Introduction to Bimetric Theory

Angnis Schmidt-May

Max-Planck-Institut für Physik

DESY THEORY WORKSHOP Hamburg, 27.09.17

Navigation

Motivation

Massless & Massive Spin-2 Fields

The Ghost-Free Theory

Physics of Massive Spin-2 Fields

Cosmology

Summary

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks $\,\psi^a$

Spin 1: gluons, photon, W- & Z-boson A_{μ}

Spin 2: graviton $g_{\mu\nu}$

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks $\,\psi^a$

Spin 1: gluons, photon, W- & Z-boson A_{μ}

Spin 2: graviton $g_{\mu\nu}$

+ Supersymmetry

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks $\,\psi^a$

Spin 1: gluons, photon, W- & Z-boson A_{μ}

Spin 2: graviton $g_{\mu\nu}$

new models are usually built using more copies of these particles

less understood...

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks $\,\psi^a$

Spin 1: gluons, photon, W- & Z-boson A_{μ}

Spin 2: graviton $g_{\mu\nu}$ MASSLESS!

massless & massive

How do we make a spin-2 field massive?

Massless & Massive **Spin-2 Fields**

Massless Theory

General Relativity

= classical nonlinear field theory for metric tensor $g_{\mu\nu}$

Einstein-Hilbert action:
$$S_{
m EH}[g] = M_{
m P}^2 \int {
m d}^4 x \sqrt{g} \, \left(R(g) - 2 \Lambda
ight)$$

Einstein's equations:
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$$

describes the two degrees of freedom of a self-interacting, massless spin-2 particle

Massless Theory

General Relativity

= classical nonlinear field theory for metric tensor $g_{\mu\nu}$

Einstein-Hilbert action:
$$S_{\mathrm{EH}}[g] = M_{\mathrm{P}}^2 \int \mathrm{d}^4 x \sqrt{g} \, \left(R(g) - 2 \Lambda \right)$$

Einstein's equations:
$$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R+\Lambda g_{\mu\nu}=0$$

describes the two degrees of freedom of a self-interacting, massless spin-2 particle

General Relativity

=

unique description of self - interacting massless spin-2 field

... should not contain derivatives nor loose indices.

Examples:

scalar (spin 0)

$$-\partial_{\mu}\phi\partial^{\mu}\phi - m^2\phi^2$$

vector (spin 1)

$$-F^{\mu\nu}F_{\mu\nu}-m^2A^{\mu}A_{\mu}$$

... should not contain derivatives nor loose indices.

Examples: scalar (spin 0) vector (spin 1) $-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - m^{2}\phi^{2} \qquad -g^{\mu\rho}g^{\nu\sigma}F_{\rho\sigma}F_{\mu\nu} - m^{2}g^{\mu\nu}A_{\mu}A_{\nu}$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu\nu}g_{\mu\nu}=4$ This is not a mass term.

... should not contain derivatives nor loose indices.

Examples: scalar (spin 0) vector (spin 1)

$$-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - m^2\phi^2$$

$$-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - m^{2}\phi^{2} \qquad -g^{\mu\rho}g^{\nu\sigma}F_{\rho\sigma}F_{\mu\nu} - m^{2}g^{\mu\nu}A_{\mu}A_{\nu}$$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu\nu}g_{\mu\nu}=4$ This is not a mass term.

Simplest way out: Introduce second "metric" to contract indices:

$$g^{\mu\nu}f_{\mu\nu} = \text{Tr}(g^{-1}f)$$
 $f^{\mu\nu}g_{\mu\nu} = \text{Tr}(f^{-1}g)$

... should not contain derivatives nor loose indices.

Examples: scalar (spin 0)

scalar (spin 0) vector (spin 1)
$$-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - m^{2}\phi^{2} \qquad -g^{\mu\rho}g^{\nu\sigma}F_{\rho\sigma}F_{\mu\nu} - m^{2}g^{\mu\nu}A_{\mu}A_{\nu}$$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu\nu}g_{\mu\nu}=4$ This is not a mass term.

Simplest way out: Introduce second "metric" to contract indices:

$$g^{\mu\nu}f_{\mu\nu} = \text{Tr}(g^{-1}f)$$
 $f^{\mu\nu}g_{\mu\nu} = \text{Tr}(f^{-1}g)$

$$>$$
 Massive gravity action: $S_{
m MG}[g] = S_{
m EH}[g] - \int {
m d}^4 x \; V(g,f)$

kinetic term mass term

... should

indices.

Examples: scalar (sr

$$-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}$$

What determines $f_{\mu\nu}$? Shouldn't it be dynamical ?

For the spin-2 tensor cont

This is not a mass term.

