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Planck Collaboration: Cosmological parameters
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is

8

12 Testing DM with cosmology - J. Lesgourgues

Main 2015 results from Planck
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Planck Collaboration: Gravitational lensing by large-scale structures with Planck
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Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
P

m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
P

m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this

8
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
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best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.

13

Planck Collaboration: Cosmological parameters

0

1000

2000

3000

4000

5000

6000

D
T

T
�

[µ
K

2
]

30 500 1000 1500 2000 2500
�

-60
-30
0
30
60

�
D

T
T

�

2 10
-600
-300

0
300
600

Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is

8

16 Testing DM with cosmology - J. Lesgourgues

Status of the post-2015 Planck analysis

TT EE

TE ΦΦ

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

�0.5

0

0.5

1

1.5

2

1 10 100 500 1000 2000

[L
(L

+
1
)]

2
C

�
�

L
/
2
�

[�
1
0

7
]

L

Planck (2015)
Planck (2013)

SPT
ACT

Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
P

m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this
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sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
P

m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this
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May 2016 intermediate results

Planck Collaboration: Planck constraints on reionization history

Fig. 3. EE and T E power spectra for various ⌧ values ranging from 0.04 to 0.08. The ionization fraction is modelled using a
redshift-symmetric tanh function with �z = 0.5. Grey bands represent the cosmic variance (full-sky) associated with the ⌧ = 0.06
model.

spectra that was adapted by Mangilli et al. (2015) to be suitable
for cross-spectra. Cross-spectra between independent data sets
show common sky signal, but are not biased by the noise be-
cause this should be uncorrelated. This approximation assumes
that any systematic residuals are not correlated between the dif-
ferent data sets; We have shown using realistic simulations (in-
cluding Planck-HFI noise characteristics and systematic e↵ect
residuals), that the bias in the cross-spectra is very small and can
be corrected for at the power-spectrum level. Nevertheless, we
choose to remove the first two multipoles (` = 2 and ` = 3),
since they may still be partially contaminated by systematics.
Using those simulations, we derive the C` covariance matrix
used in the likelihood, which propagates both the noise and the
systematic uncertainties. For the astrophysical interpretation, the
power-spectra are estimated with a PCL estimate which is more
conservative. Indeed, it gives a slightly larger distribution on ⌧
than a QML estimator but is less sensitive to the limited number
of simulations available for the analysis.

With Planck sensitivity in polarization, the results from the
low-` EE power spectrum dominate the constraints compared to
the T E power spectrum, as can be seen in Fig. 3. This is because
of the relatively larger cosmic variance for T E (arising from the
temperature term) and the intrinsically weaker dependence on ⌧
(/ ⌧ compared with ⌧2 for EE), as well as the fact that there
is only partial correlation between T and E. As a consequence,
we do not consider the T E data in this analysis. Furthermore,
we do not make use of the high-` likelihoods in EE and T E
from Planck, since they do not carry additional information on
reionization parameters.

Planck temperature observations are complemented at
smaller angular scales by measurements from the ground-
based Atacama Cosmology Telescope (ACT) and South Pole
Telescope (SPT). As explained in Planck Collaboration XI
(2016), the high-` likelihood (hereafter VHL) includes ACT
power spectra at 148 and 218 GHz (Das et al. 2014), with a re-
vised binning (described in Calabrese et al. 2013) and final beam
estimates (Hasselfield et al. 2013), together with SPT measure-
ments in the range 2000 < ` < 13 000 from the 2540 deg2

SPT-SZ survey at 95, 150, and 220 GHz (George et al. 2015).
To assess the consistency between these data sets, we extend
the Planck foreground models up to ` = 13 000, with addi-
tional nuisance parameters for ACT and SPT (as described in

Planck Collaboration XIII 2016). We use the same models for
cosmic infrared background (CIB) fluctuations, the thermal SZ
(tSZ) e↵ect, kSZ e↵ect, and CIB ⇥ tSZ components. The kSZ
template used in the Planck 2015 results assumed homogeneous
reionization. In order to investigate inhomogeneous reionization,
we have modified the kSZ template when necessary, as discussed
in Sect. 4.2.

We use the CMB lensing likelihood
(Planck Collaboration XV 2016) in addition to the CMB
anisotropy likelihood. The lensing information can be
used to break the degeneracy between the normalization
of the initial power spectrum As and ⌧ (as discussed in
Planck Collaboration XIII 2016). Despite this potential for
improvement, we will show in Sect. 4.1 that Planck’s low-`
polarization signal-to-noise ratio is su�ciently high that the
lensing does not bring much additional information for the
reionization constraints.

The Planck reference cosmology used in this paper corre-
sponds to the PlanckTT+lowP+lensing best fit, as described in
table 4, column 2 of Planck Collaboration XIII (2016), namely
⌦bh2 = 0.02226, ⌦ch2 = 0.1197, ⌦m = 0.308, ns = 0.9677,
H0 = 67.81 km s�1 Mpc�1, for which YP = 0.2453. This best-fit
model comes from the combination of three Planck likelihoods:
the temperature power spectrum likelihood at high `; the “lowP”
temperature+polarization likelihood, based on the foreground-
cleaned LFI 70 GHz polarization maps, together with the tem-
perature map from the Commander component-separation algo-
rithm; and the power spectrum of the lensing potential as mea-
sured by Planck.

3. Parametrization of reionization history

The epoch of reionization (EoR) is the period during which
the cosmic gas transformed from a neutral to ionized state
at the onset of the first sources. Details of the transition are
thus strongly connected to many fundamental questions in cos-
mology, such as what were the properties of the first galax-
ies and the first (mini-)quasars, how did the formation of
very metal-poor stars proceed, etc. We certainly know that, at
some point, luminous sources started emitting ultraviolet ra-
diation that reionized the neutral regions around them. After
a su�cient number of ionizing sources had formed, the av-
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Planck Collaboration: Planck constraints on reionization history

Fig. 18. Constraints on ionization fraction during reionization. The allowed models, in terms of zre and �z, translate into an allowed
region in xe(z) (68 % and 95 % in dark blue and light blue, respectively), including the zend > 6 prior here. Left: Constraints from
CMB data using a redshift-symmetric function (xe(z) as a hyperbolic tangent with �z = 0.5). Centre: Constraints from CMB data
using a redshift-asymmetric parameterization (xe(z) as a power law). Right: Constraints from CMB data using a redshift-symmetric
parameterization with additional constraints from the kSZ e↵ect.

function xe(z) with �z = 0.5), a measurement of the Thomson
optical depth

⌧ = 0.058 ± 0.012 (lollipop+PlanckTT), (24)

which is significantly more accurate than previous measure-
ments. Thanks to the relatively high signal-to-noise ratio of the
low-` polarization signal, the combination with lensing or data
from high resolution CMB anisotropy experiments (ACT and
SPT) does not bring much additional constraining power. The
impact on other ⇤CDM parameters is only significant for the
amplitude of the initial scalar power spectrum As and (to a lesser
extent) on its tilt ns. Other parameters are very stable compared
to the Planck 2015 results.

Using Planck data, we have derived constraints on two mod-
els for the reionization history xe(z) that are commonly used in
the literature: a redshift-symmetric form using a hyperbolic tan-
gent transition function; and a redshift-asymmetric form param-
eterized by a power law. We have also investigated the e↵ect
of imposing the condition that the reionization is completed by
z = 6.

Allowing the ionization fraction shape and duration to vary,
we have found very compatible best-fit estimates for the opti-
cal depth (0.059 and 0.060 for the symmetric and asymmetric
model, respectively), showing that the CMB is indeed more sen-
sitive to the value of the optical depth than to the exact shape of
the reionization history. However, the value of the reionization
redshift does slightly depend on the model considered. In the
case of a symmetric parameterization, we have found slightly
larger estimates of zre than in the case of instantaneous reioniza-
tion. This can be understood through the shape of the degeneracy
surface between the reionization parameters. For an asymmetric
parameterization, zre is smaller, due to the fact that xe(z) changes
more rapidly at the end of reionization than the beginning. We
specifically find:

zre = 8.8 ± 0.9 (redshift-symmetric) ; (25)
zre = 8.5 ± 0.9 (redshift-asymmetric) . (26)

Assuming two di↵erent parameterizations of the reionization
history shows how much results on e↵ective parameters (like
the redshift of reionization or its duration) are sensitive to the
assumption of the reionization history shape. The best models of
symmetric and asymmetric parameterization give similar values

for ⌧, and provide reionization redshifts which di↵er by less than
0.4�. Constraints on the limits of possible early reionization are
similar, leading to 10 % reionization levels at around z = 10.

To derive constraints on the duration of the reionization
epoch, we combined CMB data with measurements of the ampli-
tude of the kSZ e↵ect. In the case of a redshift-symmetric model,
we found

�z < 2.8 (95 % CL), (27)

using the additional constraint that the Universe is entirely reion-
ized at redshift 6 (i.e., zend > 6).

Our final constraints on the reionization history are plot-
ted in Fig. 18 for each of the aforementioned cases, i.e., the
redshift-symmetric and redshift-asymmetric models, using only
the CMB, and the redshift-symmetric case using CMB+kSZ (all
with prior zend > 6). Plotted this way, the constraints are not
very tight and are still fairly model dependent. Given the low
value of ⌧ as measured now by Planck, the CMB is not able
to give tight constraints on details of the reionization history.
However, the Planck data suggest that an early onset of reion-
ization is disfavoured. In particular, in all cases, we found that
the Universe was less than 10 % ionized for redshift z > 10.
Furthermore, comparisons with other tracers of the ionization
history show that our new result on the optical depth elimi-
nates most of the tension between CMB-based analyses and
constraints from other astrophysical data. Additional sources of
reionization, non-standard early galaxies, or significantly evolv-
ing escape fractions or clumping factors, are thus not needed.

Ongoing and future experiments like LOFAR, MWA, and
SKA, aimed at measuring the redshifted 21-cm signal from neu-
tral hydrogen during the EoR, should be able to probe reioniza-
tion directly and measure its redshift and duration to high ac-
curacy. Moreover, since reionization appears to happen at red-
shifts below 10, experiments measuring the global emission of
the 21-m line over the sky (e.g., EDGES, Bowman & Rogers
2010, LEDA, Greenhill & Bernardi 2012, DARE, Burns et al.
2012), NenuFAR, Zarka et al. 2012, SARAS, Patra et al. 2013,
SCI-HI, Voytek et al. 2014, ZEBRA, Mahesh et al. 2014, and
BIGHORNS, Sokolowski et al. 2015) will also be able to derive
very competitive constraints on the models (e.g., Liu et al. 2015;
Fialkov & Loeb 2016).

Acknowledgements. The Planck Collaboration acknowledges the support of:
ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF
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�z = 0.5), for the various data combinations are:

⌧ = 0.053+0.014
�0.016 , lollipop

5 ; (4)

⌧ = 0.058+0.012
�0.012 , lollipop+PlanckTT ; (5)

⌧ = 0.058+0.011
�0.012 , lollipop+PlanckTT+lensing ; (6)

⌧ = 0.054+0.012
�0.013 , lollipop+PlanckTT+VHL . (7)

We can see an improvement of the posterior width when adding
temperature anisotropy data to the lollipop likelihood. This
comes from the fact that the temperature anisotropies help to fix
other ⇤CDM parameters, in particular the normalization of the
initial power spectrum As, and its spectral index, ns. CMB lens-
ing also helps to reduce the degeneracy with As, while getting
rid of the tension with the phenomenological lensing parameter
AL when using PlanckTT only (see Planck Collaboration XIII
2016), even if the impact on the error bars is small. Comparing
the posteriors in Fig. 6 with the constraints from PlanckTT alone
(see figure 45 in Planck Collaboration XI 2016) shows that in-
deed, the polarization likelihood is su�ciently powerful that it
breaks the degeneracy between ns and ⌧. The impact on other
⇤CDM parameters is small, typically below 0.3� (as shown
more explicitly in Appendix B). The largest changes are for
⌧ and As, where the lollipop likelihood dominates the con-
straint. The parameter �8 shifts towards slightly smaller val-
ues by about 1�. This is in the right direction to help resolve
some of the tension with cluster abundances and weak galaxy
lensing measurements, discussed in Planck Collaboration XX
(2014) and Planck Collaboration XIII (2016); however, some
tension still remains.

Combining with VHL data gives compatible results, with
consistent error bars. The slight shift toward lower ⌧ value (by
0.3�) is related to the fact that the PlanckTT likelihood alone
pushes towards higher ⌧ values (see Planck Collaboration XIII
2016), while the addition of VHL data helps to some extent in
reducing the tension on ⌧ between high-` and low-` polarization.

