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Non-standard	physics:		
To	suppress	their	contribu0on	to	the	HDM	density	
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νs secret	interac0ons	
The	sterile	neutrino	is	coupled	to	a	new	light	pseudoscalar	(Majoron	models)	
	
	
	
Non-cosmological	constraints:	
	

Lint ~ gsφν sγ5ν s

SN	energy	loss	ge	<	4	x	10-7	
gs	<	10-5	

Farzan,	PRD	(2003)	

ββ ge	<	3	x	10-5	

Bernatowicz	et	al,	PRL	(1992)	
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dp =VXP —DPTdt
where V=V"'+V ' and D is a damping parameter
giving the rate of loss of coherence of the ensemble. Pz
is the "transverse" part of P.
The two parameters V and D are the real and imagi-

nary parts of a certain expression' which for scattering
on a species i of the medium is given by the scattering
amplitudes of v, and vz on i:

V, ' =Nv Rei(i
~

1—S"S, ~i ), (sa)

Imi(i ~1—S, S, ~i) . (Sb)

A sum must be taken over the various momenta and
species, which in the present problem will be a sum over
thermal distributions. The quantity D may be thought
of as a rate parameter measuring the effectiveness of the
collisions in interupting the mixing of the two states, i.e.,
the frequency at which collisions stop the coherent de-
velopment of the wave function. In the case where only
one neutrino type interacts and the other one does not,
Eq. (5b) gives simply one-half the collision rate of the in-
teracting neutrino or, expressed as a distance, one-half
the inverse mean free path for the interacting neutrino.
In the opposite extreme where both neutrinos scatter
identically, D =0 since S S = 1. There is no
damping —the medium has not "measured" which neu-
trino is present.
One anticipates regimes of different types of behavior

the Sun. The second effect induced by the medium is a
shrinkage of the vector P. This is due to collisions
which destroy the coherence of the evolution. This in-
coherence is the new element not present for a beam of
neutrinos. When this shrinkage is strong it can influence
the qualitative behavior of the mixing process. Once
again the assumption that flavor is conserved in the
scattering on the medium means that this shrinkage
must be perpendicular to the z (liavor) axis. One thus
arrives at the generalization of Eq. (2) to the case of the
medium

D)) V~ (6a)

and that in this limit the relaxation time of P is
D (6b)

At finite temperatures, larger than the energy splitting of
the two neutrinos, the true equilibrium state is, of
course, always an equal mixture of both particle types,
corresponding to P =0; and in a sufficiently long time,
all solutions of Eq. (4) do indeed relax to P=O. Howev-
er, in an actual problem the "freezing in" of P via the
strong damping may be so effective on the scale of other
relevant times that, in effect, equilibrium never exists.
To understand when this may or may not happen, it is

necessary to estimate the values of V and D, to which we
now turn. We begin with V ', as given by Eq. (5a).
Since we are dealing with weak interactions, we expand
to first order in G and find by writing S =1+iT-1+iG
that, to order 6, V '" involves the difference in the for-
ward elastic scattering amplitudes for v, and v&. Since
the forward-scattering amplitude f can be related to the
refractive index via n = I+(2vrIIC )Nf, N the number
density,

for P according to the relationship between the time be-
tween (effective) collisions and the times involved in the
vacuum oscillations. Weak damping changes the
sinusoidal oscillations of P in the vacuum situation to
damped oscillations, and increasing in strength, eventu-
ally gives overdamped behavior in the strong damping
limit. The strong damping limit is particularly interest-
ing since it can qualitatively change the nature of the
mixing process. When D becomes very large, the P vec-
tor changes very slowly, becoming fixed to the z axis.
This is because with strong damping the transverse com-
ponents of P are quickly shrunk away, which tends to
align P strongly along the z axis. Note that in the ab-
sence of a transverse component of V a constant P along
the z axis would be a solution of the equations. Thus, in
this limit the time dependence is essentially due to the
Pz generated by V&, the transverse component of V.
We can make these remarks more quantitative by ex-

