Hunting the dark Higgs.

Michael Duerr

DESY Theory Workshop 2017 DESY Hamburg, 28 September 2017

based on:

arXiv:1606.07609 and arXiv:1701.08780

in collaboration with:

A. Grohsjean, F. Kahlhoefer, B. Penning, K. Schmidt-Hoberg, Ch. Schwanenberger, Th. Schwetz. S. Vool

Connecting different DM experiments.

> Top-down approach:

Study well-motivated candidates for DM, obtained in complete models that solve theoretical issues of the SM (e.g., the hierarchy problem).

Most signatures/constraints not related to DM.

> Bottom-up approach:

Add the minimal amount of structure to the SM that is necessary to explain DM. How simple can these setups be?

Dark matter theory space.

Spin-1 simplified DM model.

Fermionic DM χ interacts with SM fermions f via a Z' gauge boson

$$\mathcal{L} \supset -Z'_{\mu} \bar{\chi} \left(g^{V}_{\mathsf{DM}} \gamma^{\mu} + g^{A}_{\mathsf{DM}} \gamma^{\mu} \gamma_{5} \right) \chi - \sum_{f} Z'_{\mu} \bar{f} \left(g^{V}_{f} \gamma^{\mu} + g^{A}_{f} \gamma^{\mu} \gamma_{5} \right) f$$

Questions

- Where does this model come from?
- > What's the origin of the masses?
- Are there relations between the couplings?
- Are the results obtained reliable?
- Is SM gauge invariance guaranteed?
- > How to find interesting regions of parameter space?

Spin-1 simplified DM model.

Fermionic DM χ interacts with SM fermions f via a Z' gauge boson

$$\mathcal{L} \supset -Z'_{\mu} \bar{\chi} \Big(g^{V}_{\mathrm{DM}} \gamma^{\mu} + g^{A}_{\mathrm{DM}} \gamma^{\mu} \gamma_{5} \Big) \chi - \sum_{f} Z'_{\mu} \bar{f} \Big(g^{V}_{f} \gamma^{\mu} + g^{A}_{f} \gamma^{\mu} \gamma_{5} \Big) f$$

Perturbative unitarity in $\chi\chi \to Z_I'Z_I'$ for axial coupling

- Matrix element grows with energy: $\mathcal{M} \propto \frac{\left(g_{\text{DM}}^A\right)^2 \sqrt{s} m_{\chi}}{m_{\chi}^2}$
- > theory only valid up to $\sqrt{s} < \frac{\pi m_{Z'}^2}{(g_{DM}^2)^2 m_Y}$
- New physics below that scale to restore perturbative unitarity
- Use the Higgs mechanism to generate mass of the mediator, break a new U(1)' with the vev of a SM singlet scalar.

Dark matter model with two mediators.

- Majorana DM particle χ and two mediators:
 - massive vector boson Z' and real scalar s
- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2\sqrt{2}} \bar{\chi} \chi s$$

$$\mathcal{L}_{q} \supset -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + \sin \theta \frac{m_{q}}{v} \bar{q} q s \right)$$

Dark matter model with two mediators.

- > Majorana DM particle χ and two mediators:
 - > massive vector boson Z' and real scalar s
- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2\sqrt{2}} \bar{\chi} \chi s$$

$$\mathcal{L}_{q} \supset -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + \sin \theta \frac{m_{q}}{\nu} \bar{q} q s \right)$$

couplings are connected:

$$\frac{y_\chi}{m_\chi} = 2\sqrt{2} \, \frac{g_\chi}{m_{Z'}}$$

> 6 independent parameters:

particle masses		coupling constants		
DM mass Z' mass dark Higgs mass	m _χ m _{Z'} m _s	dark-sector coupling g_{χ} quark– Z' coupling Higgs mixing angle		

Dark matter model with two mediators.

- > Majorana DM particle χ and two mediators:
 - > massive vector boson Z' and real scalar s
- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2 \sqrt{\frac{1}{2} \sqrt$$

couplings are connected:

$$\frac{y_\chi}{m_\chi} = 2\sqrt{2} \, \frac{g_\chi}{m_{Z'}}$$

> 6 independent parameters:

particle masses		coupling constants		
DM mass Z' mass dark Higgs mass	m_{χ} $m_{Z'}$ m_s	dark-sector coupling quark–Z' coupling Higgs mixing angle	g_χ or y_χ g_q θ	

The connection to simplified models.