Fig. 5. Posterior distribution for ⌧ from the various combinations
of Planck data. The grey band shows the lower limit on ⌧ from
the Gunn-Peterson e↵ect.

As mentioned earlier, astrophysics constraints from mea-
surements of the Gunn-Peterson e↵ect provide strong evidence

5In this case only, other⇤CDM parameters are held fixed, including
As exp (�2⌧).

Fig. 6. Constraints on ⌧, As, ns, and �8 for the ⇤CDM cosmol-
ogy from PlanckTT, showing the impact of replacing the lowP
likelihood from Planck 2015 release with the new lollipop
likelihood. The top panels show results without lensing, while
the bottom panels are with lensing.

that the IGM was highly ionized by a redshift of z ' 6. This
places a lower limit on the optical depth (using Eq. 1), which
in the case of instantaneous reionization in the standard ⇤CDM
cosmology corresponds to ⌧ = 0.038.

4.2. Kinetic Sunyaev-Zeldovich effect

The Thomson scattering of CMB photons o↵ ionized elec-
trons induces secondary anisotropies at di↵erent stages of the
reionization process. In particular, we are interested here in
the e↵ect of photons scattering o↵ electrons moving with bulk
velocity, which is called the “kinetic Sunyaev Zeldovich” or
kSZ e↵ect. It is common to distinguish between the “homoge-
neous” kSZ e↵ect, arising when the reionization is complete
(e.g., Ostriker & Vishniac 1986), and “patchy” (or inhomoge-
neous) reionization (e.g., Aghanim et al. 1996), which arises
during the process of reionization, from the proper motion of
ionized bubbles around emitting sources. These two compo-
nents can be described by their power spectra, which can be
computed analytically or derived from numerical simulations. In
Planck Collaboration XI (2016), we used a kSZ template based
on homogeneous simulations, as described in Trac et al. (2011).

In the following, we assume that the kSZ power spectrum is
given by

DkSZ
` = Dh�kSZ

` +Dp�kSZ
` , (8)

whereD` = `(` + 1)C`/2⇡ and the superscripts “h-kSZ” and “p-
kSZ” stand for “homogeneous” and “patchy” reionization, re-
spectively. For the homogeneous reionization, we use the kSZ
template power spectrum given by Shaw et al. (2012) calibrated
with a simulation that includes the e↵ects of cooling and star-
formation (which we label “CSF”). For the patchy reionization
kSZ e↵ect we use the fiducial model of Battaglia et al. (2013).

In the range ` = 1000–7000, the shape of the kSZ power
spectrum is relatively flat and does not vary much with the de-
tailed reionization history. The relative contributions (specifi-
cally “CSF” and “patchy”) to the kSZ power spectrum are shown
in Fig 7 and compared to the “homogeneous” template used in
Planck Collaboration XI (2016), rescaled to unity at ` = 3000.
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May 2016 intermediate results

New constraints propagate also to neutrino mass: 

Smaller τreio  >> smaller primordial amplitude As   
       >> prediction of less CMB lensing, but Cl

TT appear quite lensed   
       >> tighter neutrino mass bounds 

More conservative:  

Planck 2015 high-l TT,TE,EE + new 2016 low-l TT,TE,EE: 
Mν < 340 meV (95%CL)  

More agressive:  

Planck 2015 high-l TT,TE,EE + new 2016 low-l TT,TE,EE + lensing ΦΦ : 
Mν < 140 meV (95%CL)  

Planck 2013 + Lyman-α from BOSS: 
Mν < 120 meV (95%CL)  

1605.03507 
1605.02085



CMB-BBN concordance from 2015: 

           versus 

Since then: 
• new Helium prediction halved error (Aver et al. 2013), but still well consistent 
• nuclear rate affecting Deuterium: new theoretical calculation (Marcucci et al 

2016) lowers yDP(ωb), thus further improving consistency 
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Fig. 35. Predictions of standard BBN for the primordial abun-
dance of 4He (top) and deuterium (bottom), as a function of the
baryon density !b. The width of the green stripes corresponds
to 68 % uncertainties on nuclear reaction rates and on the neu-
tron lifetime. The horizontal bands show observational bounds
on primordial element abundances compiled by various authors,
and the red vertical band shows the Planck TT+lowP+BAO
bounds on !b (all with 68 % errors). The BBN predictions and
CMB results shown here assume Ne↵ = 3.046 and no significant
lepton asymmetry.

the neutron life-time:

YBBN
P = 0.2311 + 0.9502!b � 11.27!2

b

+ �Ne↵
⇣
0.01356 + 0.008581!b � 0.1810!2

b

⌘

+ �N2
e↵

⇣
�0.0009795 � 0.001370!b + 0.01746!2

b

⌘
;

(70)

yDP = 18.754 � 1534.4!b + 48656!2
b � 552670!3

b

+ �Ne↵
⇣
2.4914 � 208.11!b + 6760.9!2

b � 78007!3
b

⌘

+ �N2
e↵

⇣
0.012907 � 1.3653!b + 37.388!2

b � 267.78!3
b

⌘
.

(71)

By averaging over several measurements, the Particle Data
Group 2014 (Olive et al. 2014) estimates the neutron life-time
to be ⌧n = (880.3 ± 1.1) s at 68 % CL.26 The expansions in
Eqs. (70) and (71) are based on this central value, and we as-
sume that Eq. (70) predicts the correct helium fraction up to a
standard error �(YBBN

P ) = 0.0003, obtained by propagating the
error on ⌧n.

The uncertainty on the deuterium fraction is dominated
by that on the rate of the reaction d(p, �)3He. For that rate,
in PCP13 we relied on the result of Serpico et al. (2004),
obtained by fitting several experiments. The expansions of
Eqs. (70) and (71) now adopt the latest experimental determi-
nation by Adelberger et al. (2011) and use the best-fit expres-
sion in their Eq. (29). We also rely on the uncertainty quoted in

26However, the most recent individual measurement by Yue et al.
(2013) gives ⌧n = [887.8±1.2 (stat.)±1.9 (syst.)] s, which is discrepant
at 3.3� with the previous average (including only statistical errors).
Hence one should bear in mind that systematic e↵ects could be under-
estimated in the Particle Data Group result. Adopting the central value
of Yue et al. (2013) would shift our results by a small amount, a↵ecting
mainly helium (by a factor 1.0062 for YP and 1.0036 for yDP).

Adelberger et al. (2011) and propagate it to the deuterium frac-
tion. This gives a standard error �(yDP) = 0.06, which is more
conservative than the error adopted in PCP13.

6.5.1. Primordial abundances from Planck data and
standard BBN

We first investigate the consistency of standard BBN and the
CMB by fixing the radiation density to its standard value, i.e.,
Ne↵ = 3.046, based on the assumption of standard neutrino de-
coupling and no extra light relics. We can then use Planck data to
measure !b assuming base ⇤CDM and test for consistency with
experimental abundance measurements. The 95 % CL bounds
obtained for the base ⇤CDM model for various data combina-
tions are

!b =

8>>>>>>>><
>>>>>>>>:

0.02222+0.00045
�0.00043 Planck TT+lowP,

0.02226+0.00040
�0.00039 Planck TT+lowP+BAO,

0.02225+0.00032
�0.00030 Planck TT,TE,EE+lowP,

0.02229+0.00029
�0.00027 Planck TT,TE,EE+lowP+BAO,

(72)
corresponding to a predicted primordial 4He number density
fraction (95 % CL) of

YBBN
P =

8>>>>>>>>><
>>>>>>>>>:

0.24665+(0.00020) 0.00063
�(0.00019) 0.00063 Planck TT+lowP,

0.24667+(0.00018) 0.00063
�(0.00018) 0.00063 Planck TT+lowP+BAO,

0.24667+(0.00014) 0.00062
�(0.00014) 0.00062 Planck TT,TE,EE+lowP,

0.24668+(0.00013) 0.00061
�(0.00013) 0.00061 Planck TT,TE,EE+lowP+BAO,

(73)
and deuterium fraction (95 % CL)

yDP =

8>>>>>>>>><
>>>>>>>>>:

2.620+(0.083) 0.15
�(0.085) 0.15 Planck TT+lowP,

2.612+(0.075) 0.14
�(0.074) 0.14 Planck TT+lowP+BAO,

2.614+(0.057) 0.13
�(0.060) 0.13 Planck TT,TE,EE+lowP,

2.606+(0.051) 0.13
�(0.054) 0.13 Planck TT,TE,EE+lowP+BAO.

(74)
The first set of error bars (in parentheses) in Eqs. (73) and (74)
reflect only the uncertainty on !b. The second set includes the
theoretical uncertainty on the BBN predictions, added in quadra-
ture to the errors from !b. The total errors in the predicted he-
lium abundances are dominated by the BBN uncertainty as in
PCP13. For deuterium, the Planck 2015 results improve the de-
termination of !b to the point where the theoretical errors are
comparable or larger than the errors from the CMB. In other
words, for base ⇤CDM the predicted abundances cannot be im-
proved substantially by further measurements of the CMB. This
also means that Planck results can, in principle, be used to in-
vestigate nuclear reaction rates that dominate the theoretical un-
certainty (see Sect. 6.5.2).

The results of Eqs. (73) and (74) are well within the
ranges indicated by the latest measurement of primordial abun-
dances, as illustrated by Fig. 35. The helium data compilation of
Aver et al. (2013) gives YBBN

P = 0.2465 ± 0.0097 (68 % CL),
and the Planck prediction is near the middle of this range.27

As summarized by Aver et al. (2013); Peimbert (2008) helium

27A substantial part of this error comes from the regression to zero
metallicity. The mean of the 17 measurements analysed by Aver et al.
(2013) is hYBBN

P i = 0.2535 ± 0.0036, i.e., about 1.7� higher than the
Planck predictions of Eq. (73).

47

Nuclear physics at 
T~1MeV

Relativistic 
hydrodynamics + 

QED at T~1eV



CMB-BBN concordance from 2015: 
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Fig. 36. Constraints in the !b–Ne↵ plane from Planck and
Planck+BAO data (68 % and 95 % contours) compared to the
predictions of BBN given primordial element abundance mea-
surements. We show the 68 % and 95 % confidence regions de-
rived from 4He bounds compiled by Aver et al. (2013) and from
deuterium bounds compiled by Cooke et al. (2014). In the CMB
analysis, Ne↵ is allowed to vary as an additional parameter to
base ⇤CDM, with YP fixed as a function of !b and Ne↵ accord-
ing to BBN predictions. These constraints assume no significant
lepton asymmetry.

abundance measurements derived from emission lines from low-
metallicity H ii regions are notoriously di�cult and prone to sys-
tematic errors. As a result, many discrepant helium abundance
measurements can be found in the literature. Izotov et al. (2014)
have reported a helium abundance measurement of YBBN

P =
0.2551 ± 0.0022, which is discrepant with the base ⇤CDM pre-
dictions by 3.4�. Such a high helium fraction could be ac-
commodated by increasing Ne↵ (see Fig. 36 and Sect. 6.5.3).
However, at present it is not clear whether the error quoted by
Izotov et al. (2014) accurately reflects systematic errors, includ-
ing the error in extrapolating to zero metallicity.

Historically, deuterium abundance measurements have
shown excess scatter over that expected from statistical er-
rors indicating the presence of systematic errors in the obser-
vations. Figure 35 shows the data compilation of Iocco et al.
(2009), yDP = 2.87 ± 0.22 (68 % CL), which includes mea-
surements based on damped Ly↵ and Lyman limit systems.
We also show the more recent results by Cooke et al. (2014)
(see also Pettini & Cooke 2012) based on their observations of
low-metallicity damped Ly↵ absorption systems in two quasars
(SDSS J1358+6522, zabs = 3.06726; SDSS J1419+0829, zabs =
3.04973) and a reanalysis of archival spectra of damped Ly↵
systems in three further quasars that satisfy strict selection cri-
teria. The Cooke et al. (2014) analysis gives yDP = 2.53 ± 0.04
(68 % CL), somewhat lower than the central Iocco et al. (2009)
value, but with a much smaller error. The Cooke et al. (2014)
value is almost certainly the more reliable measurement, as ev-
idenced by the consistency of the deuterium abundances of the
five systems in their analysis. The Planck base ⇤CDM predic-
tions of Eq. (74) lie within 1� of the Cooke et al. (2014) result.
This is a remarkable success for the standard theory of BBN.