Simplest way out: Introduce sec

$$g^{\mu\nu}f_{\mu\nu} = \operatorname{Tr}\left(g^{-}\right)$$

Massive gravity action:

$$S_{\mathrm{MG}}[g] = S_{\mathrm{EH}}[g] - \int \mathrm{d}^4 x \ V(g, f)$$

kinetic term

mass term

Bimetric Theory

Nonlinear action for two interacting tensors:

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} \left(R(g) - 2\Lambda \right)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} \left(R(f) - 2\tilde{\Lambda} \right) - \int d^{4}x V(g, f)$$

both metrics are dynamical and treated on equal footing

should describe massive & massless spin-2 field (5+2 d.o.f.)

Bimetric Theory

Nonlinear action for two interacting tensors:

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} \left(R(g) - 2\Lambda \right)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} \left(R(f) - 2\tilde{\Lambda} \right) - \int d^{4}x V(g, f)$$

both metrics are dynamical and treated on equal footing

should describe massive & massless spin-2 field (5+2 d.o.f.)

This looks good, but there is a major problem...

Ghosts

Ghost = field with negative kinetic energy

$$\mathcal{L} = (\partial_t \phi)^2 \cdots$$
 healthy

$$\mathcal{L} = -(\partial_t \phi)^2 \cdots$$
 ghost

consequences: classical instability, negative probabilities at quantum level

explicit check for ghosts by computing the Hamiltonian

Ghosts

Ghost = field with negative kinetic energy

$$\mathcal{L} = (\partial_t \phi)^2 \cdots$$
 healthy

$$\mathcal{L} = -(\partial_t \phi)^2 \cdots$$
 ghost

consequences: classical instability, negative probabilities at quantum level

explicit check for ghosts by computing the Hamiltonian

Modifications of General Relativity tend to be haunted by ghosts. Modifying gravity is EXTREMELY difficult!

Ghosts

Ghost = field with negative kinetic energy

$$\mathcal{L} = (\partial_t \phi)^2 \cdots$$
 healthy

$$\mathcal{L} = -(\partial_t \phi)^2 \cdots$$
 ghost

consequences: classical instability, negative probabilities at quantum level must be avoided!

explicit check for ghosts by computing the Hamiltonian

massive spin-2: six instead of five propagating degrees of freedom

need extra constraint to remove the ghost

Avoiding the Ghost?

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} \left(R(g) - 2\Lambda \right)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} \left(R(f) - 2\tilde{\Lambda} \right) - \int d^{4}x V(g, f)$$

For generic interaction potentials the theory suffers from a ghost. Is there a particular potential which avoids the ghost?

Fierz & Pauli (1939):

Linear mass term avoiding the ghost ()

Avoiding the Ghost?

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} \left(R(g) - 2\Lambda \right)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} \left(R(f) - 2\tilde{\Lambda} \right) - \int d^{4}x V(g, f)$$

For generic interaction potentials the theory suffers from a ghost. Is there a particular potential which avoids the ghost?

Fierz & Pauli (1939):

Linear mass term avoiding the ghost ()

Boulware & Deser (1972):

Beyond linear order it is impossible! (💌

No consistent nonlinear massive gravity / bimetric theory?

- free Bimetric Theory

de Rham, Gabadadze, Tolley (2010); Hassan, Rosen, ASM, von Strauss (2011/12)

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g, f)$$

$$V(g,f) = m^4 \sqrt{g} \sum_{n=0}^{4} \beta_n e_n \left(\sqrt{g^{-1}f} \right) = m^4 \sqrt{f} \sum_{n=0}^{4} \beta_{4-n} e_n \left(\sqrt{f^{-1}g} \right)$$

lacktriangledown arbitrary spin-2 mass scale m

igotimes square-root matrix S defined through $S^2=g^{-1}f$

- free Bimetric Theory

de Rham, Gabadadze, Tolley (2010); Hassan, Rosen, ASM, von Strauss (2011/12)

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

 $+ m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g, f)$

$$V(g,f) = m^4 \sqrt{g} \sum_{n=0}^{4} \beta_n e_n \left(\sqrt{g^{-1}f} \right) = m^4 \sqrt{f} \sum_{n=0}^{4} \beta_{4-n} e_n \left(\sqrt{f^{-1}g} \right)$$

elementary symmetric polynomials:

$$e_1(S) = \text{Tr}[S]$$
 $e_2(S) = \frac{1}{2} \left((\text{Tr}[S])^2 - \text{Tr}[S^2] \right)$
 $e_3(S) = \frac{1}{6} \left((\text{Tr}[S])^3 - 3 \text{Tr}[S^2] \text{Tr}[S] + 2 \text{Tr}[S^3] \right)$

Mass spectrum

Perturbations around proportional backgrounds:

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu} \qquad f_{\mu\nu} = \bar{g}_{\mu\nu} + \delta f_{\mu\nu}$$

Can be diagonalised into mass eigenstates ($\alpha=m_f/m_g$):

$$\delta G_{\mu\nu} = \delta g_{\mu\nu} + \alpha^2 \delta f_{\mu\nu}$$
 massless (2 d.o.f.)
 $\delta M_{\mu\nu} = \delta f_{\mu\nu} - \delta g_{\mu\nu}$ massive (5 d.o.f.)