> A combination of different simplified models:

	$g_q \gg \sin \theta$	$g_q \sim \sin \theta$	$\sin \theta \gg g_q$
$m_s\gg m_{Z'}$	Spin-1 mediator simplified model		Spin-0 mediator with spin-1 terminator
$m_{Z'} \sim m_s$		Two-mediator model	
$m_{Z'}\gg m_s$	Spin-1 mediator with spin-0 terminator		Spin-0 mediator simplified model

The connection to simplified models.

A combination of different simplified models:

The connection to simplified models.

A combination of different simplified models:

	$g_q \gg \sin \theta$	$g_q \sim \sin \theta$	$\sin\theta\gg g_q$
$m_s \gg m_{Z'}$	Spin-1 mediator simplified model		Spin-0 mediator with spin-1 terminator
$m_{Z'} \sim m_s$		Two-mediator model	
$m_{Z'}\gg m_s$	Spin-1 mediator with spin-0 terminator		Spin-0 mediator simplified model

- > Additional effects not present in usual simplified models:
 - > The two mediators can interact with each other: leading to processes like $\chi\chi \to Z'^* \to Z's$ or $\chi\chi \to s^* \to Z'Z'$
 - Mixing between the dark Higgs and the SM Higgs: gauge-invariant realisation of simplified model with spin-0 s-channel mediator
 - > DM stability is a consequence of the gauge symmetry

Spin-1 mediation: results.

Dark Higgs decoupled (heavy)

> Dark Higgs terminator (light)

> Dark sector coupling fixed to reproduce observed relic density

Global scan of couplings: set-up.

- > Scan over g_q and θ for fixed masses, dark sector coupling determined by the relic abundance
- Three categories of mass combinations:
 - > Red: all combinations of g_q and θ are excluded by at least one constraint
 - > White: at least one combination of g_q and θ is consistent with all constraints
 - > Orange: for at least one combination of g_q and θ current constraints do not apply (broad mediator width, $\Gamma_{Z'}/m_{Z'} > 0.3$)

Global scan of couplings: benchmark 3.

> Parameter point allowed for $g_q \approx 0.04$ and small θ

Global scan of couplings: results.

> Scan for different values of m_{χ} :

- Small DM masses are tightly constrained: only allowed on a resonance or with at least one dark terminator.
- For large DM masses, the inconclusive regions become more important, but heavy mediators still tightly constrained. No constraints from indirect detection.

A light dark Higgs.

- > If the dark Higgs s is lighter than the DM χ , the relic abundance can be dominantly set by $\chi\chi \to ss$ (and subsequent decay of s to SM states)
- Relic density dominantly depends on dark sector couplings and couplings to SM particles can be small

How to test such a scenario?

A light dark Higgs.

- > If the dark Higgs s is lighter than the DM χ , the relic abundance can be dominantly set by $\chi\chi \to ss$ (and subsequent decay of s to SM states)
- Relic density dominantly depends on dark sector couplings and couplings to SM particles can be small

How to test such a scenario?

- A larger dark sector (present in realistic models) will provide a mechanism to produce dark sector states (e.g., via a Z')
- Any dark sector state can radiate off dark Higgs bosons (large couplings in the dark sector!)
- If the dark Higgs is the lightest state in the dark sector, it will decay visibly

Mono-jet vs. mono-dark-Higgs searches.

- > Heavy Z': cross section for mono-dark-Higgs becomes comparable to the mono-jet signal for $m_{Z'} \ge 2 \, \text{TeV}$
- Very characteristic mono-dark-Higgs signal: single fat jet (with invariant mass of the dark Higgs) containing two b jets accompanied by large amounts of missing transverse momentum
 - ⇒ Better sensitivities can be achieved for mono-dark-Higgs searches through efficient background suppression

SM backgrounds.

