

ENTANGLEMENT ENTROPY IN A HOLOGRAPHIC MODEL FOR THE QCD CRITICAL POINT

Johannes Knaute

Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf Collaborators: B. Kämpfer

DESY Theory Workshop, Hamburg, 27.09.2017

MOTIVATION

QCD as theory of strong interactions is expected to exhibit various phases

gas-liquid (GL) first-order phase transition (FOPT) in nuclear matter

established

For μ=0 hadron-quark (HQ) deconfinement transition is crossover in 2+1 flavor lattice QCD at O(155 MeV)

- > sign problem in lattice calculations for μ >0
 - \Rightarrow imaginary μ , taylor expansions, reweighting, complex Langevin, ...
- ➤ alternative: model building (NJL, linear sigma/quark meson, gauge/gravity, ...)
- possible critical end point (CEP) fairly unconstrained, experimental attempts: LHC, RHIC, FAIR, ...

A (VERY) SHORT PRIMER ON ADS/CFT

- realization of the holographic principle (t'Hooft, Susskind)
- correspondence between CFT in d dimensions and gravitational theory in d+1 dim.:

 $\mathcal{N}=4$ SYM w/ gauge group SU(N) and g_{YM} is dynamically equivalent to IIB superstring theory w/ $l_s^2=\alpha'$ and g_s on $AdS_5\times S_5$ w/ curvature radius L and N units of $F_{(5)}$ flux on S_5 .

- rightarrow parameter mapping: $g_{YM}^2 = 2\pi g_s$, $2g_{YM}^2 N = L^4/\alpha'^2$
- ➤ map between two different theories; *duality* refers to opposite strong/weak coupling regimes
- ➤ operator-field duality allows one-to-one correspondence/dictionary between field theory operator \mathcal{O} and gravity fields ϕ in same representation (CFT_d is defined on boundary of AdS_{d+1}):

$$Z_{\mathcal{O}}[\phi_0]_{CFT} = \int \mathcal{D}\phi \ e^{-S + \int d^4x \mathcal{O}(x)\phi_0(x)} = Z_{\text{classical}}[\phi_0]_{AdS} = e^{-S_{\text{SUGRA}}[\phi[\phi_0]]}$$

generating functional of CFT is identified w/ gravity partition function

HOLOGRAPHIC EMD MODEL

5D gravity (Einstein-Maxwell-dialton) model based on action

$$S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g} \left(R - \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) - \frac{f(\phi)}{4} F_{\mu\nu}^2 \right)$$

with

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \quad A_{\mu}dx^{\mu} = \Phi dt$$

- ► metric ansatz: $ds^2 = e^{2A(r)} \left(-h(r)dt^2 + d\vec{x}^2 \right) + \frac{dr^2}{h(r)}$ \Rightarrow asymptotically AdS₅ spacetime boundary at $r \to \infty$ black hole horizon $h(r_H) \equiv 0$
- field eqns. are solved with $\phi_0 \equiv \phi(r_H)$ and $\Phi_1 \equiv \frac{\partial \Phi}{\partial r}|_{r_H}$ as parameters
- from boundary asymptotics as:

Thermodynamic quantities follow from boundary asymptotics as:
$$T = \lambda_T \frac{1}{4\pi\phi_A^{1/(4-\Delta)}\sqrt{h_0^\infty}}, \quad s = \lambda_s \frac{2\pi}{\phi_A^{3/(4-\Delta)}}$$

$$\mu = \lambda_\mu \frac{\Phi_0^\infty}{\phi_A^{1/(4-\Delta)}}, \quad n = \lambda_n \frac{Q_G}{2f(0)\phi_A^{3/(4-\Delta)}}$$

- dimensional scaling factors $\lambda_T = \lambda_\mu := 1/L$ and $\lambda_s = \lambda_n := 1/\kappa_5^2$ restore physical units
- pressure from integration $d\mathbf{p}(T,\mu) = s(T,\mu)dT + n(T,\mu)d\mu$

 $ightharpoonup T-\mu$ plane is uncovered with properly chosen initial conditions ϕ_0, Φ_1

➤ Related literature:

model proposed in [DeWolfe, Gubser, Rosen, PRD 83 (2011)], dynamical critical phenomena analysed in [DeWolfe, Gubser, Rosen, PRD 84 (2011)] (fit to "old" lattice data);

updated to recent 2+1 flavor lattice QCD in [Noronha et al., PRL 115 (2015), JHEP 04 (2016), arXiv:1704.05558] (transport coefficients, quark energy loss etc.) not yet addressed: possible CEP and related phase diagrams

our topic in [JK, Yaresko, Kämpfer (2017), arXiv:1702.06731]

ADJUSTMENT TO LATTICE QCD AT μ =0

➤ dilaton potential $V(\phi)$ and scaling factors are determined through fit to 2+1 flavor lattice QCD at μ =0 [Borsanyi et al., PLB 730 (2014); Bazavov et al., PRD 90 (2014)] to match EoS:

Equation of state of the updated holographic EMD model as functions of T for μ = 0:

scaled entropy density (top left), speed of sound squared (top right), scaled pressure (bottom left) and scaled trace anomaly (bottom right).

