Primordial Black Holes as Dark Matter

JGB & S. Clesse, Sci. Am. July 2017, 39 - 43 JGB & Ruiz Morales, arXiv:1702.03901, PDU Ezquiaga, JGB & Ruiz Morales, arXiv:1705.04861, PLB JGB, J.Phys.Conf 840 (2017) 012032 JGB & S. Nesseris, arXiv:1706.02111, PDU S. Clesse & JGB, arXiv:1610.08479, PDU JGB, M. Peloso & C. Unal, JCAP 1709 (2017) 013 JGB, M. Peloso & C. Unal, JCAP 1612 (2016) 031 S. Clesse & JGB, Phys Dark Univ 10 (2016) 002 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

Juan García-Bellido 26th September 2017

Outline

- The discovery of 4 BHB by AdvLIGO has opened a new Era of Astronomy
- Dark Matter = PBH
- Quantum origin => Peaks in curvature
- Inflaton = Higgs (Critical Higgs Infl)
- Particle Physics beyond SM (?)
- Test PBH scenario with GW interferom
- Conclusions

Black Holes of Known Mass

Gravitational Wave Astronomy

- AdvLIGO + VIRGO, KAGRA, INDIGO
- $GW150914 = 36 + 29 M_{sun} BH binary$
- GW151226 = $14 + 8 M_{sun}$ BH binary
- LVT151012 = 23 + 13 M_{sun} "candidate"
- $GW170401 = 32 + 20 M_{sun}$ BH binary
- Expected 50-100 events/yr/Gpc³
- AdvLIGO+ can map the mass and spin Massive BH (0.1 M_{sun} < M_{BH} < 150 M_{sun}) n.b. f_{ISCO} = 4400 Hz (M_{sun}/M_{BH})

Massive PBH from Inflation as DM

Space-time ripples

Stretched to cosmological scales

Planck (2015)

What models of Inflation produce PBH?

Power spectrum $\log P(k)^{1/2}$ GBLW('96) -- LCDM $\log k$

$log P(k)^{1/2}$ Power spectrum

$$M_{PBH} \simeq M_{Hor}$$

$\log P(k)^{1/2}$ Power spectrum

Critica HIGGS nflation

Concrete realization: PBH in Critical Higgs Inflation

Ezquiaga, JGB, Ruiz Morales (2017)

$$S = \int d^4x \sqrt{g} \left[\left(\frac{1}{2\kappa^2} + \frac{\xi(\phi)}{2} \phi^2 \right) R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \lambda(\phi) \phi^4 \right]$$

$$\lambda(\phi) = \lambda_0 + b_\lambda \ln^2(\phi/\mu) ,$$

$$\xi(\phi) = \xi_0 + b_\xi \ln(\phi/\mu) ,$$

$$\frac{d\varphi}{d\phi} = \frac{\sqrt{1 + \xi(\phi) \phi^2 + 6 \phi^2 (\xi(\phi) + \phi \xi'(\phi)/2)^2}}{1 + \xi(\phi) \phi^2}$$

RGE running of Higgs quartic coupling

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)

RGE running of Higgs quartic coupling

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)

Concrete realization: CHI model

Ezquiaga, JGB, Ruiz Morales (2017)

$$S = \int d^4x \sqrt{g} \left[\left(\frac{1}{2\kappa^2} + \frac{\xi(\phi)}{2} \phi^2 \right) R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \lambda(\phi) \phi^4 \right]$$

$$\lambda(\phi) = \lambda_0 + b_\lambda \ln^2(\phi/\mu) ,$$

$$\xi(\phi) = \xi_0 + b_\xi \ln(\phi/\mu) ,$$

$$V(x) = \frac{V_0 (1 + a \ln^2 x) x^4}{(1 + c (1 + b \ln x) x^2)^2} \qquad x = \phi/\mu$$

$$V_0 = \lambda_0 \mu^4 / 4$$
, $a = b_{\lambda} / \lambda_0$, $b = b_{\xi} / \xi_0$ and $c = \xi_0 \kappa^2 \mu^2$

Primordial Spectrum for PBH

CMB & LSS

Constraints

CMB Constraints on CHI

Ezquiaga, JGB, Ruiz Morales (2017)

$$A_s^2 = 2.14 \times 10^{-9}$$
 $n_s = 0.952$
 $r = 0.043$
 $d \, n_s / d \ln k = -0.0017$

$$\lambda_0 = 2.3 \times 10^{-7}$$
 $\xi_0 = 7.55$
 $b_{\lambda} = 1.2 \times 10^{-6}$ $b_{\xi} = 11.5$

$$\kappa^2 \mu^2 = 0.102$$

CMB Constraints on CHI

Ezquiaga, JGB, Ruiz Morales (2017)

$$V(x \gg x_c) \simeq V_0 \frac{a}{(bc)^2} = \frac{1}{4\kappa^4} \frac{b_{\lambda}}{b_{\xi}^2} \ll M_{\rm P}^4$$

$$(RGE) b_{\lambda} = 1.2 \times 10^{-6} b_{\xi} = 11.5$$

Reheating after CHI

$$\rho_{\text{end}} = 2.8 \times 10^{63} \text{ GeV}$$

$$T_{\text{rh}} = 3 \times 10^{15} \text{ GeV} \qquad \text{(for } g_* = 106.75)$$