It is worth noting that the Planck data are so accurate that !b
is insensitive to the underlying cosmological model. In our grid

of extensions to base ⇤CDM the largest degradation of the error
in !b is in models that allow Ne↵ to vary. In these models, the
mean value of !b is almost identical to that for base ⇤CDM, but
the error on !b increases by about 30 %. The value of !b is sta-
ble to even more radical changes to the cosmology, for example,
adding general isocurvature modes (Planck Collaboration XX
2015).

If we relax the assumption that Ne↵ = 3.046 (but adhere to
the hypothesis that electron neutrinos have a standard distribu-
tion with a negligible chemical potential), BBN predictions de-
pend on both parameters (!b,Ne↵). Following the same method-
ology as in Sect. 6.4.4 of PCP13, we can identify the region of
the (!b,Ne↵) parameter space that is compatible with direct mea-
surements of the primordial helium and deuterium abundances,
including the BBN theoretical errors. This is illustrated in Fig. 36
for the Ne↵ extension to base ⇤CDM. The region preferred by
CMB observations lies at the intersection between the helium
and deuterium abundance 68 % CL preferred regions and is com-
patible with the standard value of Ne↵ = 3.046. This confirms the
beautiful agreement between CMB and BBN physics. Figure 36
also shows that the Planck polarization data helps in reducing
the degeneracy between !b and Ne↵ .

We can actually make a more precise statement by combin-
ing the posterior distribution on (!b,Ne↵) obtained for Planck
with that inferred from helium and deuterium abundance, in-
cluding observational and theoretical errors. This provides joint
CMB+BBN predictions on these parameters. After marginaliz-
ing over !b, the 95 % CL preferred ranges for Ne↵ are

Ne↵ =

8>>>>><
>>>>>:

3.11+0.59
�0.57 He+Planck TT+lowP,

3.14+0.44
�0.43 He+Planck TT+lowP+BAO,

2.99+0.39
�0.39 He+Planck TT,TE,EE+lowP,

(75)

when combining Planck with the helium abundance estimated
by Aver et al. (2013), or

Ne↵ =

8>>>>><
>>>>>:

2.95+0.52
�0.52 D+Planck TT+lowP,

3.01+0.38
�0.37 D+Planck TT+lowP+BAO,

2.91+0.37
�0.37 D+Planck TT,TE,EE+lowP,

(76)

when combining with the deuterium abundance measured
by Cooke et al. (2014). These bounds represent the best
currently-available estimates of Ne↵ and are remarkably consis-
tent with the standard model prediction.

The allowed region in (!b,Ne↵) space does not increase sig-
nificantly when other parameters are allowed to vary at the same
time. From our grid of extended models, we have checked that
this conclusion holds in models with neutrino masses, tensor
fluctuations, or running of the scalar spectral index.

6.5.2. Constraints from Planck and deuterium observations
on nuclear reaction rates

We have seen that primordial element abundances inferred
from direct observations are consistent with those inferred from
Planck data under the assumption of standard BBN. However,
the Planck determination of !b is so precise that the theoreti-
cal errors in the BBN predictions are now a dominant source
of uncertainty. As noted by Cooke et al. (2014), one can begin
to think about using CMB measurements together with accurate
deuterium abundance measurements to learn about the underly-
ing BBN physics.
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CMB-BBN concordance from 2015: 
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                                  Predicting helium fraction directly from CMB
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While for helium the theoretical error comes mainly from
the uncertainties in the neutron lifetime, for deuterium it is
dominated by uncertainties in the radiative capture process
d(p, �)3He, converting deuterium into helium. The present ex-
perimental uncertainty for the S -factor at low energy (relevant
for BBN), is in the range 6–10 % (Ma et al. 1997). However,
as noted by several authors (see e.g., Nollett & Holder 2011;
Di Valentino et al. 2014) the best fit value of S (E) inferred
from experimental data in the range 30 keV E  300 keV is
lower by about 5–10 % compared to theoretical expectations
(Viviani et al. 2000; Marcucci et al. 2005). The PArthENoPE
BBN code assumes the lower experimental value for d(p, �)3He,
and this might explain why the deuterium abundance measured
by Cooke et al. (2014) is slightly smaller than the value inferred
by Planck.

To investigate this further, following the methodology of
Di Valentino et al. (2014), we perform a combined analysis of
Planck and deuterium observations, to constrain the value of the
d(p, �)3He reaction rate. As in Di Valentino et al. (2014), we pa-
rameterize the thermal rate R2(T ) of the d(p, �)3He process in
the PArthENoPE code by introducing a rescaling factor A2 of
the experimental rate R ex

2 (T ), i.e., R2(T ) = A2 Rex
2 (T ), and solve

for A2 using various Planck+BAO data combinations, given the
Cooke et al. (2014) deuterium abundance measurements.

Assuming the base ⇤CDM model we find (68 % CL)
A2 = 1.106 ± 0.071 Planck TT+lowP , (77a)
A2 = 1.098 ± 0.067 Planck TT+lowP+BAO , (77b)
A2 = 1.110 ± 0.062 Planck TT,TE,EE+lowP , (77c)
A2 = 1.109 ± 0.058 Planck TT,TE,EE+lowP+BAO . (77d)
The posteriors for A2 are shown in Fig. 37. These results sug-
gest that the d(p, �)3He reaction rate may be have been under-
estimated by about 10 %. Evidently, tests of the standard BBN
picture appear to have reached the point where they are limited
by uncertainties in nuclear reaction rates. There is therefore a
strong case to improve the precision of experimental measure-
ments (e.g., Anders et al. 2014) and theoretical computations of
key nuclear reaction rates relevant for BBN.

Fig. 37. Posteriors for the A2 reaction rate parameter for vari-
ous data combinations. The vertical dashed line shows the value
A2 = 1 that corresponds to the current experimental estimate of
the d(p, �)3He rate used in the PArthENoPE BBN code.
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Fig. 38. Constraints in the !b–YBBN
P plane from Planck and

Planck+BAO, compared to helium abundance measurements.
68 % and 95 % contours are plotted for the CMB(+BAO) data
combinations when YBBN

P is allowed to vary as an additional
parameter to base ⇤CDM. The horizontal band shows observa-
tional bounds on 4He compiled by Aver et al. (2013) with 68 %
and 95 % errors, while the dashed line at the top of the figure de-
lineates the conservative 95 % upper bound inferred from Solar
helium abundance by Serenelli & Basu (2010). The green stripe
shows the predictions of standard BBN for the primordial abun-
dance of 4He as a function of the baryon density. Both BBN pre-
dictions and CMB results assume Ne↵ = 3.046 and no significant
lepton asymmetry.

Fig. 39. As Fig. 38 but now allowing YBBN
P and Ne↵ to vary as

parameter extensions to base ⇤CDM.

6.5.3. Model-independent bounds on the helium fraction
from Planck

Instead of inferring the primordial helium abundance from BBN
codes using (!b,Ne↵) constraints from Planck, we can measure it
directly, since variations in YBBN

P modify the density of free elec-
trons between helium and hydrogen recombination and therefore
a↵ect the damping tail of the CMB anisotropies.
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DM constraints

• WIMP annihilation cross-section: CMB effect controlled by <σv>/m (for each 
fixed branching ratios):

Energy injected in IGM through 
heating, ionisation, excitation:

Most characteristic signature for 
polarisation:
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• constraints competitive with DM indirect detection: 

• Thermal WIMP cross-section: m > 10 to 40 GeV 
(95%CL, Slatyer 2015) 

• potential x3 improvement with ideal CMB 
experiment (cosmic variance limited, perfect 
foreground cleaning) but not by Planck
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FIG. 4: The upper panel shows the fe↵ coe�cients as a function of DM mass for each of a range of SM final states, as indicated
in the legend. The V V ! 4X states correspond to DM annihilating to a pair of new neutral vector bosons V , which each
subsequently decay into e

+
e

�, µ+
µ

� or ⌧+
⌧

� (labeled by X). The lower panels show the resulting estimated constraints from
recent Planck results [8], as a function of DM mass, for each of the channels. The left panel covers the range from keV-scale
masses up to 5 GeV, and only contains results for the e

+
e

�, �� and V V ! 4e channels; the right panel covers the range
from 5 GeV up to 10 TeV, and covers all channels provided in the PPPC4DMID package [27]. The light and dark gray regions
in the lower right panel correspond to the 5� and 3� regions in which the observed positron fraction can be explained by DM
annihilation to µ

+
µ

�, for a cored DM density profile (necessary to evade �-ray constraints), taken from [36]. The solid yellow
line corresponds to the preferred cross section for the best fit 4-lepton final states identified by [37], who argued that models
in this category can still explain the positron fraction without conflicts with non-observation in other channels. The red and
black circles correspond to models with 4e (red) and 4µ (black) final states, fitted to the positron fraction in [38]; as in that
work, filled and open circles correspond to di↵erent cosmic-ray propagation models.

but its e↵ect is generally small (at the percent level).
In general, we see that the final states considered fall

into three categories:

• Final states where the bulk of the power pro-
ceeds into e

+

e

� and photons, where at masses
above 100 GeV the constraint approaches h�vi .
10�27(m�/1GeV) cm3/s.

• Annihilation to neutrinos, where the constraint
arises entirely from electroweak corrections, and is
negligible below ⇠ 200 GeV; at O(TeV) masses,
cross sections as low as a few ⇥10�23 cm3/s can be
constrained. Interestingly, this bound is competi-
tive with that placed by IceCube from observations
of galaxy clusters [41], the Galactic Center [42], and
the Milky Way halo [43], and unlike those limits is
independent of uncertainties in the local DM den-
sity, the DM distribution, and the amount of DM

substructure.

• A band with a width of roughly a factor of 150% in
h�vi that encompasses all the other channels stud-
ied, which at high masses corresponds to h�vi .
2� 3⇥ 10�27(m�/1GeV) cm3/s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio
for DM annihilation directly to neutrinos, one must have
h�vi . 3⇥10�27(m�/1GeV) cm3/s. It is thus challenging
to obtain the correct thermal relic cross section for s-wave
annihilating DM with mass much below m� ⇠ 10 GeV,
without violating these limits (although models with sup-
pressed annihilation at late times may still be viable,
e.g. asymmetric DM models or the scenarios proposed in
[44, 45]). At higher masses, the cross sections constrained
are well above the thermal relic value, but are highly rele-
vant for DM explanations of the positron excess observed
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from 5 GeV up to 10 TeV, and covers all channels provided in the PPPC4DMID package [27]. The light and dark gray regions
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• Annihilation to neutrinos, where the constraint
arises entirely from electroweak corrections, and is
negligible below ⇠ 200 GeV; at O(TeV) masses,
cross sections as low as a few ⇥10�23 cm3/s can be
constrained. Interestingly, this bound is competi-
tive with that placed by IceCube from observations
of galaxy clusters [41], the Galactic Center [42], and
the Milky Way halo [43], and unlike those limits is
independent of uncertainties in the local DM den-
sity, the DM distribution, and the amount of DM
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• A band with a width of roughly a factor of 150% in
h�vi that encompasses all the other channels stud-
ied, which at high masses corresponds to h�vi .
2� 3⇥ 10�27(m�/1GeV) cm3/s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio
for DM annihilation directly to neutrinos, one must have
h�vi . 3⇥10�27(m�/1GeV) cm3/s. It is thus challenging
to obtain the correct thermal relic cross section for s-wave
annihilating DM with mass much below m� ⇠ 10 GeV,
without violating these limits (although models with sup-
pressed annihilation at late times may still be viable,
e.g. asymmetric DM models or the scenarios proposed in
[44, 45]). At higher masses, the cross sections constrained
are well above the thermal relic value, but are highly rele-
vant for DM explanations of the positron excess observed
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• constraints competitive with DM indirect detection: 

• Thermal WIMP cross-section: m > 10 to 40 GeV 
(95%CL, Slatyer 2015) 

• potential x3 improvement with ideal CMB 
experiment (cosmic variance limited, perfect 
foreground cleaning) but not by Planck
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FIG. 4: The upper panel shows the fe↵ coe�cients as a function of DM mass for each of a range of SM final states, as indicated
in the legend. The V V ! 4X states correspond to DM annihilating to a pair of new neutral vector bosons V , which each
subsequently decay into e

+
e

�, µ+
µ

� or ⌧+
⌧

� (labeled by X). The lower panels show the resulting estimated constraints from
recent Planck results [8], as a function of DM mass, for each of the channels. The left panel covers the range from keV-scale
masses up to 5 GeV, and only contains results for the e

+
e

�, �� and V V ! 4e channels; the right panel covers the range
from 5 GeV up to 10 TeV, and covers all channels provided in the PPPC4DMID package [27]. The light and dark gray regions
in the lower right panel correspond to the 5� and 3� regions in which the observed positron fraction can be explained by DM
annihilation to µ

+
µ

�, for a cored DM density profile (necessary to evade �-ray constraints), taken from [36]. The solid yellow
line corresponds to the preferred cross section for the best fit 4-lepton final states identified by [37], who argued that models
in this category can still explain the positron fraction without conflicts with non-observation in other channels. The red and
black circles correspond to models with 4e (red) and 4µ (black) final states, fitted to the positron fraction in [38]; as in that
work, filled and open circles correspond to di↵erent cosmic-ray propagation models.

but its e↵ect is generally small (at the percent level).
In general, we see that the final states considered fall

into three categories:

• Final states where the bulk of the power pro-
ceeds into e

+

e

� and photons, where at masses
above 100 GeV the constraint approaches h�vi .
10�27(m�/1GeV) cm3/s.