- > susceptibilities are relevant fluctuation measures: $\chi_i(T,\mu) \equiv \frac{\partial^i p(T,\mu)}{\partial \mu^i}\Big|_T$, $i=2,3,4,\ldots$
- > $f(\phi)$ is chosen to match 2nd order quark number susceptibility χ_2 in [Bellwied et al., PRD 92 (2015)]:

$$\frac{\chi_2(T,0)}{T^2} = \frac{L}{16\pi^2 f(0)} \frac{s}{T^3} \frac{1}{\int_{r_H}^{\infty} dr \frac{e^{-2A}}{f(\phi)}}$$

holographic results:

THERMODYNAMIC PHASE DIAGRAMS

► EMD model exhibits CEP at $T_{CEP} = (112 \pm 5) \,\mathrm{MeV}$ and $\mu_{CEP} = (612 \pm 50) \,\mathrm{MeV}$

- FOPT curve shows up as kinky behavior of p/T^4 and jumpy behavior of s/T^3 , n/T^3 , s/n (stable phases)
- GL transition:
 critical pressure increases in T-direction
 s/n jumps towards smaller values in T,μ-directions
 across FOPT

Contour plots of scaled baryon density and entropy-to-baryon ratio over the scaled T-µ plane for the updated holographic EMD model.

➤ isentropes enter coexistence region on deconfined/dense side and are leaving

on confined/dilute side:

➤ CEP uncertainty estimated by parameter variations and different low-temperature asymptotics that take lattice uncertainties into account

HOLOGRAPHIC PROPOSAL FOR THE ENTANGLEMENT ENTROPY (HEE)

Definition:

B $A \leftarrow \partial A = \partial B$ entropy for reduced density matrix: $\rho_{A} = Tr_{B}\rho_{tot}$ $S_{EE} := -Tr_{A}\rho_{A}\ln\rho_{A}$

$$H_{tot} = H_A \otimes H_B$$
.

pictures: [Takayanagi, Ahrenshoop Symposium (2012)]

 $Entanglement\ entropy = von\ Neumann$

$$\rho_{\mathcal{A}} = Tr_{\mathcal{B}}\rho_{tot}$$

$$S_{\mathrm{EE}} := -T r_{\mathcal{A}}
ho_{\mathcal{A}} \ln
ho_{\mathcal{A}}$$

HEE for CFT_d is minimal surface in the bulk for a given boundary [Ryu, Takayanagi, PRL 96 (2006)]:

$$S_{\text{HEE}} = \frac{\text{Area}(\gamma_{\mathcal{A}})}{4G_N^{(d+1)}}$$

 γ_A ... static minimal surface in AdS_{d+1} w/boundary $\partial \gamma_{\mathcal{A}} = \partial \mathcal{A}$

- ➤ lots of applications:
 - to study Van der Waals like phase transition in RN-AdS BHs & massive gravity
 - characterization of thermalization processes

gravity/condensed matter correspondence: - holographic superconductors

- metal-insulator transitions

➤ HEE can serve as probe of confinement in gravity duals of large N_c gauge theories [Klebanov et al., NPB 796 (2008)]: change between connected and disconnected surfaces in dependence of the length of the boundary area is interpreted as a signature of confinement

- recent discussion in [Zhang, NPB 916 (2017)] for a fixed shape of entanglement region in dependence of temperature for a bottom-up model that mimics QCD properties at μ =0 [Gubser et al., PRD 78 (2008), PRL 101 (2008)]
 - here: extension for μ >0 in holographic EMD model that mimics QCD phase diagram [JK, Kämpfer (2017), arXiv:1706.02647]

HEE IN THE EMD MODEL

➤ assume a fixed strip shape on boundary for entanglement region $\mathcal{A}: x_1 \in [-l/2, l/2], x_2, x_3 \in [-L/2, L/2] \text{ w/ } L \gg l$ (translation invariance) \longrightarrow minimal surface can be parameterised by $r = r(x_1)$

induced metric on static minimal surface: $ds_{\gamma_A}^2 = \left(e^{2A} + \frac{r'^2}{h}\right) dx_1^2 + e^{2A} \left(dx_2^2 + dx_3^2\right)$