- Event selection (compare mono-Higgs in ATLAS-CONF-2016-019):
 - > Fat jet (R = 1.0, $p_T > 250$ GeV, $\eta < 2.0$) with two associated b-tagged track jets (R = 0.2, $p_T > 10$ GeV, $\eta < 2.5$)
 - > MET > 500 GeV, no isolated leptons (p_T > 7 GeV, η < 2.5)
- > Dominant backgrounds:
 - $> V + b\bar{b}$ for $m_s < m_h$
 - > $t\bar{t}$ for $m_s > m_h$
 - > good agreement with ATLAS estimates (moderate rescaling factors)

Signal prediction.

- > Clear peak in the invariant mass of the leading jet close to the mass of the dark Higgs: dark Higgs produced with large transverse momentum and decay products are boosted into a single fat jet
- striking difference between the shapes of signal and background

Sensitivity results.

- mono-dark-Higgs search can probe regions in parameter space inaccessible to conventional mono-jet searches
- > sensitivity almost identical for $m_S = 70 \, \text{GeV}$ and $m_S = 90 \, \text{GeV}$, extending up to $m_{Z'} = 2.5 \, \text{TeV}$ and $m_X = 450 \, \text{GeV}$
- > sensitivity lower for $m_s = 50 \, \text{GeV}$: the two b jets merge into a single track jet and dark Higgs tagging efficiency drops rapidly below 50 GeV

Sensitivity results.

- mono-dark-Higgs search can probe regions in parameter space inaccessible to conventional mono-jet searches
- > sensitivity almost identical for $m_S = 70 \, \text{GeV}$ and $m_S = 90 \, \text{GeV}$, extending up to $m_{Z'} = 2.5 \, \text{TeV}$ and $m_X = 450 \, \text{GeV}$
- > sensitivity lower for $m_s = 50 \, \text{GeV}$: the two b jets merge into a single track jet and dark Higgs tagging efficiency drops rapidly below 50 GeV

Sensitivity for correct DM relic density.

- > Before: specific choice of couplings $g_q = 0.25$ and $g_\chi = 1$
- Now: fix dark sector coupling by relic density ($g_q = 0.25$)

Complementarity between mono-dark-Higgs and di-jet searches

Summary.

- DM models with two mediators as a framework to realize simplified DM models in a theoretically consistent way
- > WIMP hypothesis under severe pressure, heavy mediators strongly constrained. Two viable options:
 - > DM and mediator masses are tuned close to an s-channel resonance
 - One or both mediators are lighter than the DM and open additional parameter space as a dark terminator
- > Novel collider signature of DM from the emission of a dark Higgs boson that decays to SM particles through mixing:
 - Characteristic large-radius jet containing two b-tagged subjets plus large MET allow for efficient discrimination of signal from background
 - Searches with collected data can probe large regions of parameter space inaccessible to conventional mono-jet or di-jet searches

Backup slides.

Spin-0 simplified DM model.

> Interaction of the scalar S with SM quarks q and DM χ :

$$\mathcal{L}\supset y_{\chi}\bar{\chi}\chi S + \sum_{q} \frac{g_{q}y_{q}}{\sqrt{2}} \overline{q}qS = y_{\chi}\bar{\chi}\chi S + \sum_{q} \frac{g_{q}y_{q}}{\sqrt{2}} \left(\overline{q}_{L}q_{R} + \overline{q}_{R}q_{L} \right) S$$

Problems

- > gauge invariance: left- and right-handed SM fermions have different SU(2)_L ⊗ U(1)_Y charges
- > S is a SM singlet: why are terms like $S|H|^2$, $S^2|H|^2$, S^3 , S^4 not included although allowed by EW symmetry.

Solution

- > Add terms $\mathcal{L} \supset y_{\chi}\bar{\chi}\chi S + \mu S|H|^2$ to SM Lagrangian
- There is mixing between the SM Higgs and the singlet, resulting in two mass eigenstates h₁ and h₂
- > Interaction with the SM quarks through mixing.

Spin-1 mediation ($\theta \approx 0$).