• Annihilation to neutrinos, where the constraint
arises entirely from electroweak corrections, and is
negligible below ⇠ 200 GeV; at O(TeV) masses,
cross sections as low as a few ⇥10�23 cm3/s can be
constrained. Interestingly, this bound is competi-
tive with that placed by IceCube from observations
of galaxy clusters [41], the Galactic Center [42], and
the Milky Way halo [43], and unlike those limits is
independent of uncertainties in the local DM den-
sity, the DM distribution, and the amount of DM

substructure.

• A band with a width of roughly a factor of 150% in
h�vi that encompasses all the other channels stud-
ied, which at high masses corresponds to h�vi .
2� 3⇥ 10�27(m�/1GeV) cm3/s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio
for DM annihilation directly to neutrinos, one must have
h�vi . 3⇥10�27(m�/1GeV) cm3/s. It is thus challenging
to obtain the correct thermal relic cross section for s-wave
annihilating DM with mass much below m� ⇠ 10 GeV,
without violating these limits (although models with sup-
pressed annihilation at late times may still be viable,
e.g. asymmetric DM models or the scenarios proposed in
[44, 45]). At higher masses, the cross sections constrained
are well above the thermal relic value, but are highly rele-
vant for DM explanations of the positron excess observed
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negligible below ⇠ 200 GeV; at O(TeV) masses,
cross sections as low as a few ⇥10�23 cm3/s can be
constrained. Interestingly, this bound is competi-
tive with that placed by IceCube from observations
of galaxy clusters [41], the Galactic Center [42], and
the Milky Way halo [43], and unlike those limits is
independent of uncertainties in the local DM den-
sity, the DM distribution, and the amount of DM
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• A band with a width of roughly a factor of 150% in
h�vi that encompasses all the other channels stud-
ied, which at high masses corresponds to h�vi .
2� 3⇥ 10�27(m�/1GeV) cm3/s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio
for DM annihilation directly to neutrinos, one must have
h�vi . 3⇥10�27(m�/1GeV) cm3/s. It is thus challenging
to obtain the correct thermal relic cross section for s-wave
annihilating DM with mass much below m� ⇠ 10 GeV,
without violating these limits (although models with sup-
pressed annihilation at late times may still be viable,
e.g. asymmetric DM models or the scenarios proposed in
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are well above the thermal relic value, but are highly rele-
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• constraints competitive with DM indirect detection: 

• Thermal WIMP cross-section: m > 10 to 40 GeV 
(95%CL, Slatyer 2015) 

• potential x3 improvement with ideal CMB 
experiment (cosmic variance limited, perfect 
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cross sections as low as a few ⇥10�23 cm3/s can be
constrained. Interestingly, this bound is competi-
tive with that placed by IceCube from observations
of galaxy clusters [41], the Galactic Center [42], and
the Milky Way halo [43], and unlike those limits is
independent of uncertainties in the local DM den-
sity, the DM distribution, and the amount of DM
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• A band with a width of roughly a factor of 150% in
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ied, which at high masses corresponds to h�vi .
2� 3⇥ 10�27(m�/1GeV) cm3/s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio
for DM annihilation directly to neutrinos, one must have
h�vi . 3⇥10�27(m�/1GeV) cm3/s. It is thus challenging
to obtain the correct thermal relic cross section for s-wave
annihilating DM with mass much below m� ⇠ 10 GeV,
without violating these limits (although models with sup-
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• Beyond Planck publications: wide range of constraints derived from Planck on DM 
decay, PBH evaporation, possible small but non negligible DM scattering rates, 
etc. 

• some covered by talk of Pasquale Serpico (anisotropies) and Jens Chluba 
(spectral distorsions)

DM constraints
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Inflation

No statistically significant evidence for deviations from canonical slow-roll single-field : 
• no primordial non-gaussianity  
• no running of spectral index 
• no features in primordial spectrum 
• no isocurvature modes (here, restricted case of correlated CDM iso. modes): 

Isocurvature&modes&
(simple&case&of&fully&correlated&ma]er&isocurvature&modes)&

0.945 0.960 0.975 0.990

ns
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�0.006
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↵
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preliminary&

Isocurvature modes: 
example of big 

improvement triggered by 
polarisation!
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Inflation
Inflationary models & Planck
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Fig. 12.— Joint two-dimensional marginalized contours (68% and 95%) for infla-
tionary parameters, (r, ns) (left panel) and (r, dns/d ln k) (right panel), for Model

M11 in Table 3, with parameters defined at k = 0.002 Mpc−1. (Upper) WMAP
only. (Middle) WMAP+SDSS. (Bottom) WMAP+CBI+VSA. Note that ns > 1

is favored because r and ns are defined at k = 0.002 Mpc−1. At k = 0.05 Mpc−1

ns < 1 is favored. The data do not require a running spectral index, dns/d ln k, at

more than the 95% confidence level.

Figure 13 shows that both the power law ΛCDM model and the running spectral index
model fit the CMB data. At present, the small scale data do not yet clearly distinguish the

two models.

A large absolute value of running would be problematic for most inflationary mod-

els, so further testing of this suggestive trend is important for our understanding of early

Compared to WMAP 3-year (2006)
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two models.
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Inflationary models & Planck
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• Tension on convex models with canonical kinetic term 
• OK for Starobinsky, Higgs, some hilltop/SSB, logarithmic radiative corrections
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Other datasets
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Other datasetsWMAP in the common range (2<l<800)
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Other datasets

Planck Collaboration: Cosmological parameters
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 14. Comparison of various measurements of ⌦m for a
⇤CDM cosmology.

7. Dark energy constraints from the combination of
supernovae and complementary probes

The redshift lever arm of our SN Ia sample is insu�cient to con-
strain all the parameters in more general dark energy models. In
this section we combine SNe Ia with other probes to test exten-
sions of the⇤CDM model. We do not seek to be comprehensive,
but restrict our study to combining our SNe constraints with the
most recent measurements of the CMB fluctuations and of the
BAO scale.

7.1. Complementary data

7.1.1. Power spectrum of the Cosmic Microwave Background
fluctuations

The most recent measurement of the CMB temperature fluctu-
ations has been provided by the 2013 release of the Planck ex-
periment results (Planck Collaboration I 2013). This release is
based on data gathered in the first 15.5 months of satellite oper-
ation. It delivered maps of temperature fluctuations over the en-
tire sky in nine frequency bands (30-857 GHz). The analysis of
Planck data exploits the multiwavelength coverage to determine
the CMB temperature fluctuation power spectrum after remov-
ing the foreground emissions (Planck Collaboration XII 2013;
Planck collaboration XV 2013). Their results are summarized
by a likelihood function for the CMB spectrum given the Planck
data (Planck collaboration XV 2013).

The CMB temperature power spectrum is directly sensitive
to matter densities and measures precisely the angular diameter
distance at the last-scattering surface (z ⇡ 1090). This precise
measurement of the early universe complements very well the
SN Ia distance measurements in the late Universe. The combi-
nation produces constraints on dark-energy models that cannot
be obtained from the CMB alone because of the geometric de-
generacy.

For this analysis, we use the Planck measurement of
the CMB temperature fluctuations and the WMAP measure-
ment of the large-scale fluctuations of the CMB polarization
(Bennett et al. 2013). This combination of CMB data is de-
noted “Planck+WP” to follow the nomenclature used by Planck
Collaboration XVI (2013). We summarize the geometrical con-
straints inferred from those measurements by a Gaussian prior

on the value of the baryon density today !b = ⌦bh2, the cold
dark matter density today !c = ⌦ch2, and ✓MC the CosmoMC
approximation of the sound horizon angular size computed from
the Hu & Sugiyama (1996) fitting formulae. This combination of
parameters is well constrained by the temperature power spec-
trum and is independent of any assumptions about dark en-
ergy (for the range of models considered in this paper). The
WMAP polarization information slightly improves the Planck
constraints by reducing degeneracies, which involve the damp-
ing of small scale fluctuations by reionization and are unresolved
by the temperature spectrum alone. Our prior has the form:19

�2
cmb = (v � vcmb)†C�1

cmb(v � vcmb) (18)

where:

vcmb = (!b,!c, 100✓MC)cmb = (0.022065, 0.1199, 1.041) (19)

and Ccmb is the best fit covariance matrix for v (marginalized
over all other parameters):

Ccmb = 10�7

0
BBBBBB@

0.79039 �4.0042 0.80608
�4.0042 66.950 �6.9243
0.80608 �6.9243 3.9712

1
CCCCCCA . (20)

The use of a distance prior is only an approximate sum-
mary of CMB constraints for dark energy. In particular, the sen-
sitivity of the CMB to the late-time growth of structure is ne-
glected. However, these e↵ects are small, and our approximation
is known to adequately represent more sensitive combinations
such as CMB+SNe Ia and CMB+BAO (see, e.g., the discus-
sions in Komatsu et al. 2011, Sect. 5.5 and references therein).
Our approach has the advantage of being purely geometrical and
easy to calculate. We provide a comparison of our results with
the full Planck likelihood (Planck collaboration XV 2013) in
Appendix D: in the case of a flat universe model with a con-
stant equation of state, the di↵erence in best fit values for w is
less than 0.3� and the uncertainties are the same. We provide the
tools to use our data in investigations of more general dark en-
ergy models in which the above approximation is not valid (see
Appendix F).

Planck also provides a reconstruction of the CMB weak-
lensing potential (Planck Collaboration XVII 2013) that breaks
part of the geometric degeneracy that arises from the CMB tem-
perature spectrum alone. Better constraints on the foreground
contamination of the temperature spectrum can also be ob-
tained from higher resolution experiments, such as the Atacama
Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (Reichardt et al. 2012). Exhaustive investigations of
constraints provided by the various combinations of CMB data
are conducted in Planck Collaboration XVI (2013). These re-
sults suggest little di↵erence from the additional lensing and
high-` likelihoods in dark energy studies when used in combina-
tion with later distance measurements such as SNe Ia and BAOs.
Therefore, we do not consider their use in the present study.

We also present constraints obtained in combination with
WMAP for comparison (labeled WMAP9). For this purpose, we
use the distance prior given in Hinshaw et al. (2013, Sect. 4.6.1).

19 Those numbers correspond to the best-fit parameters and covariance
for the exploration of the Planck temperature and WMAP polarization
likelihood (Planck+WP in Planck Collaboration XVI (2013) terminol-
ogy) to a flat w-CDM cosmology as retrieved from the Planck Legacy
Archive http://pla.esac.esa.int/pla/aio/planckProducts.
html
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in

27

M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia.

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

⌦m

WMAP9 (Hinshaw et al. 2013)

Union 2.1 (Suzuki et al. 2012)

C11 (combined)
C11 (SALT2)

Planck (2013)

JLA

Fig. 14. Comparison of various measurements of ⌦m for a
⇤CDM cosmology.

7. Dark energy constraints from the combination of
supernovae and complementary probes

The redshift lever arm of our SN Ia sample is insu�cient to con-
strain all the parameters in more general dark energy models. In
this section we combine SNe Ia with other probes to test exten-
sions of the⇤CDM model. We do not seek to be comprehensive,
but restrict our study to combining our SNe constraints with the
most recent measurements of the CMB fluctuations and of the
BAO scale.