CMB Constraints on CHI

CMB Constraints on CHI

Constraints on Primordial Black Holes

Present Constraints on PBH

Massive Primordial Black Holes

• These are massive black holes with $10^{-2}~M_{\odot} < M_{PBH} < 10^2~M_{\odot}$, which cluster and merge and could resolve some of the most acute problems of Λ CDM paradigm.

 ΛCDM N-body simulations never reach the 100 M_☉ particle resolution, so for them PBH is as good as PDM.

Mass distribution of BH

Correlating Black Hole Mass to Stellar System Mass

Stellar System Mass (in solar masses)

Spin distribution of BH

Distinguish MPBH from Stellar BH

- Accretion disks around SBH
- Distribution of spins misaligned
- Mass distribution ≠ IMF
- SBH kicks at formation vs static PBH
- Galaxy formation rate → gal. seeds
- Microlensing events of long duration
- GAIA anomalous astrometry
- CMB distortions with PIXIE/PRISM
- Reionization faster in the past
- N-body simulations below 10² M_{sun}

Signatures of

Primordial Black Holes

Microlensing

Gravitational lenses (e.g., brown dwarfs)

$$A = \frac{2 + u^2}{u\sqrt{4 + u^2}} \qquad u = \frac{r}{r_E} \quad \text{amplification}$$

$$\overline{Dt} = \frac{r_E}{v} = \frac{\sqrt{4GM_D d}}{v}$$
 average $\frac{1}{2}$ crossing

$$M_D = 100 \,\mathrm{M}_\odot = Dt = 4 \,\mathrm{years}$$

$$M_D = 10 \,\mathrm{M}_\odot = Dt = 1.23 \,\mathrm{years}$$

$$M_D = 1 \,\mathrm{M}_\odot = > Dt = 5 \,\mathrm{months}$$

$$M_D = 0.1 \,\mathrm{M}_\odot = Dt = 1.5 \,\mathrm{months}$$

$$M_D = 0.01 \,\mathrm{M}_\odot => Dt = 2 \,\mathrm{weeks}$$

symmetric

$$A_{\text{max}} = 7.20 \pm 0.09$$

achromatic

$$\frac{A_{red}}{A_{blue}} = 1.00 \pm 0.05$$

unique

$$t = 34.8 \pm 0.2 \,\text{days}$$

 $M_D = 0.1 \,M_{\odot}$

Missing satellite &

Too-big-to-fail Problems ACDM

Spatial distribution of DM

Spatial distribution of DM

Gravitational slingshot effect

Close encounters of a star with MPBH @ 100 km/s relative motion is enough to expel the star from the stellar cluster.

$$\vec{\mathbf{v}}_{2} = \frac{2\vec{\mathbf{U}} + (1-\mathbf{m}/\mathbf{M})\vec{\mathbf{v}}_{1}}{(1+\mathbf{m}/\mathbf{M})}$$

It may explain large M/L ratios of dSph by ejection of stars in the cluster, v>v_{esc}.

DES Dwarf spheroidals

Eridanus II dwarf spheroidal

Signatures of PBH as DM

- Seeds of galaxies at high-z
- Reionization starts early (Kashlinsky)
- Larger galaxies form earlier than ΛCDM
- Massive BH at centers QSO @ z>6
- Growth of structure on small scales
- Ultra Luminous X-ray Transients
- MPBH in Andromeda (Chandra)
- GW from inspiraling BH (LIGO)
- Substructure and too-big-to-fail probl.
- Total integrated mass = $\Omega_{\rm M}$

GW bursts from close encounters

GW bursts

JGB, Nesseris (2017)

GW bursts

GW bursts

Stochastic Background Grav. Waves

The Gravitational Wave Spectrum

Sensitivity of future GW antenas

Stochastic Background from MPBH

Stochastic Background from MPBH

Conclusions

- Massive Primordial Black Holes are the perfect candidates for collisionless CDM, in excellent agreement with CMB and LSS observations.
- MPBHs could also resolve some of the most acute problems of \(\Lambda CDM \) paradigm, like early structure formation and substructure problems.
- MPBHs open a new window into the Early Universe, ~ 20-40 efolds before end inflation.
- There are many ways to test this idea in the near future from CMB, LSS, X-rays and GW.
- LISA/PTA could detect the stoch. background from MPBH merging since recombination.