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MOTIVATION

➤ QCD as theory of strong interactions is expected to exhibit various phases 

➤ gas-liquid (GL) first-order phase transition (FOPT) in nuclear matter 
established 

➤ for μ=0 hadron-quark (HQ) deconfinement  
transition is crossover in 2+1 flavor lattice QCD  
at O(155 MeV)  

➤ sign problem in lattice calculations for μ>0   
⇒  imaginary μ, taylor expansions, reweighting, complex Langevin, … 

➤ alternative: model building (NJL, linear sigma/quark meson, gauge/gravity, …) 

➤ possible critical end point (CEP)  
fairly unconstrained,  
experimental attempts: LHC, RHIC, FAIR, …

2



A (VERY) SHORT PRIMER ON ADS/CFT

➤ realization of the holographic principle (t’Hooft, Susskind) 

➤ correspondence between CFT in d dimensions and gravitational theory in d+1 
dim.: 
 
 

➤ parameter mapping:  

➤ map between two different theories; duality refers to opposite strong/weak 
coupling regimes 

➤ operator-field duality allows one-to-one correspondence/dictionary between 
field theory operator     and gravity fields    in same representation (CFTd is 
defined on boundary of AdSd+1): 
 
 
generating functional of CFT is identified w/ gravity partition function
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g2YM = 2⇡gs , 2g2YMN = L4/↵02

N = 4 SYM w/ gauge group SU(N) and gYM is dynamically equivalent to

IIB superstring theory w/ l2s = ↵0
and gs on AdS5 ⇥ S5 w/ curvature radius L

and N units of F(5) flux on S5.
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HOLOGRAPHIC EMD MODEL

➤ 5D gravity (Einstein-Maxwell-dialton) model based on action 
 
 
with 

➤ metric ansatz:                                                        ⇒ asymptotically AdS5 spacetime 
                                                                                   boundary at  
                                                                                   black hole horizon  

➤ field eqns. are solved with                  and                   as parameters 

➤ Thermodynamic quantities follow 
from boundary asymptotics as: 

➤ dimensional scaling factors                         and                          restore physical 
units 

➤ pressure from integration  
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➤           plane is uncovered with properly chosen initial conditions  
 
                                                     
                                                     
                                                         ➟    
 
 
 
 

➤ Related literature: 
model proposed in [DeWolfe, Gubser, Rosen, PRD 83 (2011)], dynamical critical 
phenomena analysed in [DeWolfe, Gubser, Rosen, PRD 84 (2011)] (fit to „old” 
lattice data);  
updated to recent 2+1 flavor lattice QCD in [Noronha et al., PRL 115 (2015), JHEP 
04 (2016), arXiv:1704.05558] (transport coefficients, quark energy loss etc.) 
not yet addressed: possible CEP and related phase diagrams  
                              ☛ our topic in [JK, Yaresko, Kämpfer (2017), arXiv:1702.06731]
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ADJUSTMENT TO LATTICE QCD AT 𝜇=0

➤ dilaton potential         and scaling factors are determined through fit to 2+1 
flavor lattice QCD at μ=0 [Borsanyi et al., PLB 730 (2014); Bazavov et al., PRD 
90 (2014)] to match EoS: 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Equation of state of the updated 
holographic EMD model as 
functions of T  for   μ= 0: 

scaled entropy density (top left), 
speed of sound squared (top right), 
scaled pressure (bottom left) and 
scaled trace anomaly (bottom 
right).



➤ susceptibilities are relevant fluctuation measures: 

➤        is chosen to match 2nd order quark number susceptibility     in  
[Bellwied et al., PRD 92 (2015)]: 

➤ holographic results:

7

�2f(�)

�2(T, 0)

T 2
=

L

16⇡2f(0)

s

T 3

1
R1
rH

dr e�2A

f(�)

�i(T, µ) ⌘ @ip(T,µ)
@µi

���
T
, i = 2, 3, 4, . . .



THERMODYNAMIC PHASE DIAGRAMS

➤ EMD model exhibits CEP at  
 
 
 
 
 
 
 
 

➤ FOPT curve shows up as kinky behavior of p/T4  
and jumpy behavior of s/T3, n/T3, s/n (stable phases) 

➤ GL transition:  
critical pressure increases in T-direction 
s/n jumps towards smaller values in T,μ-directions 
across FOPT
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TCEP = (112± 5)MeV and µCEP = (612± 50)MeV



➤  
 
 
 
 
 
 

➤ isentropes enter coexistence region on deconfined/dense side and are leaving 
on confined/dilute side: 
 
 
 
 
 
 

➤ CEP uncertainty estimated by parameter variations and different low-
temperature asymptotics that take lattice uncertainties into account
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Contour plots of scaled 
baryon density and entropy-
to-baryon ratio over the 
scaled T-μ plane for the 
updated holographic EMD 
model.