amining the general solution with constant parameters
for Eq. (4). This can be obtained by assuming exponen-
tial time behavior for P and finding the eigenvectors and
eigenvalues of the right-hand side (RHS) of Eq. (4).
First, we find that with Vz ——0 there is one eigenvalue
zero, corresponding to P along the z axis and constant.
When a small Vz is switched on this eigenvalue becomes
Vr D/(D + V, ). The other eigenvalues are approxi-
mately equal to D and correspond to P approximately
perpendicular to the z axis. We thus conclude that the
strong damping limit, where P is pinned to the z axis, is
given by

Vmed Vmed +(& & )Z V V (7)
FIG. 1. Relationship of P and V in the absence of damping.

The z or flavor axis is vertical so that P "up" represents a v,
and P "down" a v„. P, characterizing the density matrix,
precesses around V which represents the influence of the mass
mixing matrix and the index of refraction of the medium.

We therefore need Kn for v, and v„, as calculated from
the forward, no-spin-flip, elastic scattering amplitude.
For standard-model interactions at low energy, where we
can neglect the nonlocal effects of the intermediate-

Stodolsky,	PRD	(1987)	

Vs (ps ) ~10
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2Ts
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Early	0me	phenomenology:	
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Ṗ
y

= V
z

P
x

� 1

2
V
x

(P
a

� P
s

)�DP
y

.

Here, the potentials are given by

V
x

=
�m2

⌫s

2p
sin 2✓

s

,

V
z

= �
�m2

⌫s

2p
cos 2✓

s

� 14⇡2

45
p
2
p
G

F

M2

Z

T 4n
⌫s + V

s

,

where p is the momentum, G
F

is the Fermi coupling
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d3p/(2⇡)3 is the number density of sterile neutrinos.
For the repopulation of the active neutrinos, we use the
expression
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We compute the sterile neutrino contribution to the

potential in Eq. (3) from the actual numerical distribu-
tion. The contribution from the �-background is com-
puted analytically assuming that the �-particles were
produced thermally above a TeV. They will then follow
a Bose-Einstein distribution with a reduced temperature
of
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where the approximation is valid in the temperature
range of interest. We are ignoring momentum transfer
between the sterile neutrinos and the pseudoscalars for
simplicity, but we suspect that including it would have
a negligible e↵ect on our results. When sterile neutrinos
are produced, they will create non-thermal distortions in
the sterile neutrino distribution, and the sterile neutrino
spectrum might end up being somewhat non-thermal. In
Fig. 1 we show the final contribution to the energy den-
sity N
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FIG. 1: The contribution of the sterile neutrino to the rela-
tivistic energy density �Ne↵ = Ne↵ � 3 as a function of the
coupling parameter gs.

from a sterile neutrino with mixing parameter sin2 2✓
s

=
0.05 and m

⌫s = 1 eV, close to the best fit value from
neutrino oscillation data [1, 2]. The transition from full
thermalisation to zero thermalisation happens in the re-
gion 10�6 < g

s

< 10�5, confirming the simple estimate
in Eq. (6) 1.

Late time phenomenology. — In a recent paper by Mi-
rizzi et al. [30] it was pointed out that even if strong self-
interactions prevent thermalisation of the sterile neutrino
before active neutrino decoupling it will eventually be al-
most equilibrated by oscillations at late times. This leads
to a scenario in which active and sterile neutrino distri-
butions have similar temperatures and both contribute
to the combined N

e↵

. Even if early thermalisation is
prevented this still leads to a sterile neutrino population
with a temperature only slightly below that of standard
model active neutrinos and therefore the usual cosmolog-
ical neutrino mass bound still applies to this model.

