Probing Inflationary PBHs for the LIGO GW Events

Kyohei Mukaida

KAVLI IPMU, UNIV. OF TOKYO → **DESY**, **HAMBURG** (SEP. 2017)

Based on 1611.06130 (published in PRD) In collaboration with K.Inomata, M.Kawasaki, Y.Tada, T.T. Yanagida

Introduction

Introduction

What is "Primordial" Black Hole (PBH)?

- ▶ BH formed **before** any astrophysical objects exist (even in **RD** era).
- ▶ Need large density perturbations for Gravity > Pressure.
 - Collapse of localized configurations: bubble collision, cosmic string,...
 - Collapse of primordial density perturbations: inflation, curvaton,...

Is there any motivation to study them?

- ▶ Non-particle candidate of DM
- Candidates of gravitational wave events observed by LIGO.
- ▶ Constrain **other** DM models; WIMP by UCMH, axion by super-radiance,...

[Bringmann+,'II,...]

[Arvanitaki+,'14,...]

Introduction

What is "Primordial" Black Hole (PBH)?

- ▶ BH formed **before** any astrophysical objects exist (even in **RD** era).
- Need large density perturbations for Gravity > Pressure.
 - Collapse of localized configurations: bubble collision, cosmic string,...
 - Collapse of primordial density perturbations: inflation, curvaton,...

Is there any motivation to study them?

- ▶ Non-particle candidate of DM
- Candidates of gravitational wave events observed by LIGO.
- ▶ Constrain **other** DM models; WIMP by UCMH, axion by super-radiance,...

[Bringmann+,'II,...]

[Arvanitaki+,'14,...]

Outlook of LIGO events

Merging of Binary BH observed by LIGO

▶ Estimated event rate OI: $9-240 {\rm Gpc}^{-3} {\rm yr}^{-1}$, **Total**: $12-213 {\rm Gpc}^{-3} {\rm yr}^{-1}$

[Ref. https://www.ligo.caltech.edu]

PBH for LIGO

Indicated PBH-abundance: $f = \Omega_{PBH}/\Omega_c \sim 10^{-3}-10^{-2}$

▶ Merger rate as a function of the PBH-fraction: f

- Possible corrections?
 - Continuous mass function of PBH, Surrounding DM halo (UCMH), Angular momentum transfer via surrounding baryons. [Hayasaki+, 0909.1738; Yu.N. Eroshenko 1604.04932; Ali-Haimoud+, 1709.06576]

PBH for LIGO

Current observational constraints

- PBH as **all DM**: marginal, maybe excluded/probed soon. [KM+, 1701.02544; Kuhnel+, 1705.10361; Carr+, 1705.05567;...]
- ▶ PBH for **LIGO** events: seems to be viable.

Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters.

[See e.g. Kusenko+, 1310.8642; Carr+,1607.06077]

Hawking radiation

EGy: 0912.5297

Gravitational lensing

Femto: 1204.2056
HSC: 1701.02151

Kepler: PhysRevLett. III.181302

EROS/MACHO: 0607207

Dynamical

WD: 1505.04444 UFD: 1605.03665

Accretion

CMB: 1612.05644 (1612.06811, 1612.07264)

Radio/Xray: 1612.00457

Need large $\delta \rho / \rho$ for Gravity > Pressure

Need large $\delta \rho / \rho$ for Gravity > Pressure

▶ PBH mass (M) \Rightarrow scale of perturbation (k)

$$M = \gamma \rho \frac{4\pi H^{-3}}{3} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_*}{3.36}\right)^{-\frac{1}{6}} \left(\frac{k/(2\pi)}{3 \times 10^{-9} \, \mathrm{Hz}}\right)^{-2}$$
[Carr, '75]

▶ PBH abundance (β) \Rightarrow amplitude of perturbation (\mathbf{P}_{ζ})

$$\beta(M) = \int_{\delta_c} d\delta \frac{e^{-\frac{\delta^2}{2\sigma^2(M)}}}{\sqrt{2\pi\sigma^2(M)}} \sim \sigma(M) e^{-\frac{\delta_c^2}{2\sigma^2(M)}}; \quad \sigma^2(M) \sim P_{\zeta}(k)$$

Need large $\delta \rho / \rho$ for Gravity > Pressure

▶ PBH mass (\mathbf{M}) \Longrightarrow scale of perturbation (\mathbf{k})

$$M = \gamma \rho \frac{4\pi H^{-3}}{3} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_*}{3.36}\right)^{-\frac{1}{6}} \left(\frac{k/(2\pi)}{3 \times 10^{-9} \,\mathrm{Hz}}\right)^{-2}$$
[Carr, '75]

▶ PBH abundance (β) \Rightarrow amplitude of perturbation (\mathbf{P}_{ζ})

$$\beta(M) = \int_{\delta_c} d\delta \frac{e^{-\frac{\delta^2}{2\sigma^2(M)}}}{\sqrt{2\pi\sigma^2(M)}} \sim \sigma(M) e^{-\frac{\delta_c^2}{2\sigma^2(M)}}; \quad \sigma^2(M) \sim P_{\zeta}(k)$$

For LIGO, $P_{\zeta}(k) \sim 10^{-2} @ k/2\pi \sim 10^{-9} Hz$.

Curvature Perturbation

Power-spectrum (Pg) for the LIGO events

For LIGO, $P_{\zeta}(k) \sim 10^{-2} @ k/2\pi \sim 10^{-9} Hz$.

