A new halo independent approach for direct dark matter searches

Andreas Rappelt

27.09.2017

Technische Universität München

Assume SI or SD interaction only, $\rho_{\rm loc}=0.3~{\rm GeV/cm^3}$ and a Maxwell-Boltzmann velocity distribution.

[Undagoitia,Rauch 1509.08767]

Assume SI or SD interaction only, $\rho_{\rm loc}=0.3~{\rm GeV/cm^3}$ and a Maxwell-Boltzmann velocity distribution.

i: Ruled out by several experiments.

[Undagoitia, Rauch 1509.08767]

Assume SI or SD interaction only, $\rho_{\rm loc}=0.3~{\rm GeV/cm^3}$ and a Maxwell-Boltzmann velocity distribution.

- i: Ruled out by several experiments.
- ii: Explains DAMA results, but is in tension with other experimental results.

[Undagoitia,Rauch 1509.08767]

Assume SI or SD interaction only, $\rho_{\rm loc}=0.3~{\rm GeV/cm^3}$ and a Maxwell-Boltzmann velocity distribution.

- i: Ruled out by several experiments.
- ii: Explains DAMA results, but is in tension with other experimental results.
- iii: Untested by current experiments but can be accessed by future experiments.

Assume SI or SD interaction only, $\rho_{\rm loc}=0.3~{\rm GeV/cm^3}$ and a Maxwell-Boltzmann velocity distribution.

- What is the impact of astrophysical uncertainties?
- Do these conclusions hold for all f(v)?

[Undagoitia, Rauch 1509.08767]

Particle physics uncertainties

Dark matter mass

→ Between MeV and 100 TeV for thermally produced dark matter Differential scattering cross section

$$\frac{\mathsf{d}\sigma}{\mathsf{dE}_\mathsf{R}} = \frac{\mathsf{m}_\mathsf{A}}{2\mu_\mathsf{A}^2 v^2} (\sigma_\mathsf{SI} \cdot \mathsf{F}_\mathsf{SI}(\mathsf{E}_\mathsf{R})^2 + \sigma_\mathsf{SD} \cdot \mathsf{F}_\mathsf{SD}(\mathsf{E}_\mathsf{R})^2)$$

Cross section at zero momentum transfer

Form factors

→ Additional operators can arise in some DM frameworks.

Astrophysical uncertainties

Local dark matter density

- "local measurements": Determined from vertical kinematics of stars near the sun (~ 1kpc).
- "global measurements":
 ρ(r) is determined from
 rotation curves at large r
 and extrapolated to the
 position of the solar
 system.

[Read 1404.1938]

Astrophysical uncertainties

Local dark matter velocity distribution

→ Completely unknown, relies on theoretical considerations.

[Kuhlen et. al. 0912.2358]

Dark matter detection

We will consider the following dark matter search strategies:

Direct detection

Neutrino telescopes

decays of annihilation products may be detected.

Complementarity

 Direct detection: Energy has to be transferred onto the nucleus → Lower limit on v

Complementarity

- Direct detection: Energy has to be transferred onto the nucleus → Lower limit on v
- Neutrino telescopes: Particles have to be captured gravitationally → Upper limit on v

Halo independent approach

(σ,m_{DM}) is ruled out regardless of the velocity distribution if:

$$\min_{f(\vec{v})} \left\{ R(\sigma, m_{DM}) \right\} \mid_{constraints} \ \geq \ R_{max}$$

• (σ, m_{DM}) untestable regardless of the velocity distribution if:

$$\max_{f(\vec{v})} \left\{ R(\sigma, m_{DM}) \right\} \mid_{constraints} \leq 1$$

Constraints are provided by other experiments

ightarrow By using both a direct detection experiment and neutrino telescopes, we can probe the whole velocity distribution.

Halo independent approach

Step 1: $f(\vec{v})$ as superposition of streams

Following [Feldstein et. al. 1403.4606], we decompose the velocity distribution into a set of streams. Then, we discretise the integral:

$$f(\vec{v}) = \int dv_0^3 f(v_0) \delta(v - v_0) \rightarrow \sum_i a_i \delta(\vec{v} - \vec{v}_i)$$

Normalization:
$$\int dv^3 f(\vec{v}) = 1 \rightarrow \sum_i a_i = 1$$

Halo independent approach

Step 1: $f(\vec{v})$ as superposition of streams

Following [Feldstein et. al. 1403.4606], we decompose the velocity distribution into a set of streams. Then, we discretise the integral:

$$f(\vec{v}) = \int dv_0^3 f(v_0) \delta(v - v_0) \rightarrow \sum_i a_i \delta(\vec{v} - \vec{v}_i)$$

Normalization:
$$\int dv^3 f(\vec{v}) = 1 \rightarrow \sum_i a_i = 1$$

 \rightarrow The observables become linear equations:

Number of events
$$N = \sum_{i} a_{i} N_{\vec{v}_{i}}$$

Capture rate $C = \sum_{i} a_{i} C_{\vec{v}_{i}}$

Halo independent upper limits

Step 2: Calculating the minimum and maximum

Since all equations are linear functions of the parameters a_i , we can perform this optimization with existing methods of linear programming.

Halo independent upper limits

Step 2: Calculating the minimum and maximum

Since all equations are linear functions of the parameters a_i , we can perform this optimization with existing methods of linear programming.

More precisely, we use the Simplex algorithm:

optimize:
$$F(a_1,\ldots,a_n) = \sum_i \mathbf{a}_i \cdot R_i^{(A)}$$

Subject to: $\sum_i \mathbf{a}_i \cdot R_i^{(B_\alpha)} \leq R_{\max}^{(B_\alpha)}, \ \alpha = 1,\ldots,p$
and: $\sum_i \mathbf{a}_i \cdot R_i^{(B_\alpha)} \geq R_{\min}^{(B_\alpha)}, \ \alpha = 1+p,\ldots,p+q$
and: $\sum_i \mathbf{a}_i = 1$

Combining upper limits

Sensitivity of future experiments

Conclusions and outlook

- We developed a new method that provides a halo independent interpretation of direct dark matter searches.
- Some applications are:
 - i. Derive halo independent upper limits from a set of null results.
 - Confront a detection claim in a halo independent way to null results.
 - Asses detection prospects for a future experiment in a halo independent way.
- Work in progress:
 - \rightarrow Derive fully halo and particle physics independent limits.
 - → Take into account perturbations of smooth distributions and uncertainties of the local dark matter density.