However, unlike the previously studied Fermi-like in-
teraction, sterile neutrinos and pseudoscalars interact via
a variety of 2 $ 2 processes which in general have
a scattering rate of order � ⇠ g4

s

T because there is
no mass scale involved. This is true for example for
the pair annihilation process ⌫

s

⌫̄
s

! �� where we al-
ready found the thermally averaged cross section to

1
Note that in the absence of a pre-existing population of � and ⌫s,
sterile neutrino production would still be suppressed for the same

values of gs as soon as a small amount of ⌫s has been produced

through oscillations. The assumption is thus not crucial to the

scenario.

Archidiacono	et	al.,	PRD	(2014)	

When	sterile	neutrinos	are	produced,	 they	
will	 create	 non-thermal	 distor0ons	 in	 the	
sterile	neutrino	distribu0on,	and	the	sterile	
neutrino	spectrum	end	up	being	somewhat	
non-thermal.	

The	transi0on	between	full	
thermaliza0on	and	no	
thermaliza0on	occurs	for	coupling	
10-6	<	gs	<	10-5	
	

LASAGNA	code	

sin2 2θ s= 0.05
m s=1 eV

BBN	bounds:	
ΔNeff	≤	1	(95%	c.l.)	



Neff	at	CMB	
The	νs	–	φ	fluid	becomes	strongly	interac0ng	before	neutrinos	go	non-rela0vis0c	
around	recombina0on.	

Γs =
gs
4

4πTs
2 ns
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FIG. 6: Triangle plot in the parameter space (Ne↵, m⌫,s, H0) showing the 1D marginalized posteriors and the 2D marginalized
contours obtained with various data set combinations in the pseudoscalar scenario. The partial thermalization of pseudoscalars
and sterile neutrinos in the early Universe can make one sterile neutrino consistent with a value of Ne↵ between 3 and 4.57 (grey
shaded region), depending on gs; while the ⇤CDM model has to be consistent with one fully thermalized additional degree of
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DISCUSSION

We have tested the pseudoscalar model against the
most precise available cosmological data and found that
the model is generally compatible with data, providing
at least as good a fit as the standard ⇤CDM model. Fur-
thermore the fit is vastly better than ⇤CDM with an
additional sterile neutrino in the eV mass range.

If the eV sterile neutrino interpretation of short base-
line data turns out to be true cosmology is faced with a
very serious challenge. Taken at face value such a model
is excluded by CMB and large scale structure data at
least at the 5� level. With this in mind it is clear that
accommodating eV sterile neutrinos requires addition of
new physics either in cosmology or in the neutrino sector
(see e.g. [30] for a discussion).

The model discussed here provides a simple and ele-
gant way of reconciling eV sterile neutrinos with preci-
sion cosmology. We again stress that this model has a
late-time phenomenology very di↵erent from models with
purely free-streaming neutrinos and that it could well be
possible to test details of the model with the greatly en-
hanced precision of future cosmological surveys such as
Euclid [31].

Finally, it is interesting that a recent study by Les-
gourgues et al. [29] find that current cosmological data
prefers relatively strong self-interactions between dark
matter and a new dark radiation component. While the
model presented here cannot provide such dark matter
interactions at the required strength unless the funda-
mental coupling becomes close to unity, it could be a
another indication that we are seeing the first signs of
new, hidden interactions in the dark sector.
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Σmν	and	LSS	
As	soon	as	sterile	neutrinos	go	non-rela0vis0c,	they	start	annihila0ng	into	
pseudoscalars.	
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Σmν	and	LSS
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Sterile	neutrinos	disappear	from	the	cosmic	neutrino	background.	
Neutrinoless	Universe,	Beacom	et	al.,	PRL	(2004)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	If	the	mediator	is	a	massive	MeV	vector	boson,	then	the	late	0me	phenomenology	is	
different.		
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10-6	<	gs	<	10-5	 mφ	<<	ms	

“Secret”	sterile	neutrino	self-interac0ons	mediated	by	a	light	pseudoscalar	can	
accommodate	one	addi0onal	massive	sterile	state	in	cosmology	without	spoiling	BBN,	
CMB	and	LSS	constraints.	
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II. SECRET INTERACTIONS AND STERILE
NEUTRINO PRODUCTION