> Relic density curve

> solid: $m_s = 3m_\chi$

> dashed: $m_s = 0.1 m_\chi$

Partial wave perturbative unitarity:

- > conditions on couplings and masses
 - > from $\chi\chi \rightarrow \chi\chi$:

$$g_{\chi} < \sqrt{4\pi}$$
, $y_{\chi} < \sqrt{8\pi}$

 equations can be rewritten in terms of the masses, e.g.,

$$g_{\chi} m_{\chi}/m_{Z'} < \sqrt{\pi}$$

> from $ss \rightarrow ss$ and $hh \rightarrow hh$:

$$3(\lambda_h + \lambda_s) \pm \sqrt{9(\lambda_h - \lambda_s)^2 + \lambda_{hs}^2} < 16\pi$$

> for $\lambda_{hs} = 0$ (no Higgs mixing):

$$m_s < \sqrt{4\pi/3} m_{Z'}/g_{\chi}$$

Spin-1 mediation ($\theta \approx 0$).

- > Relic density curve
 - > solid: $m_s = 3m_\chi$
 - > dashed: $m_S = 0.1 m_\chi$

EWPT and **Dileptons**

- Assumption: tree-level kinetic mixing absent.
- SM quarks are charged under both U(1)_Y and U(1)' and will induce kinetic mixing at loop level:

$$\mathcal{L} = -1/2 \sin \epsilon \, F'^{\mu\nu} B_{\mu\nu}$$

$$\epsilon(\mu) = \frac{e \, g_q}{2\pi^2 \, \cos \theta_W} \log \frac{\Lambda}{\mu}$$

$$\simeq 0.02 \, g_q \log \frac{\Lambda}{\mu}$$

- kinetic mixing leads to couplings of the Z' to leptons, constrained by dilepton searches at the LHC and the Tevatron
- kinetic mixing also modifies the S and T parameters, which are constrained by FWPT

Spin-1 mediation ($\theta \approx 0$).

> Relic density curve

> solid: $m_s = 3m_\chi$

> dashed: $m_s = 0.1 m_\chi$

Direct detection:

> DM-nucleus scattering is suppressed by the DM velocity \vec{v} and the momentum transfer \vec{q} :

$$\begin{split} &\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\,\bar{q}\gamma_{\mu}q\\ &\rightarrow 2\vec{v}^{\perp}\cdot\vec{S}_{\chi}+2i\vec{S}_{\chi}\cdot\left(\vec{S}_{N}\times\frac{\vec{q}}{m_{N}}\right) \end{split}$$

- coherent enhancement of the scattering cross section leads nevertheless to relevant constraints
- recoil spectrum substantially different from standard spin-(in)dependent interactions
- we translate the LUX 2015 results into bound on this interaction

Spin-0 mediation $(g_q \ll 1)$.

> Z' terminator

Higgs signal strength

- > Reduction of SM Higgs signal strength:
 - Mixing reduces SM Higgs production cross section
 - \rightarrow for $m_X < m_h/2$: invisible decays
 - > for $m_S < m_h/2$ or $m_{Z'} < m_h/2$: decays into dark Higgs or Z'

$$= u = \frac{\cos^2 \theta \Gamma_{SM}}{\cos^2 \theta \Gamma_{SM}}$$

 $\Gamma_{SM} + \Gamma_{SS} + \Gamma_{Z'Z'} + \Gamma_{inv}$ Current bound:

$$\mu > 0.89$$

> for $\Gamma_{ss} = \Gamma_{z'z'} = \Gamma_{inv} = 0$:

$$\theta < 0.34$$

Spin-0 mediation ($g_q \ll 1$).

> Z' terminator

Direct detection

the scalar mediators induce unsuppressed spin-indep. DM-nucleus interactions

Indirect detection

- χχ → sZ' is dominantly s-wave, and dominates thermal freeze-out when kinematically allowed
- Then, observable indirect detection signals may be obtained from cascade annihilations
- > Relevant constraints can be set using FermiLAT observations of MW dwarf spheroidals for $m_{Z'}$, $m_S < m_\chi \lesssim 100 \, \text{GeV}$

Two mediators: results.