HEE:
$$S_{\text{HEE}} = \frac{1}{4} \int dx_1 dx_2 dx_3 \sqrt{\gamma} = \frac{V_2}{2} \int_0^{l/2} dx_1 e^{2A(r)} \sqrt{e^{2A(r)} + \frac{r'^2}{h(r)}}$$

w/ $V_2 \equiv \int dx_2 dx_3$ and γ ... determinant of induced metric

- Extremizing $S_{\rm HEE}$ similar to mechanics problem: one has conserved quantity and finds $r' = \sqrt{h(r) \left(\mathrm{e}^{8A(r) 6A(r_*)} \mathrm{e}^{2A(r)} \right)}$ $r_* \dots$ closest position of minimal surface to horizon
- boundary condition: $\frac{l}{2} = \int_{r_*}^{\infty} dr \frac{dx}{dr} = \int_{r_*}^{\infty} dr \left[h(r) \left(e^{8A(r) 6A(r_*)} e^{2A(r)} \right) \right]^{-1/2}$ \implies determines r_* for given l
- ➤ HEE, finally:

$$S_{\rm HEE} = \frac{V_2}{2} \int_{r_*}^{\infty} dr \frac{\mathrm{e}^{6A(r) - 3A(r_*)}}{\mathrm{e}^{A(r)} \sqrt{h(r) \left(\mathrm{e}^{6A(r) - 6A(r_*)} - 1\right)}} \longrightarrow \text{divergent}$$

regularized HEE density defined by cutoff:

$$S_{\text{HEE}}^{reg} := \frac{1}{2} \int_{r_*}^{r_m} dr \frac{e^{6A(r) - 3A(r_*)}}{e^{A(r)} \sqrt{h(r) \left(e^{6A(r) - 6A(r_*)} - 1\right)}}$$

decreasing in crossover region,

1st order phase transition signaled
by multivalued branch

renormalized HEE density: $S_{\text{HEE}}^{ren} := \frac{1}{2} \int_{r_*}^{r_m} dr \ln \frac{H(r)}{\tilde{H}(r)}$ H(r) ... integrand in S_{HEE} $\tilde{H}(r)$... $A(r_*) \equiv 0$ set in H(r)

qualitative behavior similar to thermodynamic entropy density, numerically difficult

phase diagrams:

- pseudo-pressure defined as $dp_{\text{HEE}} = \ln(S_{\text{HEE}}^{reg}) dT$ for $\mu \equiv \text{const}$ to determine T_c
- opposite qualitative behavior of HEE to scaled thermodynamic entropy
- HEE exhibits the same critical point
- remarkable similarity of "isentrope" pattern

comparison of FOPT curves:

good agreement near CEP

critical exponent for heat capacity at constant chemical potential:

$$C_{\mu} \equiv T \frac{\partial s}{\partial T}\Big|_{\mu} = -T \frac{\partial^2 f}{\partial T^2}\Big|_{\mu} \sim |T - T_{CEP}|^{-\alpha}, \qquad \mu \equiv \mu_{CEP}, \quad T < T_{CEP}$$

(α' similar for $T > T_{CEP}$)

for thermodynamic entropy
$$\longrightarrow \quad \alpha \approx 0.66, \quad \alpha' \approx 0.64$$

$$\text{for HEE w/ } \ln S_{\text{HEE}}^{reg} \longrightarrow \quad \alpha \approx 0.65, \quad \alpha' \approx 0.66$$

SUMMARY:

- + Holographic model is adjusted to known lattice data at μ =0 and exhibits CEP at $T_{CEP}=(112\pm5)\,\mathrm{MeV}$ and $\mu_{CEP}=(612\pm50)\,\mathrm{MeV}$
- + Holographic QCD phase diagram has gas-liquid FOPT w/ in- and outgoing isentropes
- + HEE can characterize different phase structures in the T- μ plane
- + confinement/deconfinement transition of HEE at finite μ is described by FOPT curve starting at critical point in agreement w/ thermodynamic result

BACKUP

> position of CEP can be estimated with determinant of susceptibility matrix:

$$J \equiv \det S = \partial(s, \rho)/\partial(T, \mu)$$

red: J>0 (stable)

green: J<0 (unstable)</pre>

 \blacktriangleright accuracy of CEP estimated through different low-temperature asymptotics of χ_2 /

EoS and parameter variations to take lattice uncertainties into account:

➤ Entanglement entropy in QFTs has UV divergences Area law:

leading divergence of EE in (d+1) dim. QFT in its ground state is proportional to the area of the (d-1) dim. boundary ∂A :

$$S_{\rm EE} \sim \frac{{\rm Area}(\partial A)}{a^{d-1}} + {\rm subleading}$$

(a... UV cutoff / lattice spacing) ⇒ initial interest in BH physics

recent CEP estimation based on holographic model in [R. Critelli et al. (2017), arXiv:1706.00455] gives:

$$T_{CEP} = (89 \pm 11) \,\mathrm{MeV}$$
 and $\mu_{CEP} = (723 \pm 36) \,\mathrm{MeV}$

only marginally consistent with our result

$$T_{CEP} = (112 \pm 5) \,\mathrm{MeV}$$
 and $\mu_{CEP} = (612 \pm 50) \,\mathrm{MeV}$

⇒ model is sensitive on input and adjustment; missing lattice data for low temperatures seems to hamper unique determination of CEP

 \triangleright comparison to lattice QCD at $\mu > 0$:

lattice: [Borsanyi et al., JHEP 08 (2012)]

➤ phase diagram: [Günther et al., EPJ WoC (2017)]

(direct comparison might be not appropriate due to imposed conditions in

lattice calculations)