We assume that the Standard Model is augmented by
a sterile neutrino ⌫s with mass ms

1 and with order 10%
mixing with the SM neutrinos. We moreover assume the
existence of a new secret U(1)s gauge interaction, medi-
ated by a vector boson A0 of mass M at the MeV scale
and coupling to sterile neutrinos through an interaction
of the form

L
int

= es⌫̄s�
µPL⌫sA

0
µ . (1)

Here, es is th U(1)s coupling constant and PL = (1 �
�5)/2 is the left-handed chirality projection operator. We
define the secret fine structure constant as ↵s ⌘ e2s/(4⇡).

This new interaction generates a large temperature-
dependent potential [16]
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for sterile neutrinos of energy E and sterile sector tem-
perature Ts. This potential leads to an in-medium mixing
angle ✓m between active neutrinos ⌫a and sterile neutri-
nos ⌫s, given by

sin2 2✓m =
sin2 2✓

0�
cos 2✓
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+ 2E
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2

+ sin2 2✓
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. (3)

In the following, we will use a vacuum mixing angle
✓
0

' 0.1 and an active–sterile mass squared di↵erence
�m2 ' 1 eV2. As shown in [15, 16], the secret interac-
tions can suppress ✓m, and thus active to sterile neutrino
oscillations, until after neutrino decoupling as long as
|V

e↵

| � |�m2/(2E)|.
The new interaction also leads to collisions of sterile

neutrinos. The collision rate for ⌫s⌫s $ ⌫s⌫s scattering
is given by

�
coll

= n⌫s
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8
<
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M
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n⌫s
e4s
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, (4)

where n⌫s
is the sterile neutrino density. The sterile neu-

trino production rate �s and the final density depend on
this collision rate. Two qualitatively di↵erent scenarios
must be distinguished:

Collisionless production: If the collision rate �
coll

is
smaller than the Hubble rate H at all times, the ac-
tive and sterile neutrinos can be taken to be oscillating

1
Since ⌫s is not a mass eigenstate, ms actually means the mass
of the fourth, mostly sterile, mass eigenstate.

without scattering [26].2 If �m2/(2T⌫a
) � H, ⌫s are

then produced only through oscillations, so that the final
sterile neutrino number density is n⌫s

' 1

2

sin2 2✓m n⌫a
,

where n⌫a
= 3⇣(3)/(4⇡2)g⌫a

T 3

⌫a
is the density of one of

active neutrino flavors and T⌫a
is the active neutrino tem-

peratur. The final population of sterile neutrinos thus
remains small, at most O(10�2) of the active neutrino
density, because of the small mixing angle.

Collisional production: If �
coll

exceeds the Hubble
rate H, then sterile neutrinos cannot be treated as non-
collisional [27]. In each collision, the sterile component of
a ⌫a–⌫s superposition changes its momentum, separates
from the ⌫a component, and continues to evolve indepen-
dently. Subsequently, the active component again gen-
erates a sterile component, which again gets scattered.
This process continues for all neutrinos until eventually
the phase space distributions of ⌫a and ⌫s have become
identical. Thus, the fraction of ⌫a converted to sterile
neutrinos is not limited by the mixing angle, and all neu-
trino flavors end up with equal number densities.

The ⌫a ! ⌫s production rate in this case is �s '
1

2

sin2 2✓m · �
coll

[28], where we can interpret the first
factor as the average probability that an initially active
neutrino is in its sterile state at the time of collision.
The second factor gives the scattering rate that keeps it
in the sterile state. We note that the production rate
�s is proportional to n⌫s

and thus rapidly approaches its
final value,
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1
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Note that, when �
coll

is much larger than the oscilla-
tion frequency, using the average oscillation probability
1

2

sin2 2✓m is inappropriate, and in fact the production
rate �s goes to zero in this case. Such a situation is,
however, not realized for the parameter values explored
in this work.

In the following, we will look at both collisionless and
collisional production of sterile neutrinos in more detail,3

with a special focus on the latter where more sterile neu-
trinos may be produced.