Linearised equations: $\bar{\mathcal{E}}_{\mu\nu}^{\ \rho\sigma}\delta G_{\rho\sigma} = 0$ $\bar{\mathcal{E}}_{\mu\nu}^{\ \rho\sigma}\delta M_{\rho\sigma} + \frac{m_{\mathrm{FP}}^2}{2}\left(\delta M_{\mu\nu} - \bar{g}_{\mu\nu}\delta M\right) = 0$

with mass $m_{\mathrm{FP}} = m_{\mathrm{FP}}(lpha, eta_n)$ and kinetic operator $\bar{\mathcal{E}} \sim
abla
abla + \Lambda$

Ghost-free bimetric theory

unique description of massless + massive spin-2 field

What is the physical metric?

How does matter couple to the tensor fields?

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g, f)$$

$$+ \int d^{4}x \sqrt{g} \mathcal{L}_{matter}(g, \phi)$$

Absence of ghosts: only one metric can couple to matter!

 $\Rightarrow g_{\mu\nu}$ is gravitational metric

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g, f)$$

$$+ \int d^{4}x \sqrt{g} \mathcal{L}_{matter}(g, \phi)$$

(linearised) gravitational metric:

$$\delta g_{\mu\nu} \propto \delta G_{\mu\nu} - \alpha^2 \delta M_{\mu\nu}$$
 $(\alpha \equiv m_f/m_g)$ massless massive

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g, f)$$

$$+ \int d^{4}x \sqrt{g} \mathcal{L}_{matter}(g, \phi)$$

(linearised) gravitational metric:

$$\delta g_{\mu\nu} \propto \delta G_{\mu\nu} - \alpha^2 \delta M_{\mu\nu}$$
 $(\alpha \equiv m_f/m_g)$ massless massive

The gravitational metric is not massless but a superposition of mass eigenstates. Max, Platscher, Smirnov (2017): analysis of gravitational wave oscillations

$$S_{b}[g, f] = m_g^2 \int d^4x \sqrt{g} R(g)$$

$$+ m_f^2 \int d^4x$$

(linearised) gravitational

 $\delta g_{\mu\nu}$

mo

See Moritz Platscher's talk Wednesday, 17:47 Seminar room 4b

 $m_g)$

The gravitational metric is not massless but a superposition of mass eigenstates. Max, Platscher, Smirnov (2017): analysis of gravitational wave oscillations

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g, f)$$

$$+ \int d^{4}x \sqrt{g} \mathcal{L}_{matter}(g, \phi)$$

(linearised) gravitational metric:

$$\delta g_{\mu\nu} \propto \delta G_{\mu\nu} - lpha^2 \delta M_{\mu\nu} \qquad (lpha \equiv m_f/m_g)$$
 massless massive

Mass Eigenstates

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)

$$S_{b}[g, f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

$$+ m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g, f)$$

$$+ \int d^{4}x \sqrt{g} \mathcal{L}_{matter}(g, \phi)$$

$$\alpha = m_f/m_q \rightarrow 0$$

is the General Relativity limit of bimetric theory

Recovery of GR

$$r_{
m V} = \left(rac{r_{
m S}}{m_{
m FP}^2}
ight)^{1/3}$$

$$V_{
m Yuk} \sim rac{e^{-m_{
m FP} r}}{r}$$

Babichev, Marzola, Raidal, ASM, Urban, Veermäe, von Strauss (2016)

 $log \; m_{\text{FP}}$

Ghost-free bimetric theory

=

General Relativity + additional tensor field

What are the consequences for cosmology?

Spin-2 Dark Matter

Recall the (linearised) gravitational metric:

$$\delta g_{\mu
u} \propto \delta G_{\mu
u} - lpha^2 \delta M_{\mu
u}$$
 massless massive

and the General Relativity limit of bimetric theory: $\alpha = m_f/m_g o 0$

- gravity is weak because the physical Planck mass is large
- massive spin-2 field decouples from matter, interacts only with gravity

Constraints — DECAY --- PRODUCTION

ratio of **Planck masses**

Features

interactions with baryonic matter are suppressed by the Planck mass

spin-2 mass and interaction scale are on the order of a few TeV

Features

interactions with baryonic matter are suppressed by the Planck mass

spin-2 mass and interaction scale are on the order of a few TeV

Chu & Garcia-Cely (2017): may be lowered to MeV by taking into account self-interactions of massive spin-2

Gonzalez, ASM, von Strauss (2017): interesting new effects for more than one massive spin-2 field

Features

- interactions with baryonic matter are suppressed by the Planck mass
- spin-2 mass and interaction scale are on the order of a few TeV

- no need for extra fields, artificial symmetries or fine tuning
- bimetric theory could explain dark matter in the context of gravity
- massive spin-2 field is a natural addition to the Standard Models

Bimetric Theory ...

review: ASM, Mikael von Strauss; 1512.00021

is one of the few known consistent modifications of General Relativity

can be interpreted as gravity in the presence of an extra spin-2 field

contains an interesting dark matter candidate whose coupling to baryonic matter is suppressed by the Planck scale

Larger theoretical framework: String Theory?

