theory computations. This puzzle is usually referred to as the cosmological
constant problem. (ii) Assuming that the large vacuum energy contribution is somehow cancelled
or rendered irrelevant, one still needs to address the dark energy problem and explain the origin of
the small observed L.

One of the original hopes was that a massive graviton could serve to “screen out" a large
vacuum energy contribution coming from the matter sector. The massless spin-2 field in GR gives
rise to a Newtonian potential that decays as 1/r with distance r. Introducing a Fierz-Pauli mass
mFP for the graviton, however, would lead to a potential of the shape e�mFPr/r. At small distances
r ⌧ mFP, such a potential would still behave like the Newtonian one but at large distances the
exponential decay would set in. This would weaken the gravitational force at large distances and,
as a direct consequence, vacuum energy would have a smaller impact on the expansion rate of the
universe. Unfortunately, it turns out that this promising feature of the linear massive gravity theory
is not realised in the nonlinear theories. Bimetric theory and massive gravity are thus not able to
address the cosmological constant problem (i) in any better way than GR.

First studies of cosmology in bimetric theory were performed in [24, 25, 26] where the equa-
tions of motion including matter, (3.19) and (3.20), were solved for homogeneous and isotropic
ansätze for both metrics. The generic outcome is a modified Friedmann equation for the scale
factor a(t) of the metric g

µn

,

✓
ȧ
a

◆2

=
L
3
+F

⇥
r(t)

⇤
. (4.2)

Here F
⇥
r(t)

⇤
is a function of the energy density r(t), which in the GR case (4.1) was simply linear.

For generic interaction parameters in bimetric theory, the function will now be nonlinear and hence

3As before we will focus on the fully dynamical case because massive gravity with fixed reference metric cannot
give rise to viable cosmologies [23].

11

Nonlinear interactions for massive spin-2 fields Angnis Schmidt-May

the cosmological background evolution will differ significantly from that of GR. This means that a
large region in bimetric parameters space can immediately be ruled out since it does not describe the
observed evolution correctly. The crucial feature of many viable background solutions in bimetric
theory is that acceleration is possible even in the absence of vacuum energy, i.e. for L = 0.

• in bimetric theory, accelerating solutions can exist for L = 0; extra constant (or very slowly
varying) terms in F

• acceleration without vacuum energy, dark energy problem solved

• protection of spin-2 mass

• perturbations: can become strongly coupled at early times, breakdown of linear perturbation
theory, resolved in GR limit

F
⇥
r(t)

⇤
=

r(t)
3M2

P
(4.3)

5. Summary and outlook
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Comparison to Data Akrami, Koivisto, Mota, Sandstad (2013); 
Könnig, Patil, Amendola (2014); 

Akrami, Hassan, Könnig, ASM, Solomon (2015)

set vacuum energy to zero and look for self-accelerating solutions

impose conditions for viable cosmology (background & perturbations)

fit to data

self-accelerating solutions exist, meet the viability conditions  
and fit the data as well as    CDM 
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Outcome: 

Perturbations are well-behaved in the GR limit, i.e. for small

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :

m

2
g

Z
d4x

p
g R(g) +m

2
f

Z
d4x K(g,M) +

Z
d4x V (g,M)

+

Z
d4x

p
g Lmatter(g,�)

Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory

19 / 26



This is a slide title

Quadratic (Fierz-Pauli)

(bimetric action expanded in mass eigenstates)

massless
massive

Structure of Vertices



(bimetric action expanded in mass eigenstates)Structure of Vertices

Quadratic (Fierz-Pauli) Cubic

self-interactions of massless spin-2 sum up to General Relativity 

no vertices giving rise to decay of massive into massless spin-2 

massive spin-2 particle gravitates like baryonic matter 

self-interactions of massive spin-2 are enhanced in the GR limit
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