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1.  The Standard WIMP freeze-out formalism 

2.  Refined treatment 

3.  Applied to Singlet Scalar DM  
  — Order of magnitude impact on relic abundance ΩDM

Coupled 0th and 2nd moment of 
Boltzmann Equations

Full phase-space  
Boltzmann Equation



Standard formalism 



➡ Provides the time evolution Eq. for the Phase Space density 

➡ For CP invariant 2 ↔ 2 annihilation and scattering processes 
 
           :   
 
 
 
 

➡ Solving this (stiff) partial integero  
differential equation would provide 
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➡ Integrate the BE over momentum      (                   ), i.e. study BE 0th moment 
 
 

➡ Assume kinetic equilibrium during chemical decoupling, i.e.  
 
 

➡ With this assumption, the RHS can be evaluated to give: 
 
 
 
 
 
             where 
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➡ Rewriting 0th moment of BE into dimensionless variables                       gives 

➡ Numerical codes guarantee to  
solve this equation to sub-percent  
lever for sophisticated DM models  
(e.g. DarkSuSy, micrOMEGAs …) 
 
 
 
 

➡ What if the DM is not in kinetic equilibrium during chemical decoupling?  
 
 

                Would results change?  
                How to compute ΩDM ? 

The Standard Treatment
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➡ Look at the 2nd moment of               —  aka DM “temperature” : 

➡ Assume thermal distribution but a separate DM “temperature” 
 

➡ Then the 2nd moment  
(non-rel.) BE gives   
 
where

 Notes on kinetic decoupling (               )
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is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)
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Figure 1. The left panel shows the phaseplot and solution for the WIMP temperature

evolution, for mχ ∼ 100 GeV and |M|
2

∼ g4
Y (mχ/ω)2, expressed in the dimensionless

variables introduced in Eqs. (8, 9). At T ! Tkd, any departure from thermal
equilibrium (Tχ = T ) is restored almost immediately (except for a short period around
the QCD phase transition); for T " Tkd, the WIMPs decouple from the thermal bath
and cool down with the Hubble expansion as Tχ ∝ a−2.

In the right panel, the effective number of relativistic degrees of freedom is plotted
as a function of the temperature, implementing the results of [25] for the evolution of
this quantity during the QCD phase transition; for reference, the decoupling of muons
and electrons is also indicated.

from this behaviour (except for a short period during the QCD transition, see below,

when the rapidly changing effective number of degrees of freedom does not allow this).

In principle, the scattering with all types of SM particles contributes to c(T ), see
Eq. (A.8). This picture is a bit complicated by the fact that kinetic decoupling in some

cases can take place close to, or even above the QCD phase transition, the details of

which are not yet fully understood. Lattice calculations, however, start to converge at

a value for the critical temperature of Tc ≈ 170 MeV for the most interesting case of

two light (up and down) and one more massive (strange) quark flavour [23] and indicate

that the plasma can be described by free quarks and gluons only for T " 4Tc [24]. For
the effective number of degrees of freedom during the transition, we adopt the results

of [25] as displayed in the right panel of Fig. 1. As scattering partners are concerned,

we conservatively restrict ourselves to leptons and, for T > 4Tc, to the three lightest

quarks.

The resulting range in Tkd for neutralino dark matter, obtained after having

performed the extensive scan described in Section 2, is shown in Fig. 2 as a function of

the mass mχ and gaugino fraction Zg ≡ |N11|2 + |N12|2 (in our case dominated by the
Bino fraction). The gray band indicates the QCD phase transition; values for Tkd inside

or above this band should be interpreted as upper bounds on the decoupling temperature

since the scattering with some of the hadronic degrees of freedom was not taken into

account. On the other hand, as the coupling of WIMPs to hadrons is usually smaller

than to leptons, the difference between this upper bound and the actual value of Tkd is

not expected to be very big; note also that the scattering with bound QCD states like,
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A refined treatment



➡ With                        and                       , CD and KD are coupled: 
 
 
 
 
 
 
 
 
 
 
 
with 

1. 0th and 2nd moments of the BE

production and annihilation thermal ave- 
rages are with different               and

             are with                     and in order to close the equations we assume 
equilibrium momentum distribution — with separate DM “temperature”  

h...ineq

6D integral 
reduces to 
2D integral
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0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T
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➡ Rewrite BE in 

➡ Discretize                and impose boundary conditions at            and         
 
 
 
 
 

2. Solving the full phase-space BE

➡ Transformed the partial integero differential 
equation into N coupled ODEs !
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DM’s full phase-space evolution

Singlet Scalar: mS=62.5 GeV, ΩDMh2 = 0.1188
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A non-trivial evolution of f(x,q) for a realistic DM model
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An example: 
The Singlet Scalar model 



➡ Add to the SM one Singlet Scalar field S that interacts with the Higgs:

Singlet Scalar Model

Annihilation 
processes:

resonant

Elastic scattering 
processes:
non-resonant

LSS =
1

2
@µS@

µS � 1

2
µ2
SS

2 � 1

2
�SS

2H†H

GAMBIT collaboration, 1705.07931

h�vreli2 ⌘
g2
�

3Tm
�

n2
�

Z
d3p

(2⇡)3

Z
d3p̃

(2⇡)3
p2vrel�

�̄�!X̄X

f(E)f(Ẽ) (1)
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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➡ a DM scenario with large annihilation 
and weak scattering x-sections  
 
         Early Kinetic Decoupling
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mDM = 45 GeV, far below resonance

Gondolo &Gelmini
coupled BEs
full BE
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mDM = 58 GeV — closer to the resonance

=
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Resonant Annihilation most effective for high momenta  
      DM goes through a “cooling” phase and annihilation quickly loose efficiency 

Early kinetic decoupling



mDM = 62.5 GeV — just on resonance:

=
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Resonant annihilation most effective for low momenta 
             DM goes through a”heating” phase and a prolonged annihilation phase
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Global effect on relic density 

coupled BEs:

full BE
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Impact on model parameters

Gondolo &Gelmini
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Summary



Summary

➡ Kinetic equilibrium is a necessary assumption in standard relic 
density calculation formalism 

➡ A coupled system of 0th and 2nd moments of the Boltzmann 
equation allows to accurately treat kinetic decoupling and its 
impact on relic density 

➡ A full phase-space Boltzmann equation code was setup  
— for non-trivial momentum distributions during freeze-out  

A pitfall to lookout for … 

… kinetic decoupling can happen early



Backups



Thermal freeze-outs
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Full phase-space evolution
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q=p/T  ‘momentum’

A first test: local disturbances in f(q)



Notations
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Singlet Scalar — cross sections



Based on

T. Binder, T. Bringmann and A. Hryczuk  
 Arxiv:1706.07433

https://arxiv.org/pdf/1706.07433.pdf