> sizeable g_q and $\sin \theta$:

- > for $m\chi = 100$ GeV, only small regions close to the resonances remain viable
- for m_X = 500 GeV, larger regions are allowed because s or Z' can be terminators without being strongly constrained

secluded from the SM:

- > region with $m_{Z^{\prime}}$, $m_S > m_{\chi}$ is tightly constrained because annihilations into SM final states cannot reproduce the relic abundance with perturbative couplings
- > for $m_{Z'}$, $m_S < m_{\chi}$, annihilation into dark terminators typically dominates
- experimental constraints can be suppressed since g_q and θ can be small → difficult to probe
- for small masses, set-up can still be probed by indirect detection

Global scan of couplings: benchmark 5.

> A combination of all constraints rules out this parameter point

Spin-0 mediation: negative mixing angle.

- Sign of θ relevant for trilinear vertices between the SM Higgs and the dark Higgs.
- Considering θ < 0 modifies the prediction for h → ss, hence the bound from the Higgs signal strength is significantly relaxed for m_s < m_b/2
- However, this parameter region is independently excluded by direct detection experiments (not sensitive to the sign of θ).
- Relic density calculation not significantly affected by the sign of θ
- > Effect is smaller for smaller values of $|\theta|$

Tree-level kinetic and mass mixing.

Axial couplings

- > Mass mixing can be realized if the SM Higgs is charged under the U(1)'. This leads to axial couplings of the Z' to SM fermions.
- $>\epsilon$ (left) and g_a^A (right) are varied for the correct relic abundance.

Tree-level kinetic and mass mixing.

10³

 $m_{_Y}$ [GeV]

10²

 η_Z · [GeV]

Only possible for resonant enhancement from the Z or the Z'.

Cut flow for signal and background.

 $m_{\chi} = 100 \, \text{GeV}, \, m_{S} = 70 \, \text{GeV}, \, g_{q} = 0.25, \, g_{\chi} = 1, \, E_{T} > 500 \, \text{GeV} \, \text{and} \, \mathcal{L} = 40 \, \text{fb}^{-1}$

	$p_{T}(j_1) > 250 \mathrm{GeV}$	Dark Higgs tagged	$40\mathrm{GeV} \le m_J \le 80\mathrm{GeV}$
Background	14063 ± 790	193 ± 21	25.3 ± 3.4
$m_{Z'} = 0.5 \text{TeV}$	5015 + 363	124	88.6
$m_{Z'}=1\mathrm{TeV}$	1448 + 274	88.4	60.5
$m_{Z'} = 2 \text{TeV}$	158 + 116	39.1	27.6

- Dark Higgs tagging and exploitation of the shape of the m_l distribution are crucial to reduce background
- Background reduction by 99.8 %, signal efficiency up to 20 %
- > signal to background ratio of 3.5 ($m_{Z'} = 0.5 \,\text{TeV}$), 2.4 $(m_{Z'} = 1 \text{ TeV})$, 1.1 $(m_{Z'} = 2 \text{ TeV})$

Reproducing the DM relic abundance.

> Fix dark sector coupling by DM relic abundance

- > Larger Z' masses require larger g_{χ}
- This changes sensitivities of the various searches in a non-trivial way:
 - parameter space bounded by the requirement of perturbativity of the couplings
 - signal rates larger than for fixed couplings
 - suppression of dijet sensitivity due to larger invisible branching ratio

Reproducing the DM relic abundance.

Fix dark sector coupling by DM relic abundance

> Relation between couplings: $g_{\chi} = \frac{m_{Z'}}{m_{\chi}} \frac{y_{\chi}}{2\sqrt{\chi}}$

Background rescaling.

- Validation of our background prediction with ATLAS mono-Higgs analysis (ATLAS-CONF-2016-019)
- > Signal region: MET > 500 GeV and 80 GeV ≤ m_l ≤ 280 GeV
- Sood shape agreement but underestimation of number of predicted events
- > Scale factors between 1.6 to 2.1 depending on background

	tī	$W + b\bar{b}$	Z + bb	Diboson
Simulation	2.83 ± 0.12	1.16 ± 0.06	2.42 ± 0.07	0.56 ± 0.02
ATLAS prediction	4.83 ± 0.88	2.48 ± 0.71	3.80 ± 0.44	1.20 ± 0.12
Rescaling factor	1.7 ± 0.3	2.1 ± 0.6	1.6 ± 0.2	2.1 ± 0.2