HOLOGRAPHIC PROPOSAL FOR THE ENTANGLEMENT ENTROPY (HEE)
➤ Definition:                                                          pictures: [Takayanagi, Ahrenshoop Symposium (2012)] 
 
 
 
 
 
 
 

➤ HEE for CFTd is minimal surface in the bulk for a given boundary [Ryu, Takayanagi, PRL 96 (2006)]: 
 
 
 
 
 
 

➤ lots of applications: 
- to study Van der Waals like phase transition in RN-AdS BHs & massive gravity 
- characterization of thermalization processes 
gravity/condensed matter correspondence:   - holographic superconductors 
                                                                       - metal-insulator transitions 10
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➤ HEE can serve as probe of confinement in gravity duals of large Nc gauge 
theories [Klebanov et al., NPB 796 (2008)]: 
change between connected and disconnected surfaces in dependence of the 
length of the boundary area is interpreted as a signature of confinement 
 
 
 
 
 
 

➤ recent discussion in [Zhang, NPB 916 (2017)] for a fixed shape of entanglement 
region in dependence of temperature for a bottom-up model that mimics QCD 
properties at μ=0 [Gubser et al., PRD 78 (2008), PRL 101 (2008)] 
 
☛ here: extension for μ>0 in holographic EMD model that mimics QCD phase 
diagram [JK, Kämpfer (2017), arXiv:1706.02647]
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HEE IN THE EMD MODEL

➤ assume a fixed strip shape on boundary for entanglement region 
                                                                  w/                
(translation invariance) ⟶ minimal surface can be parameterised  
                                             by   

➤ induced metric on static minimal surface: 
 
HEE: 
 
w/                               and       … determinant of induced metric 

➤ Extremizing           similar to mechanics problem: one has conserved quantity and finds 
                                                                   … closest position of minimal surface to horizon 

➤ boundary condition: 
 

⟹ determines       for given  

➤ HEE, finally: 
                                                                                                                  ⟶ divergent
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➤ regularized HEE density defined by cutoff:  
 
 
 
 
 
 
 
 
 

➤ renormalized HEE density:                                                       … integrand in  
                                                                                                  …                set in 
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➤ phase diagrams:
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- pseudo-pressure defined as                                              to determine  

- opposite qualitative behavior of HEE to scaled thermodynamic entropy 

- HEE exhibits the same critical point 

- remarkable similarity of „isentrope” pattern

dpHEE = ln(Sreg
HEE)dT for µ ⌘ const

Tc



➤ comparison of FOPT curves: 
 
 
 
 
 

➤ critical exponent for heat capacity at constant chemical potential: 
 
 
(    similar for                )  
 

for thermodynamic entropy ⟶ 
 
            for HEE w/              ⟶ 
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SUMMARY: 
+ Holographic model is adjusted to known lattice data at 𝜇=0 and exhibits CEP at  

+ Holographic QCD phase diagram has gas-liquid FOPT w/ in- and outgoing isentropes 
+ HEE can characterize different phase structures in the T-𝜇 plane 
+  confinement/deconfinement transition of HEE at finite μ is described by FOPT curve 

starting at critical point in agreement w/ thermodynamic result 

good agreement  

near CEP

TCEP = (112± 5)MeV and µCEP = (612± 50)MeV
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BACKUP
➤ position of CEP can be estimated with determinant of susceptibility matrix: 
 
 
 
 
 
 
 
 

➤ accuracy of CEP estimated through different low-temperature asymptotics of     / 
EoS and parameter variations 
to take lattice uncertainties  
into account:
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red: J>0 (stable)
green: J<0 (unstable)



➤ Entanglement entropy in QFTs has UV divergences 
Area law: 
leading divergence of EE in (d+1) dim. QFT in its ground state is proportional 
to the area of the (d-1) dim. boundary      :  
 
 
(a… UV cutoff / lattice spacing)              ⟹ initial interest in BH physics 

➤ recent CEP estimation based on holographic model in [R. Critelli et al. (2017), 
arXiv:1706.00455] gives:  
 
only marginally consistent with our result 
 
⟹ model is sensitive on input and adjustment;  
      missing lattice data for low temperatures seems to hamper unique      
      determination of CEP
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TCEP = (89± 11)MeV and µCEP = (723± 36)MeV

TCEP = (112± 5)MeV and µCEP = (612± 50)MeV



➤ comparison to lattice QCD at μ>0: 
 
 
 
 
 
 
 
 
lattice: [Borsanyi et al., JHEP 08 (2012)] 

➤ phase diagram: [Günther et al., EPJ WoC (2017)] 
(direct comparison might be not appropriate due to imposed conditions in 
lattice calculations)
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