Can we detect/observe the massive spin-2?

Back-up slides

Proportional solutions

Ansatz:

$$\bar{f}_{\mu\nu}=c^2\bar{g}_{\mu\nu}$$
 with $c=$ const.

$$R_{\mu\nu}(\bar{g}) - \frac{1}{2}\bar{g}_{\mu\nu}R(\bar{g}) + \Lambda_g(\alpha, \beta_n, c)\bar{g}_{\mu\nu} = 0$$

$$R_{\mu\nu}(\bar{g}) - \frac{1}{2}\bar{g}_{\mu\nu}R(\bar{g}) + \Lambda_f(\alpha, \beta_n, c)\bar{g}_{\mu\nu} = 0$$

 \nearrow consistency condition: $\Lambda_g(\alpha, \beta_n, c) = \Lambda_f(\alpha, \beta_n, c)$ determines c

Dark Energy

Volkov; von Strauss, ASM, Enander, Mörtsell, Hassan; Comelli, Crisostomi, Nesti, Pilo (2011)

Cosmological solutions in analogy to GR

Homogeneous & isotropic ansatz for both metrics

Use bimetric equations to eliminate components of $f_{\mu
u}$

Obtain modified Friedmann equation for scale factor of physical metric:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{\Lambda}{3} + F\left[\rho(t)\right]$$

GR:
$$F[\rho(t)] = \frac{\rho(t)}{3M_P^2}$$

Use full bimetric equations to compute linearised perturbations

Comparison to Data

Akrami, Koivisto, Mota, Sandstad (2013); Könnig, Patil, Amendola (2014); Akrami, Hassan, Könnig, ASM, Solomon (2015)

set vacuum energy to zero and look for self-accelerating solutions

impose conditions for viable cosmology (background & perturbations)

fit to data

self-accelerating solutions exist, meet the viability conditions Outcome: and fit the data as well as ACDM

Perturbations are well-behaved in the GR limit, i.e. for small $\alpha=m_f/m_q$

Structure of Vertices

(bimetric action expanded in mass eigenstates)

Quadratic (Fierz-Pauli)

δG^2	$\delta G \delta M$	δM^2
$1,\Lambda$	0	$1,\Lambda,m_{ ext{FP}}^2$

$$\delta G_{\mu\nu} = \delta g_{\mu\nu} + \alpha^2 \delta f_{\mu\nu}$$
 massless $\delta M_{\mu\nu} = \delta f_{\mu\nu} - \delta g_{\mu\nu}$ massive

$$S_{(2)} = \frac{1}{2} \int d^4x \left[\delta G_{\mu\nu} \mathcal{E}^{\mu\nu\rho\sigma} \delta G_{\rho\sigma} + \delta M_{\mu\nu} \mathcal{E}^{\mu\nu\rho\sigma} \delta M_{\rho\sigma} - \frac{m_{\rm FP}^2}{2} (\delta M^{\mu\nu} \delta M_{\mu\nu} - \delta M^2) - \frac{1}{m_{\rm Pl}} \left(\delta G^{\mu\nu} - \alpha \, \delta M^{\mu\nu} \right) T_{\mu\nu} \right]$$

Structure of Vertices

(bimetric action expanded in mass eigenstates)

Quadratic (Fierz-Pauli)

δG^2	$\delta G \delta M$	δM^2
$1,\Lambda$	0	$1,\Lambda,m_{ m FP}^2$

Cubic

δG^3	$\delta G^2 \delta M$	$\delta G \delta M^2$	δM^3
$1,\Lambda$	0	$1,\Lambda,m_{ ext{FP}}^2$	$\begin{array}{c} \alpha , \alpha \Lambda , \alpha m_{\mathrm{FP}}^2 \\ \frac{1}{\alpha} , \frac{1}{\alpha} \Lambda , \frac{1}{\alpha} m_{\mathrm{FP}}^2 \end{array}$

self-interactions of massless spin-2 sum up to General Relativity

no vertices giving rise to decay of massive into massless spin-2

massive spin-2 particle gravitates like baryonic matter

self-interactions of massive spin-2 are enhanced in the GR limit

