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Outline 
•  The discovery of 4 BHB by AdvLIGO 
  has opened a new Era of Astronomy 
•  Dark Matter  =  PBH 
•  Quantum origin => Peaks in curvature 
•  Inflaton = Higgs  (Critical Higgs Infl) 
•  Particle Physics beyond SM (?) 
•  Test PBH scenario with GW interferom 
•  Conclusions 
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Gravitational Wave Astronomy 
•   AdvLIGO + VIRGO, KAGRA, INDIGO  
•   GW150914 = 36 + 29 Msun BH binary 
•   GW151226 = 14 +  8 Msun  BH binary 
•   LVT151012 = 23 + 13 Msun “candidate” 
•   GW170401 = 32 + 20 Msun  BH binary  
•   Expected 50-100 events/yr/Gpc3   
•   AdvLIGO+ can map the mass and spin  
   Massive BH (0.1 Msun  < MBH  < 150 Msun) 
   n.b.  fISCO = 4400 Hz (Msun /MBH) 
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Planck (2015) 



What models 
of Inflation 

produce PBH? 
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Gravitational Collapse of PBH 



Gravitational Collapse of PBH 



Gravitational Collapse of PBH 
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Ripples in Space 

Stretched to cosmological distances 
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Concrete realization: PBH in 
Critical Higgs Inflation 

Ezquiaga, JGB, Ruiz Morales (2017) 



Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014) 



Froggatt, Nielsen (‘79) 

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014) 



Concrete realization: CHI model 
Ezquiaga, JGB, Ruiz Morales (2017) 



Ezquiaga, JGB, Ruiz Morales (2017) 
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Primordial Spectrum for PBH 
JGB, Ruiz Morales (2017) 
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CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 



CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 

Reheating after  CHI 



CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 



CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 
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Present Constraints on PBH 
Ezquiaga, JGB, Ruiz Morales (2017) 



Massive Primordial Black Holes 
•  These are massive black holes with 
   10-2 M!< MPBH <102 M! , which cluster and  
   merge and could resolve some of the most  
   acute problems of ΛCDM paradigm. 

•  ΛCDM N-body simulations never reach the  
  100 M! particle resolution, so for them PBH  
  is as good as PDM.  
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Kruijssen et al. (2013) 
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Spin distribution of BH 
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Distinguish MPBH from Stellar BH 
•   Accretion disks around SBH 
•   Distribution of spins misaligned 
•   Mass distribution ≠ IMF 
•   SBH kicks at formation vs static PBH 
•   Galaxy formation rate " gal. seeds 
•   Microlensing events of long duration 
•   GAIA anomalous astrometry 
•   CMB distortions with PIXIE/PRISM 
•   Reionization faster in the past 
•   N-body simulations below 102 Msun 
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Microlensing 
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P. Tisserand (2007) 
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Too-big-to-fail 
Problems ΛCDM 
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Gravitational slingshot effect 
Close encounters of a star with MPBH  
@ 100 km/s relative motion is enough to  
expel the star from the stellar cluster. 
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by ejection of stars in the cluster, v>vesc. 
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DES Dwarf spheroidals 



Eridanus II dwarf spheroidal 



Signatures of  PBH  as  DM 
•   Seeds of galaxies at high-z 
•   Reionization starts early (Kashlinsky) 
•   Larger galaxies form earlier than ΛCDM 
•   Massive BH at centers QSO @ z>6   
•   Growth of structure on small scales 
•   Ultra Luminous X-ray Transients 
•   MPBH  in  Andromeda (Chandra) 
•   GW from inspiraling BH (LIGO) 
•   Substructure and too-big-to-fail probl. 
•   Total integrated mass = ΩM 
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JGB, Nesseris  (2017) 

GW bursts 
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GW bursts 

	"tear	drop	glitches"?



GW bursts JGB, Nesseris  (2017) 
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Primordial Black Holes as Dark Matter 



Sensitivity of future GW antenas 
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Stochastic Background from MPBH 
Clesse, JGB  arXiv:1610.08479 

		
h2

GW
	=	2.2	x	10	-9 (

f
Hz
)2/3(

M
c

100M
sun

)5/3Ω 



Stochastic Background from MPBH 
Clesse, JGB  arXiv:1610.08479 
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Conclusions 
•  Massive Primordial Black Holes are the perfect 
candidates for collisionless CDM, in excellent 
agreement with CMB and LSS observations. 
•  MPBHs could also resolve some of the most 
acute problems of ΛCDM paradigm, like early 
structure formation and substructure problems. 
•  MPBHs open a new window into the Early 
Universe, ~ 20-40 efolds before end inflation. 
•  There are many ways to test this idea in the 
near future from CMB, LSS, X-rays and GW.  
•  LISA/PTA could detect the stoch. background 
from MPBH merging since recombination. 