7.1. Complementary data

7.1.1. Power spectrum of the Cosmic Microwave Background
fluctuations

The most recent measurement of the CMB temperature fluctu-
ations has been provided by the 2013 release of the Planck ex-
periment results (Planck Collaboration I 2013). This release is
based on data gathered in the first 15.5 months of satellite oper-
ation. It delivered maps of temperature fluctuations over the en-
tire sky in nine frequency bands (30-857 GHz). The analysis of
Planck data exploits the multiwavelength coverage to determine
the CMB temperature fluctuation power spectrum after remov-
ing the foreground emissions (Planck Collaboration XII 2013;
Planck collaboration XV 2013). Their results are summarized
by a likelihood function for the CMB spectrum given the Planck
data (Planck collaboration XV 2013).

The CMB temperature power spectrum is directly sensitive
to matter densities and measures precisely the angular diameter
distance at the last-scattering surface (z ⇡ 1090). This precise
measurement of the early universe complements very well the
SN Ia distance measurements in the late Universe. The combi-
nation produces constraints on dark-energy models that cannot
be obtained from the CMB alone because of the geometric de-
generacy.

For this analysis, we use the Planck measurement of
the CMB temperature fluctuations and the WMAP measure-
ment of the large-scale fluctuations of the CMB polarization
(Bennett et al. 2013). This combination of CMB data is de-
noted “Planck+WP” to follow the nomenclature used by Planck
Collaboration XVI (2013). We summarize the geometrical con-
straints inferred from those measurements by a Gaussian prior

on the value of the baryon density today !b = ⌦bh2, the cold
dark matter density today !c = ⌦ch2, and ✓MC the CosmoMC
approximation of the sound horizon angular size computed from
the Hu & Sugiyama (1996) fitting formulae. This combination of
parameters is well constrained by the temperature power spec-
trum and is independent of any assumptions about dark en-
ergy (for the range of models considered in this paper). The
WMAP polarization information slightly improves the Planck
constraints by reducing degeneracies, which involve the damp-
ing of small scale fluctuations by reionization and are unresolved
by the temperature spectrum alone. Our prior has the form:19

�2
cmb = (v � vcmb)†C�1

cmb(v � vcmb) (18)

where:

vcmb = (!b,!c, 100✓MC)cmb = (0.022065, 0.1199, 1.041) (19)

and Ccmb is the best fit covariance matrix for v (marginalized
over all other parameters):

Ccmb = 10�7

0
BBBBBB@

0.79039 �4.0042 0.80608
�4.0042 66.950 �6.9243
0.80608 �6.9243 3.9712

1
CCCCCCA . (20)

The use of a distance prior is only an approximate sum-
mary of CMB constraints for dark energy. In particular, the sen-
sitivity of the CMB to the late-time growth of structure is ne-
glected. However, these e↵ects are small, and our approximation
is known to adequately represent more sensitive combinations
such as CMB+SNe Ia and CMB+BAO (see, e.g., the discus-
sions in Komatsu et al. 2011, Sect. 5.5 and references therein).
Our approach has the advantage of being purely geometrical and
easy to calculate. We provide a comparison of our results with
the full Planck likelihood (Planck collaboration XV 2013) in
Appendix D: in the case of a flat universe model with a con-
stant equation of state, the di↵erence in best fit values for w is
less than 0.3� and the uncertainties are the same. We provide the
tools to use our data in investigations of more general dark en-
ergy models in which the above approximation is not valid (see
Appendix F).

Planck also provides a reconstruction of the CMB weak-
lensing potential (Planck Collaboration XVII 2013) that breaks
part of the geometric degeneracy that arises from the CMB tem-
perature spectrum alone. Better constraints on the foreground
contamination of the temperature spectrum can also be ob-
tained from higher resolution experiments, such as the Atacama
Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (Reichardt et al. 2012). Exhaustive investigations of
constraints provided by the various combinations of CMB data
are conducted in Planck Collaboration XVI (2013). These re-
sults suggest little di↵erence from the additional lensing and
high-` likelihoods in dark energy studies when used in combina-
tion with later distance measurements such as SNe Ia and BAOs.
Therefore, we do not consider their use in the present study.

We also present constraints obtained in combination with
WMAP for comparison (labeled WMAP9). For this purpose, we
use the distance prior given in Hinshaw et al. (2013, Sect. 4.6.1).

19 Those numbers correspond to the best-fit parameters and covariance
for the exploration of the Planck temperature and WMAP polarization
likelihood (Planck+WP in Planck Collaboration XVI (2013) terminol-
ogy) to a flat w-CDM cosmology as retrieved from the Planck Legacy
Archive http://pla.esac.esa.int/pla/aio/planckProducts.
html
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the

25

Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 14. Comparison of various measurements of ⌦m for a
⇤CDM cosmology.

7. Dark energy constraints from the combination of
supernovae and complementary probes

The redshift lever arm of our SN Ia sample is insu�cient to con-
strain all the parameters in more general dark energy models. In
this section we combine SNe Ia with other probes to test exten-
sions of the⇤CDM model. We do not seek to be comprehensive,
but restrict our study to combining our SNe constraints with the
most recent measurements of the CMB fluctuations and of the
BAO scale.

7.1. Complementary data

7.1.1. Power spectrum of the Cosmic Microwave Background
fluctuations

The most recent measurement of the CMB temperature fluctu-
ations has been provided by the 2013 release of the Planck ex-
periment results (Planck Collaboration I 2013). This release is
based on data gathered in the first 15.5 months of satellite oper-
ation. It delivered maps of temperature fluctuations over the en-
tire sky in nine frequency bands (30-857 GHz). The analysis of
Planck data exploits the multiwavelength coverage to determine
the CMB temperature fluctuation power spectrum after remov-
ing the foreground emissions (Planck Collaboration XII 2013;
Planck collaboration XV 2013). Their results are summarized
by a likelihood function for the CMB spectrum given the Planck
data (Planck collaboration XV 2013).

The CMB temperature power spectrum is directly sensitive
to matter densities and measures precisely the angular diameter
distance at the last-scattering surface (z ⇡ 1090). This precise
measurement of the early universe complements very well the
SN Ia distance measurements in the late Universe. The combi-
nation produces constraints on dark-energy models that cannot
be obtained from the CMB alone because of the geometric de-
generacy.

For this analysis, we use the Planck measurement of
the CMB temperature fluctuations and the WMAP measure-
ment of the large-scale fluctuations of the CMB polarization
(Bennett et al. 2013). This combination of CMB data is de-
noted “Planck+WP” to follow the nomenclature used by Planck
Collaboration XVI (2013). We summarize the geometrical con-
straints inferred from those measurements by a Gaussian prior

on the value of the baryon density today !b = ⌦bh2, the cold
dark matter density today !c = ⌦ch2, and ✓MC the CosmoMC
approximation of the sound horizon angular size computed from
the Hu & Sugiyama (1996) fitting formulae. This combination of
parameters is well constrained by the temperature power spec-
trum and is independent of any assumptions about dark en-
ergy (for the range of models considered in this paper). The
WMAP polarization information slightly improves the Planck
constraints by reducing degeneracies, which involve the damp-
ing of small scale fluctuations by reionization and are unresolved
by the temperature spectrum alone. Our prior has the form:19

�2
cmb = (v � vcmb)†C�1

cmb(v � vcmb) (18)

where:

vcmb = (!b,!c, 100✓MC)cmb = (0.022065, 0.1199, 1.041) (19)

and Ccmb is the best fit covariance matrix for v (marginalized
over all other parameters):

Ccmb = 10�7

0
BBBBBB@

0.79039 �4.0042 0.80608
�4.0042 66.950 �6.9243
0.80608 �6.9243 3.9712

1
CCCCCCA . (20)

The use of a distance prior is only an approximate sum-
mary of CMB constraints for dark energy. In particular, the sen-
sitivity of the CMB to the late-time growth of structure is ne-
glected. However, these e↵ects are small, and our approximation
is known to adequately represent more sensitive combinations
such as CMB+SNe Ia and CMB+BAO (see, e.g., the discus-
sions in Komatsu et al. 2011, Sect. 5.5 and references therein).
Our approach has the advantage of being purely geometrical and
easy to calculate. We provide a comparison of our results with
the full Planck likelihood (Planck collaboration XV 2013) in
Appendix D: in the case of a flat universe model with a con-
stant equation of state, the di↵erence in best fit values for w is
less than 0.3� and the uncertainties are the same. We provide the
tools to use our data in investigations of more general dark en-
ergy models in which the above approximation is not valid (see
Appendix F).

Planck also provides a reconstruction of the CMB weak-
lensing potential (Planck Collaboration XVII 2013) that breaks
part of the geometric degeneracy that arises from the CMB tem-
perature spectrum alone. Better constraints on the foreground
contamination of the temperature spectrum can also be ob-
tained from higher resolution experiments, such as the Atacama
Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (Reichardt et al. 2012). Exhaustive investigations of
constraints provided by the various combinations of CMB data
are conducted in Planck Collaboration XVI (2013). These re-
sults suggest little di↵erence from the additional lensing and
high-` likelihoods in dark energy studies when used in combina-
tion with later distance measurements such as SNe Ia and BAOs.
Therefore, we do not consider their use in the present study.

We also present constraints obtained in combination with
WMAP for comparison (labeled WMAP9). For this purpose, we
use the distance prior given in Hinshaw et al. (2013, Sect. 4.6.1).

19 Those numbers correspond to the best-fit parameters and covariance
for the exploration of the Planck temperature and WMAP polarization
likelihood (Planck+WP in Planck Collaboration XVI (2013) terminol-
ogy) to a flat w-CDM cosmology as retrieved from the Planck Legacy
Archive http://pla.esac.esa.int/pla/aio/planckProducts.
html
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Fig. 18. Samples in the �8–⌦m plane from the H13 CFHTLenS
data (with angular cuts as discussed in the text), coloured by the
value of the Hubble parameter, compared to the joint constraints
when the lensing data are combined with BAO (blue), and BAO
with the CMB acoustic scale parameter fixed to ✓MC = 1.0408
(green). For comparison the Planck TT+lowP constraint con-
tours are shown in black. The grey band show the constraint from
Planck CMB lensing.

authors argue may be indications of the e↵ects of baryonic feed-
back in suppressing the matter power spectrum at small scales).
The large-scale properties of CFHTLenS therefore seem broadly
consistent with Planck and it is only as CFHTLenS probes
higher wavenumbers, particular in the 2D and tomographic cor-
relation function analyses (Heymans et al. 2013; Kilbinger et al.
2013; Fu et al. 2014; MacCrann et al. 2014), that apparently
strong discrepancies with Planck appear.

The situation is summarized in Fig. 18. The sample points
show parameter values in the �8–⌦m plane for the ⇤CDM base
model, computed from the Heymans et al. (2013, hereafter H13)
tomographic measurements of ⇠±. These data consist of correla-
tion function measurements in six photometric redshift bins ex-
tending over the redshift range 0.2–1.3. We use the blue galaxy
sample, since H13 find that this sample shows no evidence for
intrinsic galaxy alignments (simplifying the comparison with
theory) and we apply the “conservative” cuts of H13, intended
to reduce sensitivity to the nonlinear part of the power spec-
trum; these cuts eliminate measurements with ✓ < 30 for any
redshift combinations involving the lowest two redshift bins.
Here we have used the halofit prescription of Takahashi et al.
(2012) to model the nonlinear power spectrum, but do not in-
clude any model of baryon feedback or intrinsic alignments.
For the lensing-only constraint we also impose additional pri-
ors in a similar way to the CMB lensing analysis described
in Planck Collaboration XV (2015), i.e., Gaussian priors⌦bh2 =
0.0223 ± 0.0009 and ns = 0.96 ± 0.02, where the exact values
(chosen to span reasonable ranges given CMB data) have little
impact on the results. The sample range shown also restricts the
Hubble parameter to 0.2 < h < 1; note that when comparing
with constraint contours, the location of the contours can change
significantly depending on the H0 prior range assumed. Here we
only show lensing contours after the samples have been pro-
jected into the space allowed by the BAO data (blue contours),
or also additionally restricting to the reduced space where ✓MC

is fixed to the Planck value, which is accurately measured. The
black contours show the constraints from Planck TT+lowP.

