

DESY THEORY WORKSHOP 26 - 29 September 2017

Fundamental physics in the cosmos: The early, the large and the dark Universe

DESY Hamburg, Germany

Leptogenesis via Weinberg operator

Ye-Ling Zhou, IPPP Durham, 27 September 2017

Origin of neutrino masses

Why neutrinos have masses and these masses are so tiny?

In the SM without extending particle content, the only way to generate a neutrino mass is using higher dimensional operators.

Weinberg operator $\Delta L=2$

$$\Delta L=2$$

$$\mathcal{L}_W = \frac{\lambda_{\alpha\beta}}{\Lambda} \ell_{\alpha L} H C \ell_{\beta L} H + \text{h.c.}$$

$$m_{\nu} = \lambda \frac{v_H^2}{\Lambda} \qquad \frac{\Lambda}{\lambda} \sim 10^{15} \text{ GeV}$$

UV Completion of the Weinberg operator

type-I,II,III seesaw, inverse seesaw, loop corrections, R-parity violation,...

Baryon-antibaryon asymmetry

Most matter is formed by baryon, not anti-baryon.

$$\eta_B \equiv \frac{n_B - n_{\overline{B}}}{n_{\gamma}}$$
 = $6.105^{+0.086}_{-0.081} \times 10^{-10}$ Planck 2015

The SM cannot provide strong out-of-equilibrium dynamics and enough CP violation.

[1] Parameter	[2] 2013N(DS)	[3] 2013F(DS)	[4] 2013F(CY)	[5] 2015F(CHM)	[6] 2015F(CHM) (Plik)
100θwg	1. 04 131 ± 0.00063	1.04126 + 0.00047	1.04121 + 0.00048	1.04094 + 0.00048	1.04086 + 0.00048
$\Omega_b h^2 \dots$	0.02205 ± 0.00028	0.02234 ± 0.00023	0.02230 ± 0.00023	0.02225 ± 0.00023	0.02222 ± 0.00023
$\Omega_c h^2 \dots \dots$	0.1199 ± 0.0027	0.1189 ± 0.0022	0.1188 ± 0.0022	0.1194 ± 0.0022	0.1199 ± 0.0022
H_0	67.3 ± 1.2	67.8 ± 1.0	67.8 ± 1.0	67.48 ± 0.98	67.26 ± 0.98

Baryogenesis via leptogenesis

Baryogenesis via leptogenesis

Sakharov conditions for leptogenesis

SM L/B-L violation

C/CP violation

Out of equilibrium dynamics

Leptogenesis via ...

in the framework of seesaw

RH neutrino decay
flavour effect resonant decay

RH neutrino oscillation
Akhmedov, Rubakov, Smirnov, 9803255

Weinberg operator

Silvia Pascoli, Jessica Turner, YLZ, arXiv:1609.07969

Leptogenesis via Weinberg operator

Three Sakharov conditions are satisfied as follows:

 The Weinberg operator violates lepton number and leads to LNV processes in the thermal universe.

$$H^*H^*\leftrightarrow \ell\ell$$
, $\bar{\ell}H^*\leftrightarrow \ell H$, $\bar{\ell}H^*H^*\leftrightarrow \ell$, and their CP- $\bar{\ell}\leftrightarrow \ell HH$, $H^*\leftrightarrow \ell\ell H$, $0\leftrightarrow \ell\ell HH$ conjugate processes

The Weinberg operator is very weak and can directly provide out of equilibrium dynamics in the early Universe.

$$\Gamma_{\rm W} \sim \langle \sigma n \rangle \sim \frac{1}{4\pi} \frac{\lambda^2}{\Lambda^2} T^3 \sim \frac{1}{4\pi} \frac{m_{\nu}^2}{v_H^4} T^3$$

$$T < 10^{12} \, {\rm GeV}$$

$$H_u \sim 10 \frac{T^2}{m_{\rm pl}}$$

No washout if there are no other LNV sources.

 We assume that a time-varying Weinberg operator, to give rise to CP violation.

Motivation for varying Weinberg operator

A lot of symmetries have been proposed in the lepton sector. Their breaking may lead to a time-varying Weinberg operator.

B-L symmetry breaking

To generate a CP violation, at least two scalars are needed.

Flavour & CP symmetry breaking

Flavour symmetries		Continuous	Discrete	
	Abelian	Fraggatt-Nielson, L _{mu} -L _{tau}	Zn	
	Non-Abelian	SU(3), SO(3),	A ₄ , S ₄ , A ₅ , Δ(48),	

Other possible origins

Inflation or condensation in strongly coupled theories?

