Direct Detection of Ultralight Dark Matter In preparation

Hajime Fukuda, S. Matsumoto, T.T. Yanagida

September 27, 2017

Kavli IPMU, U. Tokyo

Introduction

- DM: one of the most established BSM
- How heavy is the mass?

Particle DM Mass Range

Particle DM Mass Range

Ultralight DM

- (See L. Hui's plenary talk)
- DM for $10^{-22} \, \text{eV} \lesssim m_{\text{DM}} \lesssim \text{eV}$
- Must be Bosonic
- Behaves as CDM
 - Coherent oscillation/decay of defects/...
- Several interesting astrophysical signature
 - e.g. Hu, et al., 2000
- Moduli? ALP?

Today's topic

- How can we detect ultralight DM?
 - Indirect detection
 - Production
 - Direct detection
 - Assume DM and nucleons have non-gravitational interaction

Direct Detection

- One recoil, $q \sim p = mv$, is small
- However, $n_{\rm DM} \sim \rho/m$ is quite large
- The total momentum transfer: $Q \propto qn \sim v\rho$
- Quantum mechanical enhancement in XS

Tasks

- What to be targets?
 - Measurement must be precise enough
 - Large enhancement
 - Our conclusion is to use planets as targets
- Enhancement factor?

Enhancement Effect

- Stimulated emission
- Coherent effect on the target

Stimulated Emission

• e.g. LASER

$$\mathcal{A} = \langle \gamma | a^{\dagger} | 0 \rangle$$

$$\rightarrow \mathcal{A}' = \langle (N+1)\gamma | a^{\dagger} | N\gamma \rangle = \sqrt{N+1} \mathcal{A}$$

• Because,

$$|N\gamma\rangle = \frac{1}{\sqrt{N!}} \left(a^{\dagger}\right)^{N} |0\rangle,$$

$$a^{\dagger}|N\gamma\rangle = \sqrt{N+1}|(N+1)\gamma\rangle$$

Stimulated Emission

- Given the phase space density O, $\sigma \propto O + 1$
 - Note that

$$\int \frac{\mathrm{d}^3 k}{(2\pi)^3} O(k, x) = n(x)$$

Enhancement

- DM: Gaussian distribution of $v \sim 10^{-3}$
- Assuming the distribution is uniform,

$$O \sim \frac{\rho}{m} \frac{1}{(mv)^3} \sim 10^3 \left(\frac{\text{eV}}{m}\right)^4$$

Loophole

- We need DM distribution around us
- Not the case for coherent oscillation?

Enhancement Effect

- Stimulated emission × (or △)
- Coherent effect on the target

Coherent Effect

e.g. Coulomb scattering

• For qR < 1, $\sigma \propto Z^2$!

Coherent Effect

- "With small q, we can't see internal structures"
- Identical with "Spin-independent scattering"
 - $\sigma \sim [Z\sigma_p + (A Z)\sigma_n]^2 |F(q)|^2$
 - DM must interact spin-independently also in this case

Coherence in Detail

- Easy to understand in 1st quantization
- Born Approximation: $\mathcal{A} \sim m \langle k' | V | k \rangle$
- For many targets:

$$V(x) = \sum_{i} V_i(x - x_i), \mathcal{A}_{tot} = \sum_{i} e^{iqx_i} \mathcal{A}_i$$

- $qx_i \to 0$ for all i, $\mathcal{A}_{tot} \simeq N\mathcal{A}$
- Amplitude scales as N, XS as N²!
- The lighter the mass is, the smaller *q* is

Which Target?

- Enhancement depends on targets
- The bigger, the better
- The celestial bodies in the solar system,

$$N \sim 10^{50-58}$$

- Measurement is very accurate, $\Delta v/v\Delta t \lesssim 10^{-(17-19)} \, \mathrm{s}^{-1}$
- 10^{100} times larger σ ?

Coherence in Detail

- Easy to understand in 1st quantization
- Born Approximation: $\mathcal{A} \sim m \langle k' | V | k \rangle$
- For many targets:

$$V(x) = \sum_{i} V_i(x - x_i), \mathcal{A}_{tot} = \sum_{i} e^{iqx_i} \mathcal{A}_i$$

- $qx_i \to 0$ for all i, $\mathcal{A}_{tot} \simeq N\mathcal{A}$
- Amplitude scales as N, XS as N²!

Coherence in Detail

- Easy to understand in 1st quantization
- Born Approximation: $\mathcal{A} \sim m \langle k' | V | k \rangle$
- For many targets:

$$V(x) = \sum_{i} V_i(x - x_i), \mathcal{A}_{tot} = \sum_{i} e^{iqx_i} \mathcal{A}_i$$

- $qx_i \to 0$ for all i, $\mathcal{A}_{tot} \simeq N\mathcal{A}$
- Amplitude scales as N, XS as N²!

What's Wrong?

- $N^2|F(q)|^2$ enhance is valid only within Born app.
- Born app.: "Initial wave scatters only once"
 - High potential ×
 - Large object ×
- We need to solve Schrödinger eq. exactly

e.g. Sun-DM Scattering

• $\sigma \lesssim O(1)\pi R^2$

Enhancement: in Summary

- Stimulated Emission ?
- Coherent Effect OK
- The larger the target is, the better
 - The celestial bodies in the solar system as targets
 - The cross section is at most geometrical

Constraint

- Constraints from the motion of the celestial bodies
- The solar system moves w.r.t. the DM
- DM-Star scattering → DM wind, friction force
- Periods and distances change

Actual constraints

- Use Ephemeris
 - Ephemeris: A parameter fit for various quantities for celestial bodies in solar system from observations
- The latest one is numerical.
 - Hard to reproduce :(
 - Naive estimation: $\Delta \ln v / \Delta t \sim \Delta L / T^2$

Cross section and the Size of the Object

- The weaker int. gets enhanced much for the heavier obj.
 - $\sigma_0 \sim m_{\rm DM}^2/\Lambda^4 \to \Lambda \lesssim 10^{13,14,15,16}\,{\rm GeV}$ for Moon, Earth, Jupiter and Sun
- The lighter, the larger the effect is
 - EOM: F = ma
- Different region for different objects

Final Result

For the best target, we need one order more

Summary

- Quantum mechanical enhancement for very light particles
- DM with m ≪ eV can be detectable with coherence enhancement