The lensing samples just overlap with Planck, and super-
ficially one might conclude that the two data sets are con-
sistent. But the weak lensing constraints approximately define
a 1-dimensional degeneracy in the 3-dimensional ⌦m–�8–H0
space, so consistency of the Hubble parameter at each point in
the projected space must also be considered (see appendix E1
of Planck Collaboration XV 2015). Comparing the contours in
Fig. 18 (the regions where the weak lensing constraints are con-
sistent with BAO observations) the CFHTLenS data favour a
lower value of �8 than the Planck data (and much of the area
of the blue contours also has higher ⌦m). However, even with
the conservative angular cuts applied by H13, the weak lens-
ing constraints depend on the nonlinear model of the power
spectrum and on the possible influence of baryonic feedback
in reshaping the matter power spectrum at small spatial scales
(Harnois-Déraps et al. 2014; MacCrann et al. 2014). The impor-
tance of these e↵ects can be reduced by imposing even more
conservative angular cuts on ⇠±, but of course, this weakens the
statistical power of the weak lensing data. The CFHTLenS data
are not used in combination with Planck in this paper (apart
from Sects. 6.3 and 6.4.4) and, in any case, would have little
impact on most of the extended ⇤CDM constraints discussed
in Sect. 6. Weak lensing can, however, provide important con-
straints on dark energy and modified gravity. The CFHTLenS
data are therefore used in combination with Planck in the com-
panion paper (Planck Collaboration XIV 2015) which explores
several halofit prescriptions and the impact of applying more
conservative angular cuts to the H13 measurements.

5.5.3. Planck cluster counts

In 2013 we noted a possible tension between our primary CMB
constraints and those from the Planck SZ cluster counts, with the
clusters preferring lower values of �8 in the base ⇤CDM model
in some analyses (Planck Collaboration XX 2014). The compar-
ison is interesting because the cluster counts directly measure �8
at low redshift; any tension could signal the need for extensions
of the base model, such as non-minimal neutrino mass (though
see Sect. 6.4). However, limited knowledge of the scaling rela-
tion between SZ signal and mass have hampered the interpreta-
tion of this result.

With the full mission data we have created a larger cata-
logue of SZ clusters with a more accurate characterization of
its completeness (Planck Collaboration XXIV 2015). By fitting
the counts in redshift and signal-to-noise, we are able to si-
multaneously constrain the slope of the SZ signal-mass scal-
ing relation and the cosmological parameters. A major uncer-
tainty, however, remains the overall mass calibration, which
in Planck Collaboration XX (2014) we quantified with a bias
parameter, (1 � b), with a fiducial value of 0.8 and a range
0.7 < (1 � b) < 1. In the base ⇤CDM model, the primary
CMB constraints prefer a normalization below the lower end
of this range, (1 � b) ⇡ 0.6. The recent, empirical normaliza-
tion of the relation by the Weighing the Giants lensing program
(WtG; von der Linden et al. 2014) gives 0.69 ± 0.07 for the 22
clusters in common with the Planck cluster sample. This cali-
bration reduces the tension with the primary CMB constraints in
base ⇤CDM. In contrast, correlating the entire Planck 2015 SZ
cosmology sample with Planck CMB lensing gives 1/(1 � b) =
1±0.2 (Planck Collaboration XXIV 2015), toward the upper end
of the range adopted in Planck Collaboration XX (2014) (though
with a large uncertainty). An alternative lensing calibration by
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the

25

Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 14. Comparison of various measurements of ⌦m for a
⇤CDM cosmology.

7. Dark energy constraints from the combination of
supernovae and complementary probes

The redshift lever arm of our SN Ia sample is insu�cient to con-
strain all the parameters in more general dark energy models. In
this section we combine SNe Ia with other probes to test exten-
sions of the⇤CDM model. We do not seek to be comprehensive,
but restrict our study to combining our SNe constraints with the
most recent measurements of the CMB fluctuations and of the
BAO scale.

7.1. Complementary data

7.1.1. Power spectrum of the Cosmic Microwave Background
fluctuations

The most recent measurement of the CMB temperature fluctu-
ations has been provided by the 2013 release of the Planck ex-
periment results (Planck Collaboration I 2013). This release is
based on data gathered in the first 15.5 months of satellite oper-
ation. It delivered maps of temperature fluctuations over the en-
tire sky in nine frequency bands (30-857 GHz). The analysis of
Planck data exploits the multiwavelength coverage to determine
the CMB temperature fluctuation power spectrum after remov-
ing the foreground emissions (Planck Collaboration XII 2013;
Planck collaboration XV 2013). Their results are summarized
by a likelihood function for the CMB spectrum given the Planck
data (Planck collaboration XV 2013).

The CMB temperature power spectrum is directly sensitive
to matter densities and measures precisely the angular diameter
distance at the last-scattering surface (z ⇡ 1090). This precise
measurement of the early universe complements very well the
SN Ia distance measurements in the late Universe. The combi-
nation produces constraints on dark-energy models that cannot
be obtained from the CMB alone because of the geometric de-
generacy.

For this analysis, we use the Planck measurement of
the CMB temperature fluctuations and the WMAP measure-
ment of the large-scale fluctuations of the CMB polarization
(Bennett et al. 2013). This combination of CMB data is de-
noted “Planck+WP” to follow the nomenclature used by Planck
Collaboration XVI (2013). We summarize the geometrical con-
straints inferred from those measurements by a Gaussian prior

on the value of the baryon density today !b = ⌦bh2, the cold
dark matter density today !c = ⌦ch2, and ✓MC the CosmoMC
approximation of the sound horizon angular size computed from
the Hu & Sugiyama (1996) fitting formulae. This combination of
parameters is well constrained by the temperature power spec-
trum and is independent of any assumptions about dark en-
ergy (for the range of models considered in this paper). The
WMAP polarization information slightly improves the Planck
constraints by reducing degeneracies, which involve the damp-
ing of small scale fluctuations by reionization and are unresolved
by the temperature spectrum alone. Our prior has the form:19

�2
cmb = (v � vcmb)†C�1

cmb(v � vcmb) (18)

where:

vcmb = (!b,!c, 100✓MC)cmb = (0.022065, 0.1199, 1.041) (19)

and Ccmb is the best fit covariance matrix for v (marginalized
over all other parameters):

Ccmb = 10�7

0
BBBBBB@

0.79039 �4.0042 0.80608
�4.0042 66.950 �6.9243
0.80608 �6.9243 3.9712

1
CCCCCCA . (20)

The use of a distance prior is only an approximate sum-
mary of CMB constraints for dark energy. In particular, the sen-
sitivity of the CMB to the late-time growth of structure is ne-
glected. However, these e↵ects are small, and our approximation
is known to adequately represent more sensitive combinations
such as CMB+SNe Ia and CMB+BAO (see, e.g., the discus-
sions in Komatsu et al. 2011, Sect. 5.5 and references therein).
Our approach has the advantage of being purely geometrical and
easy to calculate. We provide a comparison of our results with
the full Planck likelihood (Planck collaboration XV 2013) in
Appendix D: in the case of a flat universe model with a con-
stant equation of state, the di↵erence in best fit values for w is
less than 0.3� and the uncertainties are the same. We provide the
tools to use our data in investigations of more general dark en-
ergy models in which the above approximation is not valid (see
Appendix F).

Planck also provides a reconstruction of the CMB weak-
lensing potential (Planck Collaboration XVII 2013) that breaks
part of the geometric degeneracy that arises from the CMB tem-
perature spectrum alone. Better constraints on the foreground
contamination of the temperature spectrum can also be ob-
tained from higher resolution experiments, such as the Atacama
Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (Reichardt et al. 2012). Exhaustive investigations of
constraints provided by the various combinations of CMB data
are conducted in Planck Collaboration XVI (2013). These re-
sults suggest little di↵erence from the additional lensing and
high-` likelihoods in dark energy studies when used in combina-
tion with later distance measurements such as SNe Ia and BAOs.
Therefore, we do not consider their use in the present study.

We also present constraints obtained in combination with
WMAP for comparison (labeled WMAP9). For this purpose, we
use the distance prior given in Hinshaw et al. (2013, Sect. 4.6.1).

19 Those numbers correspond to the best-fit parameters and covariance
for the exploration of the Planck temperature and WMAP polarization
likelihood (Planck+WP in Planck Collaboration XVI (2013) terminol-
ogy) to a flat w-CDM cosmology as retrieved from the Planck Legacy
Archive http://pla.esac.esa.int/pla/aio/planckProducts.
html
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 14. Comparison of various measurements of ⌦m for a
⇤CDM cosmology.

7. Dark energy constraints from the combination of
supernovae and complementary probes

The redshift lever arm of our SN Ia sample is insu�cient to con-
strain all the parameters in more general dark energy models. In
this section we combine SNe Ia with other probes to test exten-
sions of the⇤CDM model. We do not seek to be comprehensive,
but restrict our study to combining our SNe constraints with the
most recent measurements of the CMB fluctuations and of the
BAO scale.

7.1. Complementary data

7.1.1. Power spectrum of the Cosmic Microwave Background
fluctuations

The most recent measurement of the CMB temperature fluctu-
ations has been provided by the 2013 release of the Planck ex-
periment results (Planck Collaboration I 2013). This release is
based on data gathered in the first 15.5 months of satellite oper-
ation. It delivered maps of temperature fluctuations over the en-
tire sky in nine frequency bands (30-857 GHz). The analysis of
Planck data exploits the multiwavelength coverage to determine
the CMB temperature fluctuation power spectrum after remov-
ing the foreground emissions (Planck Collaboration XII 2013;
Planck collaboration XV 2013). Their results are summarized
by a likelihood function for the CMB spectrum given the Planck
data (Planck collaboration XV 2013).

The CMB temperature power spectrum is directly sensitive
to matter densities and measures precisely the angular diameter
distance at the last-scattering surface (z ⇡ 1090). This precise
measurement of the early universe complements very well the
SN Ia distance measurements in the late Universe. The combi-
nation produces constraints on dark-energy models that cannot
be obtained from the CMB alone because of the geometric de-
generacy.

For this analysis, we use the Planck measurement of
the CMB temperature fluctuations and the WMAP measure-
ment of the large-scale fluctuations of the CMB polarization
(Bennett et al. 2013). This combination of CMB data is de-
noted “Planck+WP” to follow the nomenclature used by Planck
Collaboration XVI (2013). We summarize the geometrical con-
straints inferred from those measurements by a Gaussian prior

on the value of the baryon density today !b = ⌦bh2, the cold
dark matter density today !c = ⌦ch2, and ✓MC the CosmoMC
approximation of the sound horizon angular size computed from
the Hu & Sugiyama (1996) fitting formulae. This combination of
parameters is well constrained by the temperature power spec-
trum and is independent of any assumptions about dark en-
ergy (for the range of models considered in this paper). The
WMAP polarization information slightly improves the Planck
constraints by reducing degeneracies, which involve the damp-
ing of small scale fluctuations by reionization and are unresolved
by the temperature spectrum alone. Our prior has the form:19

�2
cmb = (v � vcmb)†C�1

cmb(v � vcmb) (18)

where:

vcmb = (!b,!c, 100✓MC)cmb = (0.022065, 0.1199, 1.041) (19)

and Ccmb is the best fit covariance matrix for v (marginalized
over all other parameters):

Ccmb = 10�7

0
BBBBBB@

0.79039 �4.0042 0.80608
�4.0042 66.950 �6.9243
0.80608 �6.9243 3.9712

1
CCCCCCA . (20)

The use of a distance prior is only an approximate sum-
mary of CMB constraints for dark energy. In particular, the sen-
sitivity of the CMB to the late-time growth of structure is ne-
glected. However, these e↵ects are small, and our approximation
is known to adequately represent more sensitive combinations
such as CMB+SNe Ia and CMB+BAO (see, e.g., the discus-
sions in Komatsu et al. 2011, Sect. 5.5 and references therein).
Our approach has the advantage of being purely geometrical and
easy to calculate. We provide a comparison of our results with
the full Planck likelihood (Planck collaboration XV 2013) in
Appendix D: in the case of a flat universe model with a con-
stant equation of state, the di↵erence in best fit values for w is
less than 0.3� and the uncertainties are the same. We provide the
tools to use our data in investigations of more general dark en-
ergy models in which the above approximation is not valid (see
Appendix F).

Planck also provides a reconstruction of the CMB weak-
lensing potential (Planck Collaboration XVII 2013) that breaks
part of the geometric degeneracy that arises from the CMB tem-
perature spectrum alone. Better constraints on the foreground
contamination of the temperature spectrum can also be ob-
tained from higher resolution experiments, such as the Atacama
Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (Reichardt et al. 2012). Exhaustive investigations of
constraints provided by the various combinations of CMB data
are conducted in Planck Collaboration XVI (2013). These re-
sults suggest little di↵erence from the additional lensing and
high-` likelihoods in dark energy studies when used in combina-
tion with later distance measurements such as SNe Ia and BAOs.
Therefore, we do not consider their use in the present study.