Assuming first-order phase transition

CP violation from varying Weinberg operator

Example:

Canonical quantisation

$$H_{\mathbf{q}}^* H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}} \ell_{\mathbf{k}'}$$

$$S = \mathbf{1} + (-i) \int_{-\infty}^{+\infty} dt H_I(t) + \cdots,$$

$$H_I(t) = \int d^3 \mathbf{x} \mathcal{L}_W = \frac{1}{\Lambda} \int d^3 \mathbf{x} \, \lambda_{\alpha\beta}(t) \ell_{\alpha L} H C \ell_{\beta L} H + \text{h.c.}$$

Time-integrated magnitude

$$\begin{split} M(H_{\mathbf{q}}^{*}H_{\mathbf{q}'}^{*} \rightarrow \ell_{\mathbf{k}}\ell_{\mathbf{k}'}) &\propto \frac{2}{\Lambda} \int_{-\infty}^{+\infty} dt \lambda_{\alpha\beta}^{*}(t)e^{i\Delta\omega t} e^{-i\Delta\mathbf{k}\cdot\mathbf{x}}, \ \Delta\mathbf{k} = \mathbf{k} + \mathbf{k}' - \mathbf{q} - \mathbf{q}'. \\ \Delta\omega &= \omega_{\mathbf{k}} + \omega_{\mathbf{k}'} - \omega_{\mathbf{q}} - \omega_{\mathbf{q}'} \\ M(H_{\mathbf{q}}H_{\mathbf{q}'} \rightarrow \bar{\ell}_{\mathbf{k}}\bar{\ell}_{\mathbf{k}'}) &\propto \frac{2}{\Lambda} \int_{-\infty}^{+\infty} dt \lambda_{\alpha\beta}(t)e^{i\Delta\omega t} e^{-i\Delta\mathbf{k}\cdot\mathbf{x}}. \\ \lambda_{\alpha\beta}(t)e^{i\Delta\omega t} &\cdot \lambda_{\alpha\beta}(t) = |\lambda_{\alpha\beta}(t)|e^{i\phi_{\alpha\beta}(t)} \\ \Delta_{CP}(H_{\mathbf{q}}^{*}H_{\mathbf{q}'}^{*} \rightarrow \ell_{\mathbf{k}}\ell_{\mathbf{k}'}) &\equiv \frac{|M(H_{\mathbf{q}}^{*}H_{\mathbf{q}'}^{*} \rightarrow \ell_{\mathbf{k}}\ell_{\mathbf{k}'})|^{2} - |M(H_{\mathbf{q}}H_{\mathbf{q}'} \rightarrow \bar{\ell}_{\mathbf{k}}\bar{\ell}_{\mathbf{k}'})|^{2}}{|M(H_{\mathbf{q}}^{*}H_{\mathbf{q}'}^{*} \rightarrow \ell_{\mathbf{k}}\ell_{\mathbf{k}'})|^{2} + |M(H_{\mathbf{q}}H_{\mathbf{q}'} \rightarrow \bar{\ell}_{\mathbf{k}}\bar{\ell}_{\mathbf{k}'})|^{2}} \end{split}$$

Silvia Pascoli, Jessica Turner, YLZ, in process

Lepton asymmetry in closed-time-path approach

CPV source in classical formalism

$$\Delta f_{\ell_lpha} \propto \ \mathrm{Im} \left\{ egin{array}{c} \lambda^*_{lphaeta}(t_1) \ \end{array}
ight. imes \lambda_{lphaeta}(t_2) \end{array}
ight.$$

Self energies including CPV source in CTP formalism

$$\Sigma_{\alpha\beta}^{<,>}(x_1, x_2) = 3 \times \frac{4}{\Lambda^2} \sum_{\gamma\delta} \lambda_{\alpha\gamma}^*(x_1) \lambda_{\delta\beta}(x_2). \qquad \frac{\ell, k}{2^2}$$

$$\times \Delta^{>,<}(x_2,x_1)\Delta^{>,<}(x_2,x_1)S^{>,<}_{\gamma\delta}(x_2,x_1)$$
,

$$\Delta N_\ell = -\frac{12}{\Lambda^2} \int \underline{d^4x d^4r \left(-i\right) \mathrm{tr}[\lambda^*(x_1)\lambda(x_2)] \mathcal{M}}.$$

$$\mathcal{M} = i \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} e^{iK \cdot (-r)} \left\{ \Delta_q^<(x) \Delta_{q'}^<(x) \mathrm{tr}[S_k^<(x) S_{k'}^<(x)] - \Delta_q^>(x) \Delta_{q'}^>(x) \mathrm{tr}[S_k^>(x) S_{k'}^>(x)] \right\}$$

The final lepton asymmetry is determined by the behaviour of Weinberg operator during the phase transition and thermal properties of leptons and the Higgs.