2
We ignore the SM matter potential and scattering experienced
by active neutrinos because we will be interested in the regime
where the secret interaction dominates over the SM interaction.

3
There is also the possibility that Mikheyev-Smirnov-Wolfenstein
(MSW) type resonant e↵ects, e.g., because of the sign-flip of
the secret potential Ve↵ around Ts ' M , modify the ⌫s pro-
duction probability. In this work we treat all MSW transitions
to be completely non-adiabatic and thus ignore them. A careful
momentum-dependent treatment, which we defer to future work,
is needed to accurately describe resonant conversion.

Vs (ps ) =
gs
2

8π 2ps
pdp( fφ + fs )∫ ~10−1gs

2Ts
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We assume that the Standard Model is augmented by
a sterile neutrino ⌫s with mass ms

1 and with order 10%
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where n⌫s
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trino production rate �s and the final density depend on
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trino flavors end up with equal number densities.
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a ⌫a–⌫s superposition changes its momentum, separates
from the ⌫a component, and continues to evolve indepen-
dently. Subsequently, the active component again gen-
erates a sterile component, which again gets scattered.
This process continues for all neutrinos until eventually
the phase space distributions of ⌫a and ⌫s have become
identical. Thus, the fraction of ⌫a converted to sterile
neutrinos is not limited by the mixing angle, and all neu-
trino flavors end up with equal number densities.
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[28], where we can interpret the first
factor as the average probability that an initially active
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Note that, when �
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is much larger than the oscilla-
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sin2 2✓m is inappropriate, and in fact the production
rate �s goes to zero in this case. Such a situation is,
however, not realized for the parameter values explored
in this work.

In the following, we will look at both collisionless and
collisional production of sterile neutrinos in more detail,3

with a special focus on the latter where more sterile neu-
trinos may be produced.

2
We ignore the SM matter potential and scattering experienced
by active neutrinos because we will be interested in the regime
where the secret interaction dominates over the SM interaction.

3
There is also the possibility that Mikheyev-Smirnov-Wolfenstein
(MSW) type resonant e↵ects, e.g., because of the sign-flip of
the secret potential Ve↵ around Ts ' M , modify the ⌫s pro-
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FIG. 5: The active neutrino distribution for different tem-
peratures. The parameters used are GX = 3 · 102GF and
gX = 0.025. This corresponds to a hidden boson with the
mass MX = 424 MeV.

because the energy redistribution becomes more efficient.
However, when MX is decreased the suppression of oscil-
lations due to the effect of MX on the matter potential
quickly wins and ∆Neff decreases rapidly with decreas-
ing MX . Therefore ∆Neff > 1 can only occur in a limited
transition region of MX if it occurs at all (which depends
on the mixing parameters, δm2 and sin2(2θ)).
Finally, we again stress that our treatment is only con-

sistent if MX ≫ T for any temperature relevant to our
calculation. For the typical mass differences favoured by
SBL measurements the production of sterile neutrinos
takes place at temperatures well below 100 MeV and we
have taken this as a representative minimum mass for the
new boson. Note that such a low mass would be com-
pletely excluded for a boson coupling to the active sector
[19]. However, provided that the coupling is diagonal in
“flavor” such that X couples only to the sterile state,
such bounds are irrelevant.
Big Bang Nucleosynthesis (BBN).— Apart from the

additional energy density in the sterile sector the oscilla-
tions can have another important effect, namely a distor-
tion of the active neutrino distribution. This can happen
even after neutrino decoupling because energy can still
be transferred between the active and sterile sectors after
the active neutrino decouples from the plasma. In mod-
els where the active-sterile conversion is delayed, such as
the one presented here or models with a non-zero lepton
asymmetry [10] this can in certain cases be the dominant
cosmological effect. The reason is that the electron neu-
trino takes part in the nuclear reaction network relevant
for Big Bang Nucleosynthesis (see e.g. [10]). Even if the
sterile neutrino mixes primarily with νµ or ντ , active-
active oscillations will transfer part of the distortion to
the electron sector. However, a detailed investigation of
this effect is beyond the scope of the present paper and

here we simply point out that interesting effects on BBN
might occur. For illustration we show in Fig. 5 how the
active distribution can vary as a function of temperature
relative to its unperturbed state, f0.