We also present constraints obtained in combination with
WMAP for comparison (labeled WMAP9). For this purpose, we
use the distance prior given in Hinshaw et al. (2013, Sect. 4.6.1).

19 Those numbers correspond to the best-fit parameters and covariance
for the exploration of the Planck temperature and WMAP polarization
likelihood (Planck+WP in Planck Collaboration XVI (2013) terminol-
ogy) to a flat w-CDM cosmology as retrieved from the Planck Legacy
Archive http://pla.esac.esa.int/pla/aio/planckProducts.
html
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Fig. 6: Redshift distribution of best-fit models from the four
analysis cases shown in Fig. 5. The observed counts in the
MMF3 catalogue (q > 6) are plotted as the red points with error
bars, and as in Fig. 5 we adopt the CCCP mass prior with the
SZ+BAO+BBN data set.

Fig. 7: Comparison of constraints from the CMB to those from
the cluster counts in the (⌦m,�8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2� for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and ↵ free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2� con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and ↵ constrained
by the X-ray prior.

with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 � b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

Fig. 8: Comparison of cluster and primary CMB constraints in
the base ⇤CDM model expressed in terms of the mass bias,
1 � b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ⇤CDM; it
is found as the posterior on the 1 � b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-
sion with the primary CMB, and then consider one-parameter
extensions to the base ⇤CDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 � b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 � b) = 0.58 ± 0.04, more than 1�
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields ⌦k = �0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO ⌦k = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase�2⌧, where ⌧ is
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in

27

M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia.

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

⌦m

WMAP9 (Hinshaw et al. 2013)

Union 2.1 (Suzuki et al. 2012)

C11 (combined)
C11 (SALT2)

Planck (2013)

JLA

Fig. 14. Comparison of various measurements of ⌦m for a
⇤CDM cosmology.

7. Dark energy constraints from the combination of
supernovae and complementary probes

The redshift lever arm of our SN Ia sample is insu�cient to con-
strain all the parameters in more general dark energy models. In
this section we combine SNe Ia with other probes to test exten-
sions of the⇤CDM model. We do not seek to be comprehensive,
but restrict our study to combining our SNe constraints with the
most recent measurements of the CMB fluctuations and of the
BAO scale.

7.1. Complementary data

7.1.1. Power spectrum of the Cosmic Microwave Background
fluctuations

The most recent measurement of the CMB temperature fluctu-
ations has been provided by the 2013 release of the Planck ex-
periment results (Planck Collaboration I 2013). This release is
based on data gathered in the first 15.5 months of satellite oper-
ation. It delivered maps of temperature fluctuations over the en-
tire sky in nine frequency bands (30-857 GHz). The analysis of
Planck data exploits the multiwavelength coverage to determine
the CMB temperature fluctuation power spectrum after remov-
ing the foreground emissions (Planck Collaboration XII 2013;
Planck collaboration XV 2013). Their results are summarized
by a likelihood function for the CMB spectrum given the Planck
data (Planck collaboration XV 2013).

The CMB temperature power spectrum is directly sensitive
to matter densities and measures precisely the angular diameter
distance at the last-scattering surface (z ⇡ 1090). This precise
measurement of the early universe complements very well the
SN Ia distance measurements in the late Universe. The combi-
nation produces constraints on dark-energy models that cannot
be obtained from the CMB alone because of the geometric de-
generacy.

For this analysis, we use the Planck measurement of
the CMB temperature fluctuations and the WMAP measure-
ment of the large-scale fluctuations of the CMB polarization
(Bennett et al. 2013). This combination of CMB data is de-
noted “Planck+WP” to follow the nomenclature used by Planck
Collaboration XVI (2013). We summarize the geometrical con-
straints inferred from those measurements by a Gaussian prior

on the value of the baryon density today !b = ⌦bh2, the cold
dark matter density today !c = ⌦ch2, and ✓MC the CosmoMC
approximation of the sound horizon angular size computed from
the Hu & Sugiyama (1996) fitting formulae. This combination of
parameters is well constrained by the temperature power spec-
trum and is independent of any assumptions about dark en-
ergy (for the range of models considered in this paper). The
WMAP polarization information slightly improves the Planck
constraints by reducing degeneracies, which involve the damp-
ing of small scale fluctuations by reionization and are unresolved
by the temperature spectrum alone. Our prior has the form:19

�2
cmb = (v � vcmb)†C�1

cmb(v � vcmb) (18)

where:

vcmb = (!b,!c, 100✓MC)cmb = (0.022065, 0.1199, 1.041) (19)

and Ccmb is the best fit covariance matrix for v (marginalized
over all other parameters):

Ccmb = 10�7

0
BBBBBB@

0.79039 �4.0042 0.80608
�4.0042 66.950 �6.9243
0.80608 �6.9243 3.9712

1
CCCCCCA . (20)

The use of a distance prior is only an approximate sum-
mary of CMB constraints for dark energy. In particular, the sen-
sitivity of the CMB to the late-time growth of structure is ne-
glected. However, these e↵ects are small, and our approximation
is known to adequately represent more sensitive combinations
such as CMB+SNe Ia and CMB+BAO (see, e.g., the discus-
sions in Komatsu et al. 2011, Sect. 5.5 and references therein).
Our approach has the advantage of being purely geometrical and
easy to calculate. We provide a comparison of our results with
the full Planck likelihood (Planck collaboration XV 2013) in
Appendix D: in the case of a flat universe model with a con-
stant equation of state, the di↵erence in best fit values for w is
less than 0.3� and the uncertainties are the same. We provide the
tools to use our data in investigations of more general dark en-
ergy models in which the above approximation is not valid (see
Appendix F).

Planck also provides a reconstruction of the CMB weak-
lensing potential (Planck Collaboration XVII 2013) that breaks
part of the geometric degeneracy that arises from the CMB tem-
perature spectrum alone. Better constraints on the foreground
contamination of the temperature spectrum can also be ob-
tained from higher resolution experiments, such as the Atacama
Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (Reichardt et al. 2012). Exhaustive investigations of
constraints provided by the various combinations of CMB data
are conducted in Planck Collaboration XVI (2013). These re-
sults suggest little di↵erence from the additional lensing and
high-` likelihoods in dark energy studies when used in combina-
tion with later distance measurements such as SNe Ia and BAOs.
Therefore, we do not consider their use in the present study.

We also present constraints obtained in combination with
WMAP for comparison (labeled WMAP9). For this purpose, we
use the distance prior given in Hinshaw et al. (2013, Sect. 4.6.1).

19 Those numbers correspond to the best-fit parameters and covariance
for the exploration of the Planck temperature and WMAP polarization
likelihood (Planck+WP in Planck Collaboration XVI (2013) terminol-
ogy) to a flat w-CDM cosmology as retrieved from the Planck Legacy
Archive http://pla.esac.esa.int/pla/aio/planckProducts.
html
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Fig. 6: Redshift distribution of best-fit models from the four
analysis cases shown in Fig. 5. The observed counts in the
MMF3 catalogue (q > 6) are plotted as the red points with error
bars, and as in Fig. 5 we adopt the CCCP mass prior with the
SZ+BAO+BBN data set.

Fig. 7: Comparison of constraints from the CMB to those from
the cluster counts in the (⌦m,�8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2� for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and ↵ free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2� con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and ↵ constrained
by the X-ray prior.

with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 � b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

Fig. 8: Comparison of cluster and primary CMB constraints in
the base ⇤CDM model expressed in terms of the mass bias,
1 � b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ⇤CDM; it
is found as the posterior on the 1 � b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-
sion with the primary CMB, and then consider one-parameter
extensions to the base ⇤CDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 � b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 � b) = 0.58 ± 0.04, more than 1�
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields ⌦k = �0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO ⌦k = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase�2⌧, where ⌧ is
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Other datasets
Discussion of parameter shifts between WMAP/SPT/Planck in 1608.02487 
(Galli, Millea, Knox, Narmani, Scott, White & Planck col.) 

• CMB-H0 tension: Planck versus WMAP: 

• Is parameter shift (from l<800 to l<2500) anomalous? 

• 5000 random realisations of LCDM models tested by Planck: 16% have shifts at 
least as big. 

• Related to 20<l<30? Related to smoothing of peaks (AL>1)? Maybe but this is real 
data… 
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What if the tension was real?

H0 and σ8 are NOT measured directly by CMB experiments… 

… only extrapolated down to low-z assuming ΛCDM or simple 
extensions!

So it could be real and calling for a (small) change of paradigm! 

Problem: all simple attempts fail (Neff, neutrino masses, curvature, primordial spec., 
dynamical DE…) due to problematic degeneracy directions in (H0, σ8, Ωm) space 
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Fig. 33. 68 % and 95 % constraints from Planck TT+lowP (green), Planck TT+lowP+lensing (grey), and Planck
TT+lowP+lensing+BAO (red) on the late-Universe parameters H0, �8, and ⌦m in various neutrino extensions of the base ⇤CDM
model. The blue contours show the base ⇤CDM constraints from Planck TT+lowP+lensing+BAO. The dashed cyan contours show
joint constraints from the H13 CFHTLenS galaxy weak lensing likelihood (with angular cuts as in Fig. 18) at fixed CMB acoustic
scale ✓MC (fixed to the Planck TT+lowP ⇤CDM best fit) combined with BAO and the Hubble constant measurement of Eq. 30.
These additional constraints break large parameter degeneracies in the weak lensing likelihood that would otherwise obscure the
comparison with the Planck contours. (Priors on other parameters applied to the CFHTLenS analysis are as described in Sect. 5.5.2.)

astrophysical data described in Sect. 5.5, including the inference
of a low value of �8 from rich cluster counts.

6.4.5. Testing perturbations in the neutrino background

As shown in the previous sections, the Planck data provide ev-
idence for a cosmic neutrino background at a very high signifi-
cance level. Neutrinos a↵ect the CMB anisotropies at the back-
ground level, by changing the expansion rate before recombina-
tion and hence relevant quantities such as the sound horizon and
the damping scales. Neutrinos also a↵ect the CMB anisotropies
via their perturbations. Perturbations in the neutrino background
are coupled through gravity to the perturbations in the pho-
ton background, and can be described (for massless neutrinos)
by the following set of equations (Hu 1998; Hu et al. 1999;
Trotta & Melchiorri 2005; Archidiacono et al. 2011):
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Here dots denote derivatives with respect to conformal time, �⌫
is the neutrino density contrast, q⌫ is the neutrino velocity pertur-
bation, ⇡⌫ the anisotropic stress, F⌫,` are higher order moments
of the neutrino distribution function, and h and ⌘ are the scalar

metric perturbations in the synchronous gauge. In these equa-
tions, c2

e↵ is the neutrino sound speed in its own reference frame
and c2

vis parameterizes the anisotropic stress. For standard non-
interacting massless neutrinos c2

e↵ = c2
vis = 1/3. Any deviation

from the expected values could provide a hint of non-standard
physics in the neutrino sector.

A greater (lower) neutrino sound speed would increase (de-
crease) the neutrino pressure, leading to a lower (higher) per-
turbation amplitude. On the other hand, changing c2

vis alters the
viscosity of the neutrino fluid. For c2

vis = 0, the neutrinos act as
a perfect fluid, supporting undamped acoustic oscillations.

Several previous studies have used this approach to
constrain c2

e↵ and c2
vis using cosmological data (see e.g.,

Trotta & Melchiorri 2005; Smith et al. 2012; Archidiacono et al.
2013b; Gerbino et al. 2013; Audren et al. 2014), with the moti-
vation that deviations from the expected values could be a hint
of non-standard physics in the neutrino sector. Non-standard in-
teractions could involve, for example, neutrino coupling with
light scalar particles (Hannestad 2005; Beacom et al. 2004; Bell
2005; Sawyer 2006). If neutrinos are strongly coupled at recom-
bination, this would result in a lower value for c2

vis than in the
standard model. The presence of early dark energy that mimics
a relativistic component at recombination could possibly lead to
a value for c2

e↵ that di↵ers from 1/3 (see, e.g., Calabrese et al.
2011).

In this analysis, for simplicity, we assume Ne↵ = 3.046 and
massless neutrinos. By using an equivalent parameterization for
massive neutrinos (Audren et al. 2014) we have checked that as-
suming one massive neutrino with ⌃m⌫ ⇡ 0.06 eV, as in the base
model used throughout this paper, has no impact on the con-
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These additional constraints break large parameter degeneracies in the weak lensing likelihood that would otherwise obscure the
comparison with the Planck contours. (Priors on other parameters applied to the CFHTLenS analysis are as described in Sect. 5.5.2.)
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of a low value of �8 from rich cluster counts.