Leptogenesis via Weinberg operator (in CTP approach)

$$x_{\gamma} = (\gamma_H + \gamma_l)/T$$

$$m_{\nu}^0 = \lambda^0 \frac{v_H^2}{\Lambda}$$

$$m_{\nu} = \lambda \frac{v_H^2}{\Lambda}$$

Higgs thermal width

lepton thermal width

The thermal width corresponds to decoherence at large time duration.

Leptons and the Higgs are assumed to be thermal distributed.

Thermal masses are neglected.

Leptogenesis via RH neutrino decays

Testability

Assuming 1st-order Phase transition

Using underground gravitational wave telescopes

aLIGO, KAGRA, Virgo test 108~11 GeV scale PT.

Summary

- I introduce a novel mechanism of leptogenesis via Weinberg operator.
- No explicit new particles are required, but just a timevarying Weinberg operator.
- Phase transition can be the origin of the time-varying Weinberg operator.
- Phase transition temperature is around 10¹¹ GeV.
- The phase transition can be tested in the future underground GW interferometers.

Thank you very much!

Backup

Motivation for closed-time-path (CTP) approach

- QFT at zero temperature or in thermal equilibrium
- QFT in non-equilibrium case

Vacuum/background is in thermal equilibrium, time-dependent

Background is time-dependent. We have to specify a time.

In-out formalism $\langle \Omega(t_f|\mathcal{O}|\Omega(t_i) \rangle$

In-in formalism

 $\langle \Omega(t_i)|\mathcal{O}|\Omega(t_i)
angle$

CTP approach

Propagators

Feynman
$$S_{\alpha\beta}^T(x_1,x_2) = \langle T[\ell_{\alpha}(x_1)\overline{\ell}_{\beta}(x_2)] \rangle$$

Dyson
$$S_{\alpha\beta}^{\overline{T}}(x_1,x_2) = \langle \overline{T}[\ell_{\alpha}(x_1)\overline{\ell}_{\beta}(x_2)] \rangle$$

Wightman

$$S_{\alpha\beta}^{<}(x_1, x_2) = -\langle \overline{\ell}_{\beta}(x_2)\ell_{\alpha}(x_1)\rangle$$

$$S^{>}_{\alpha\beta}(x_1, x_2) = \langle \ell_{\alpha}(x_1) \overline{\ell}_{\beta}(x_2) \rangle$$

$$x_1^{\mu} = (t_1, \vec{x}_1)$$
 $x_2^{\mu} = (t_2, \vec{x}_2)$

Kadanoff-Baym equation

$$i\partial S^{<,>} - \Sigma^H \odot S^{<,>} - \Sigma^{<,>} \odot S^H = \frac{1}{2} [\Sigma^> \odot S^< - \Sigma^< \odot S^>]$$

Lepton asymmetry Self energy correction

Dispersion relations

Collision term

$$\Delta n_{\ell\alpha}(x) = -\frac{1}{2} \operatorname{tr} \left\{ \gamma^0 \left[S_{\alpha\alpha}^{<}(x, x) + S_{\alpha\alpha}^{>}(x, x) \right] \right\}$$

$$\Delta f_{\ell\alpha}(k) = -\int_{t_i}^{t_f} dt_1 \partial_{t_1} \operatorname{tr} \left[\gamma_0 S_{\vec{k}}^{<}(t_1, t_1) + \gamma_0 S_{\vec{k}}^{>}(t_1, t_1) \right]$$

$$S^H = S^T - \frac{1}{2}(S^> + S^<)$$
 $\Sigma^H = \Sigma^T - \frac{1}{2}(\Sigma^> + \Sigma^<)$
CPV source