Discussion.— We have demonstrated that additional
self-interactions of a sterile neutrino can prevent its ther-
malization in the early Universe and in turn make sterile
neutrinos compatible with precision cosmological obser-
vations of structure formation. Arguably the model dis-
cussed here is more natural than invoking a non-zero lep-
ton asymmetry, relying only on the sterile sector possess-
ing interactions similar to those in the standard model.
In order for the model to work the new gauge boson me-
diating the interaction must be significantly lighter than
MZ , but can easily be heavy enough that no significant
background of such particles can exist at late times. We
finally note that if this scenario is indeed realized in na-
ture, future precise measurements of Neff will effectively
pinpoint the mass of the hidden gauge boson. In sum-
mary, the framework presented here presents a natural
way of reconciling short baseline neutrino experiments
with precision cosmology.

Acknowledgments.—We thank Georg Raffelt for valu-
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that dark matter also couples to the new pseudo-scalar
with a dimensionless coupling strength, g

d

. We assume
that the dark matter is produced at a very high tempera-
ture by e.g. inflaton decay. Once dark matter is coupled
to the new interaction, there is the potential worry that
it will pair annihilate via the process ��̄ ! �� with the
same cross section as in Eq. (7). If the annihilation pro-
cess is in equilibrium where � goes non-relativistic, it
will dilute the density of � while transferring an unac-
ceptable amount of entropy to �. Due to the nature of
the interaction, it is decoupled at high temperatures, and
the cross section likewise drops when the dark matter be-
comes non-relativistic. Therefore, we only need to ensure
that the dark matter annihilation rate is low enough at
T
max

⇠ m
�

. We assume that the cross section is given
by the highly relativistic expression for h�|v|i in Eq. (7),
and use the condition �(T

max

) = h�|v|in
�

< H(T
max

) to
derive the condition,

g
d

<⇠ 2⇥ 10�5

⇣ m
�

MeV

⌘
1/4

, (10)

for the new interaction not to overly dilute the density
of �.

Additionally, the new coupling also induces a Yukawa
type potential between the dark matter particles. This
in turn leads to dark matter self-interactions which
might have observable consequences for galactic dynam-
ics. Rather than going through a detailed calculation we
will simply estimate the mean time between dark matter
scatterings in order to estimate whether self-interactions
are important. In order to do so we will follow the pre-
scription given in [42]. First, following Ref. [43] we write

V (r) = � g2
d

m2

�

e�m�r

4⇡r3
h(m

�

r)S, (11)

where h(m
�

, r) = 1 + m
�

r + 1

3

(m
�

r)2 and S is a spin-
dependent factor which we assume to be one.

The interaction potential in Eq. (11) causes elastic
scattering of dark matter, and following the prescription
in [42] we can estimate the value of g

d

needed in order to
have a significant impact on galactic dynamics. The cal-
culation in [42] was performed for a massless U(1) vector
so the potential is Coulomb-like. This in turn leads to
both “soft” and “hard” scattering of roughly equal im-
portance. Here we can safely neglect the contribution
from soft scatterings because of the steepness of the po-
tential.

The ratio of the scattering time scale ⌧
scat.

to the dy-
namical time scale in the galaxy ⌧

dyn.

is given by Eq. 17
in [42],

⌧
scat.

⌧
dyn.

=
2R2

3N�
, (12)

where R is the radius of the galaxy, N is the number of
DM particles in the galaxy and � is the scattering cross

section. For a hard scatter we have � ' b2 where the
impact parameter b is the radial distance such that the
sum of kinetic and potential energy is zero,

↵
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1

2
m
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where we have used that m
�

b ⇠ m
�

/m
�

⌧ 1 which
leads to the approximation V (r) ⇡ �↵
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r3) where
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/4⇡. We then find that
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where G is Newton’s constant. The condition for the
time scale of scattering to be less than the age of the
Universe is2 ⌧

scat.