6.4.5. Testing perturbations in the neutrino background

As shown in the previous sections, the Planck data provide ev-
idence for a cosmic neutrino background at a very high signifi-
cance level. Neutrinos a↵ect the CMB anisotropies at the back-
ground level, by changing the expansion rate before recombina-
tion and hence relevant quantities such as the sound horizon and
the damping scales. Neutrinos also a↵ect the CMB anisotropies
via their perturbations. Perturbations in the neutrino background
are coupled through gravity to the perturbations in the pho-
ton background, and can be described (for massless neutrinos)
by the following set of equations (Hu 1998; Hu et al. 1999;
Trotta & Melchiorri 2005; Archidiacono et al. 2011):
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Here dots denote derivatives with respect to conformal time, �⌫
is the neutrino density contrast, q⌫ is the neutrino velocity pertur-
bation, ⇡⌫ the anisotropic stress, F⌫,` are higher order moments
of the neutrino distribution function, and h and ⌘ are the scalar

metric perturbations in the synchronous gauge. In these equa-
tions, c2

e↵ is the neutrino sound speed in its own reference frame
and c2

vis parameterizes the anisotropic stress. For standard non-
interacting massless neutrinos c2

e↵ = c2
vis = 1/3. Any deviation

from the expected values could provide a hint of non-standard
physics in the neutrino sector.

A greater (lower) neutrino sound speed would increase (de-
crease) the neutrino pressure, leading to a lower (higher) per-
turbation amplitude. On the other hand, changing c2

vis alters the
viscosity of the neutrino fluid. For c2

vis = 0, the neutrinos act as
a perfect fluid, supporting undamped acoustic oscillations.

Several previous studies have used this approach to
constrain c2

e↵ and c2
vis using cosmological data (see e.g.,

Trotta & Melchiorri 2005; Smith et al. 2012; Archidiacono et al.
2013b; Gerbino et al. 2013; Audren et al. 2014), with the moti-
vation that deviations from the expected values could be a hint
of non-standard physics in the neutrino sector. Non-standard in-
teractions could involve, for example, neutrino coupling with
light scalar particles (Hannestad 2005; Beacom et al. 2004; Bell
2005; Sawyer 2006). If neutrinos are strongly coupled at recom-
bination, this would result in a lower value for c2

vis than in the
standard model. The presence of early dark energy that mimics
a relativistic component at recombination could possibly lead to
a value for c2

e↵ that di↵ers from 1/3 (see, e.g., Calabrese et al.
2011).

In this analysis, for simplicity, we assume Ne↵ = 3.046 and
massless neutrinos. By using an equivalent parameterization for
massive neutrinos (Audren et al. 2014) we have checked that as-
suming one massive neutrino with ⌃m⌫ ⇡ 0.06 eV, as in the base
model used throughout this paper, has no impact on the con-
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scale ✓MC (fixed to the Planck TT+lowP ⇤CDM best fit) combined with BAO and the Hubble constant measurement of Eq. 30.
These additional constraints break large parameter degeneracies in the weak lensing likelihood that would otherwise obscure the
comparison with the Planck contours. (Priors on other parameters applied to the CFHTLenS analysis are as described in Sect. 5.5.2.)

astrophysical data described in Sect. 5.5, including the inference
of a low value of �8 from rich cluster counts.

6.4.5. Testing perturbations in the neutrino background

As shown in the previous sections, the Planck data provide ev-
idence for a cosmic neutrino background at a very high signifi-
cance level. Neutrinos a↵ect the CMB anisotropies at the back-
ground level, by changing the expansion rate before recombina-
tion and hence relevant quantities such as the sound horizon and
the damping scales. Neutrinos also a↵ect the CMB anisotropies
via their perturbations. Perturbations in the neutrino background
are coupled through gravity to the perturbations in the pho-
ton background, and can be described (for massless neutrinos)
by the following set of equations (Hu 1998; Hu et al. 1999;
Trotta & Melchiorri 2005; Archidiacono et al. 2011):
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ȧ
a

q⌫
k

◆
� k

 
q⌫ +

2
3k

ḣ
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Ḟ⌫,` =
k

2` + 1
�
`F⌫,`�1 � (` + 1) F⌫,`+1

�
, (` � 3) . (68d)

Here dots denote derivatives with respect to conformal time, �⌫
is the neutrino density contrast, q⌫ is the neutrino velocity pertur-
bation, ⇡⌫ the anisotropic stress, F⌫,` are higher order moments
of the neutrino distribution function, and h and ⌘ are the scalar

metric perturbations in the synchronous gauge. In these equa-
tions, c2

e↵ is the neutrino sound speed in its own reference frame
and c2

vis parameterizes the anisotropic stress. For standard non-
interacting massless neutrinos c2

e↵ = c2
vis = 1/3. Any deviation

from the expected values could provide a hint of non-standard
physics in the neutrino sector.

A greater (lower) neutrino sound speed would increase (de-
crease) the neutrino pressure, leading to a lower (higher) per-
turbation amplitude. On the other hand, changing c2

vis alters the
viscosity of the neutrino fluid. For c2

vis = 0, the neutrinos act as
a perfect fluid, supporting undamped acoustic oscillations.

Several previous studies have used this approach to
constrain c2

e↵ and c2
vis using cosmological data (see e.g.,

Trotta & Melchiorri 2005; Smith et al. 2012; Archidiacono et al.
2013b; Gerbino et al. 2013; Audren et al. 2014), with the moti-
vation that deviations from the expected values could be a hint
of non-standard physics in the neutrino sector. Non-standard in-
teractions could involve, for example, neutrino coupling with
light scalar particles (Hannestad 2005; Beacom et al. 2004; Bell
2005; Sawyer 2006). If neutrinos are strongly coupled at recom-
bination, this would result in a lower value for c2

vis than in the
standard model. The presence of early dark energy that mimics
a relativistic component at recombination could possibly lead to
a value for c2

e↵ that di↵ers from 1/3 (see, e.g., Calabrese et al.
2011).

In this analysis, for simplicity, we assume Ne↵ = 3.046 and
massless neutrinos. By using an equivalent parameterization for
massive neutrinos (Audren et al. 2014) we have checked that as-
suming one massive neutrino with ⌃m⌫ ⇡ 0.06 eV, as in the base
model used throughout this paper, has no impact on the con-
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astrophysical data described in Sect. 5.5, including the inference
of a low value of �8 from rich cluster counts.

6.4.5. Testing perturbations in the neutrino background

As shown in the previous sections, the Planck data provide ev-
idence for a cosmic neutrino background at a very high signifi-
cance level. Neutrinos a↵ect the CMB anisotropies at the back-
ground level, by changing the expansion rate before recombina-
tion and hence relevant quantities such as the sound horizon and
the damping scales. Neutrinos also a↵ect the CMB anisotropies
via their perturbations. Perturbations in the neutrino background
are coupled through gravity to the perturbations in the pho-
ton background, and can be described (for massless neutrinos)
by the following set of equations (Hu 1998; Hu et al. 1999;
Trotta & Melchiorri 2005; Archidiacono et al. 2011):
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is the neutrino density contrast, q⌫ is the neutrino velocity pertur-
bation, ⇡⌫ the anisotropic stress, F⌫,` are higher order moments
of the neutrino distribution function, and h and ⌘ are the scalar

metric perturbations in the synchronous gauge. In these equa-
tions, c2

e↵ is the neutrino sound speed in its own reference frame
and c2

vis parameterizes the anisotropic stress. For standard non-
interacting massless neutrinos c2

e↵ = c2
vis = 1/3. Any deviation

from the expected values could provide a hint of non-standard
physics in the neutrino sector.

A greater (lower) neutrino sound speed would increase (de-
crease) the neutrino pressure, leading to a lower (higher) per-
turbation amplitude. On the other hand, changing c2

vis alters the
viscosity of the neutrino fluid. For c2

vis = 0, the neutrinos act as
a perfect fluid, supporting undamped acoustic oscillations.

Several previous studies have used this approach to
constrain c2

e↵ and c2
vis using cosmological data (see e.g.,

Trotta & Melchiorri 2005; Smith et al. 2012; Archidiacono et al.
2013b; Gerbino et al. 2013; Audren et al. 2014), with the moti-
vation that deviations from the expected values could be a hint
of non-standard physics in the neutrino sector. Non-standard in-
teractions could involve, for example, neutrino coupling with
light scalar particles (Hannestad 2005; Beacom et al. 2004; Bell
2005; Sawyer 2006). If neutrinos are strongly coupled at recom-
bination, this would result in a lower value for c2

vis than in the
standard model. The presence of early dark energy that mimics
a relativistic component at recombination could possibly lead to
a value for c2

e↵ that di↵ers from 1/3 (see, e.g., Calabrese et al.
2011).

In this analysis, for simplicity, we assume Ne↵ = 3.046 and
massless neutrinos. By using an equivalent parameterization for
massive neutrinos (Audren et al. 2014) we have checked that as-
suming one massive neutrino with ⌃m⌫ ⇡ 0.06 eV, as in the base
model used throughout this paper, has no impact on the con-
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of a low value of �8 from rich cluster counts.

6.4.5. Testing perturbations in the neutrino background

As shown in the previous sections, the Planck data provide ev-
idence for a cosmic neutrino background at a very high signifi-
cance level. Neutrinos a↵ect the CMB anisotropies at the back-
ground level, by changing the expansion rate before recombina-
tion and hence relevant quantities such as the sound horizon and
the damping scales. Neutrinos also a↵ect the CMB anisotropies
via their perturbations. Perturbations in the neutrino background
are coupled through gravity to the perturbations in the pho-
ton background, and can be described (for massless neutrinos)
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of the neutrino distribution function, and h and ⌘ are the scalar

metric perturbations in the synchronous gauge. In these equa-
tions, c2

e↵ is the neutrino sound speed in its own reference frame
and c2

vis parameterizes the anisotropic stress. For standard non-
interacting massless neutrinos c2

e↵ = c2
vis = 1/3. Any deviation

from the expected values could provide a hint of non-standard
physics in the neutrino sector.

A greater (lower) neutrino sound speed would increase (de-
crease) the neutrino pressure, leading to a lower (higher) per-
turbation amplitude. On the other hand, changing c2

vis alters the
viscosity of the neutrino fluid. For c2

vis = 0, the neutrinos act as
a perfect fluid, supporting undamped acoustic oscillations.

Several previous studies have used this approach to
constrain c2

e↵ and c2
vis using cosmological data (see e.g.,

Trotta & Melchiorri 2005; Smith et al. 2012; Archidiacono et al.
2013b; Gerbino et al. 2013; Audren et al. 2014), with the moti-
vation that deviations from the expected values could be a hint
of non-standard physics in the neutrino sector. Non-standard in-
teractions could involve, for example, neutrino coupling with
light scalar particles (Hannestad 2005; Beacom et al. 2004; Bell
2005; Sawyer 2006). If neutrinos are strongly coupled at recom-
bination, this would result in a lower value for c2

vis than in the
standard model. The presence of early dark energy that mimics
a relativistic component at recombination could possibly lead to
a value for c2

e↵ that di↵ers from 1/3 (see, e.g., Calabrese et al.
2011).

In this analysis, for simplicity, we assume Ne↵ = 3.046 and
massless neutrinos. By using an equivalent parameterization for
massive neutrinos (Audren et al. 2014) we have checked that as-
suming one massive neutrino with ⌃m⌫ ⇡ 0.06 eV, as in the base
model used throughout this paper, has no impact on the con-
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What if the tension was real?

Problem: all simple attempts fail (Neff, neutrino masses, curvature, primordial spec., 
dynamical DE…) due to problematic degeneracy directions in (H0, σ8, Ωm) space 

But lots of other particle-physics-motivated possibilities, some of them proved to 
work (much better agreement with “anomalous” H0 and/or σ8) ! 

• Interacting DM-DR “motivated” by potential freedom and complexity of Dark 
Sector 

JL, Marques-Tavares, Schmaltz 2016; Buen-Abad, Schmaltz, JL, Brinckmann 1708.09406 
See also 1708.07030   

• Interacting active-sterile neutrino “motivated” by short baseline anomaly in neutrino 

oscillation experiments 
Archidiacono et al. 2016 

• Self-interacting active neutrinos 
Lancaster et al. 2017; Oldengott et al. 2017
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