Curvature Perturbation

Power-spectrum (Pg) for the LIGO events

- ▶ CMB spectral distortion: µ-distortion,... [Kohri+,'14]
- ▶ Induced GWs via 2nd order effects: PTA experiments

Curvature Perturbation

Power-spectrum (Pg) for the LIGO events

- ▶ CMB spectral distortion: µ-distortion,... [Kohri+,'14]
- ▶ Induced GWs via 2nd order effects: PTA experiments

Induced GWs and PTA experiments

Large density perturbation as a source of GWs

▶ Tensor perturbation obeys...

[Saito, Yokoyama,'09; Bugaev, Klimai,'10]

$$h_{ij}^{"} + 2\mathcal{H}h_{ij}^{'} - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

Depends on the density perturb., Ψ~ζ

$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathcal{H}} + \Psi \right) \partial_j \left(\frac{\Psi'}{\mathcal{H}} + \Psi \right)$$

Formation of PBH

$$h_{ij} \propto \Psi^2 \sim \zeta^2$$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathcal{P}_{\zeta}(k)}{10^{-2}}\right)^2$$

where
$$\Omega_{
m GW,tot} = \int {
m d} \log k \, \Omega_{
m GW}(k)$$

Large density perturbation as a source of GWs

▶ Tensor perturbation obeys...

[Saito, Yokoyama,'09; Bugaev, Klimai,'10]

$$h_{ij}^{"} + 2\mathcal{H}h_{ij}^{'} - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

Depends on the density perturb., Ψ~ζ

$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathcal{H}} + \Psi \right) \partial_j \left(\frac{\Psi'}{\mathcal{H}} + \Psi \right)$$

Formation of PBH

$$h_{ij} \propto \Psi^2 \sim \zeta^2$$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathcal{P}_{\zeta}(k)}{10^{-2}}\right)^2$$

where
$$\Omega_{
m GW,tot} = \int {
m d} \log k \, \Omega_{
m GW}(k)$$

Large density perturbation as a source of GWs

▶ Tensor perturbation obeys...

[Saito, Yokoyama,'09; Bugaev, Klimai,'10]

$$h_{ij}^{"} + 2\mathcal{H}h_{ij}^{'} - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

Depends on the density perturb., $\Psi \sim \zeta$

$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathcal{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathcal{H}} + \Psi\right)$$

Formation of PBH

$$h_{ij} \propto \Psi^2 \sim \zeta^2$$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathcal{P}_{\zeta}(k)}{10^{-2}}\right)^2$$

where
$$\Omega_{
m GW,tot} = \int {
m d} \log k \, \Omega_{
m GW}(k)$$

Large density perturbation as a source of GWs

▶ Tensor perturbation obeys...

[Saito, Yokoyama,'09; Bugaev, Klimai,'10]

$$h_{ij}^{"} + 2\mathcal{H}h_{ij}^{'} - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

Depends on the density perturb., Ψ~ζ

$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathcal{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathcal{H}} + \Psi\right)$$

$$h_{ij} \propto \Psi^2 \sim \zeta^2$$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathcal{P}_{\zeta}(k)}{10^{-2}}\right)^2$$

where
$$\Omega_{
m GW,tot} = \int {
m d} \log k \, \Omega_{
m GW}(k)$$

[K.Inomata, M.Kawasaki, KM, Y.Tada, T.T.Yanagida]

Only steep spectrum is allowed!

▶ GW has a corresponding peak at the same k.

▶ **Steepness** of the spectrum

$$\mathscr{P}_{\zeta} \propto \begin{cases} k^x & \cdots & k < k_{\text{peak}} \\ k^{-y} & \cdots & k > k_{\text{peak}} \end{cases}$$

Current constraints

$$x \gtrsim 1.5, y \gtrsim 2$$

[K.Inomata, M.Kawasaki, KM, Y.Tada, T.T. Yanagida]

Only steep spectrum is allowed!

Double inflation as an example

Corresponding

▶ **Steepness** of the spectrum

$$\mathscr{P}_{\zeta} \propto \begin{cases} k^x & \cdots & k < k_{\text{peak}} \\ k^{-y} & \cdots & k > k_{\text{peak}} \end{cases}$$

Current constraints

$$x \gtrsim 1.5, y \gtrsim 2$$

Summary

Inflation can be an origin of **PBHs** whose mergers account for the **LIGO GW** events.

But, need large $P_{\zeta}(k) \sim 10^{-2} @ f \sim 10^{-9} Hz$.

CMB spectral distortion and induced GWs can constrain $P_{\zeta}(k) \sim 10^{-2} @ f \sim 10^{-9} Hz$.

- Enhanced non-Gaussianity @ small-scales could generate PBHs w/ smaller Pζ
 - → possibility to evade these constraints. [Nakama, Silk, Kamionkowsky; '16; Ando, Inomata, Kawasaki: perp.]

Backup

Inflationary PBHs

Inflation models as the origin of PBHs

▶ How to **enhance** P_{ζ} @ small-scales **⇒ Flatten** your potential!

Inflationary PBHs

Inflation models as the origin of PBHs

▶ How to enhance P_{ζ} @ small-scales **→ Flatten** your potential!

Inflationary PBHs

Inflation models as the origin of PBHs

▶ How to enhance P_{ζ} @ small-scales **→ Flatten** your potential!

PBH as all DM

Constraints on extended mass function

[KM+, 1701.02544]