Classical formalism vs CTP formalism

Leptogenesis via RH neutrino decay

Anisimov, Buchmuller, Drewes, Mendizabal, 1012.5821

CPV source in classical formalism

Self energies including CPV source in CTP formalism

Leptogenesis via RH neutrino oscillation

CPV source in classical formalism

Self energy including CPV source in CTP formalism

Influence of phase transition

Multi-scalar phase transition (in the thick-wall limit)

$$\begin{aligned} \text{e.g.,} \qquad \lambda(x) &= \lambda^0 + \lambda^1 f_1(x) + \lambda^2 f_2(x) \\ &\operatorname{Im}\{\operatorname{tr}[\lambda^*(x_1)\lambda(x_2)]\} &= \operatorname{Im}\{\operatorname{tr}[\lambda^0\lambda^{1*}]\}[f_1(x_1) - f_1(x_2)] + \operatorname{Im}\{\operatorname{tr}[\lambda^0\lambda^{2*}]\}[f_2(x_1) - f_2(x_2)] \\ &+ \operatorname{Im}\{\operatorname{tr}[\lambda^{1*}\lambda^2]\}[f_1(x_1)f_2(x_2) - f_1(x_2)f_2(x_1)] \end{aligned}$$

Interferences of different scalar VEVs cannot be neglected.

$$\int d^4r {\rm Im}\{{\rm tr}[\lambda^*(x_1)\lambda(x_2)]\} {\cal M} = \int d^4r {\rm Im}\{{\rm tr}[\lambda^*(x+r/2)\lambda(x-r/2)]\} {\cal M}$$

$$\approx {\rm Im}\{{\rm tr}[\lambda^*(x)\partial_\mu\lambda(x)]\} \int d^4r r^\mu {\cal M} \,.$$

$$\Delta n_\ell^{\rm I} \propto {\rm Im}\{{\rm tr}[\lambda^*(x)\partial_t\lambda(x)]\} \int d^4r \, r^0 \, {\cal M} \quad {\rm time-dependent\ integration}$$

$$\Delta n_\ell^{\rm II} \propto {\rm Im}\{{\rm tr}[\lambda^*(x)\partial_z\lambda(x)]\} \int d^4r \, r^3 \, {\cal M} \quad {\rm space-dependent\ integration}$$

Time derivative/spatial gradient

Silvia Pascoli, Jessica Turner, YLZ, in progress

Influence of thermal effects

Thermal effects influence the timeand space-dependent integration.

$$\int d^4 r \, r^0 \, {\cal M}$$

$$\int d^4 r \, r^3 \, {\cal M}$$

$$\mathcal{M} = i \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} e^{iK \cdot (-r)} \left\{ \Delta_q^<(x) \Delta_{q'}^<(x) \mathrm{tr}[S_k^<(x) S_{k'}^<(x)] - \Delta_q^>(x) \Delta_{q'}^>(x) \mathrm{tr}[S_k^>(x) S_{k'}^>(x)] \right\}$$

Resummed propagators of the Higgs and leptons

$$\begin{split} &\Delta_{q}^{<,>} = \frac{-2\varepsilon(q^{0})\mathrm{Im}\Pi_{q}^{R}}{[q^{2} + \mathrm{Re}\Pi_{q}^{R}]^{2} + [\mathrm{Im}\Pi_{q}^{R}]^{2}} \Big\{ \vartheta(\mp q^{0}) + f_{B,|q^{0}|}(x) \Big\} \,, \\ &S_{k}^{<,>} = \frac{-2\varepsilon(k^{0})\mathrm{Im}\Sigma_{k}^{R2}}{[k^{2} + \mathrm{Re}\Sigma_{q}^{R2}]^{2} + [\mathrm{Im}\Sigma_{q}^{R2}]^{2}} \Big\{ \vartheta(\mp k^{0}) - f_{F,|q^{0}|}(x) \Big\} P_{L} \not k P_{R} \,, \end{split}$$

thermal equilibrium

$$f_{B,|m{q}^0|} \equiv rac{1}{e^{eta|m{q}^0|}-1}\,, \qquad f_{F,|m{k}^0|} \equiv rac{1}{e^{eta|m{k}^0|}+1}\,,$$

thermal mass

$$m_{\mathrm{th},H}^2 = \mathrm{Re}\Pi$$
 $m_{\mathrm{th},\ell} = \mathrm{Re}\Sigma$ $\gamma_H = \frac{\mathrm{Im}\Pi}{2m_{\mathrm{th},\ell}}$ $\gamma_\ell = \frac{\mathrm{Im}\Sigma^2}{2m_{\mathrm{th},\ell}}$

thermal width

By assuming thermal equilibrium in the rest frame of plasma, the space-dependent integration is zero.

$$\mathcal{M} \frac{\text{is invariant under parity transformation}}{r \to r^P = (r^0, -\mathbf{r}), \quad k_n \to k_n^P = (k_n^0, -\mathbf{k}_n)} \Longrightarrow \int d^4r \, r^3 \, \mathcal{M} = 0$$