/⌧
dyn.

<⇠ 50. Plugging in numbers for a
Milky Way size halo and using ↵

d

= g2
d

/4⇡, we find
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The value of g
d

in Eq. (15) can be seen as a lower bound
on the value required to have a significant e↵ect. The
actual value required might be somewhat larger.
In order for elastic scattering to be important in it-

self the mass of the dark matter particle is therefore re-
quired to be quite small. For example, g

d

⇠ 10�5 leads
to the requirement that m

�

<⇠ 10 MeV. So depending
on the unknown mass of the Dark Matter particle, hard
scattering on this potential could have a direct impact
on galactic dynamics. Even if this is not the case, the
potential could still have a very important indirect ef-
fect through the Sommerfeld mechanism [43]. The idea
is that the Dark Matter particles could have some weak
short range scattering cross section generated by beyond
the standard model (BSM) physics, which is then en-
hanced by a velocity dependent boost factor S(v) such
that �(v) = S(v)�

0

. If this new BSM physics enters at a
scale ⇤

BSM

, we could expect �
0

⇠ 1/⇤2

BSM

.
Sommerfeld enhanced scattering. — The potential in

Eq. (11) diverges faster than r�2 so it is singular and
leads to an unbounded Hamilton operator [44]. This is
of course not physical, since the potential will ultimately
be regularised by UV physics. While the boost factor can
be made independent of the regularisation procedure, it
will depend a bit on the UV completion [43, 44]. We
are just trying to estimate this e↵ect, so we follow the
simplified version of the regularisation procedure outlined
in [43]: we introduce a cut-o↵ in the potential defined by
V (r

cut

) = ⇤
BSM

and set V (r < r
cut

) ⌘ V (r
cut

) such that
the potential is continuous at r

cut

.
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size halo.
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that dark matter also couples to the new pseudo-scalar
with a dimensionless coupling strength, g

d

. We assume
that the dark matter is produced at a very high tempera-
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same cross section as in Eq. (7). If the annihilation pro-
cess is in equilibrium where � goes non-relativistic, it
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�

. We assume that the cross section is given
by the highly relativistic expression for h�|v|i in Eq. (7),
and use the condition �(T
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�
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, (10)

for the new interaction not to overly dilute the density
of �.

Additionally, the new coupling also induces a Yukawa
type potential between the dark matter particles. This
in turn leads to dark matter self-interactions which
might have observable consequences for galactic dynam-
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e�m�r

4⇡r3
h(m

�

r)S, (11)

where h(m
�

, r) = 1 + m
�

r + 1

3

(m
�

r)2 and S is a spin-
dependent factor which we assume to be one.

The interaction potential in Eq. (11) causes elastic
scattering of dark matter, and following the prescription
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d

needed in order to
have a significant impact on galactic dynamics. The cal-
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both “soft” and “hard” scattering of roughly equal im-
portance. Here we can safely neglect the contribution
from soft scatterings because of the steepness of the po-
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dyn.
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⌧
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, (12)

where R is the radius of the galaxy, N is the number of
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actual value required might be somewhat larger.
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self the mass of the dark matter particle is therefore re-
quired to be quite small. For example, g

d

⇠ 10�5 leads
to the requirement that m
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<⇠ 10 MeV. So depending
on the unknown mass of the Dark Matter particle, hard
scattering on this potential could have a direct impact
on galactic dynamics. Even if this is not the case, the
potential could still have a very important indirect ef-
fect through the Sommerfeld mechanism [43]. The idea
is that the Dark Matter particles could have some weak
short range scattering cross section generated by beyond
the standard model (BSM) physics, which is then en-
hanced by a velocity dependent boost factor S(v) such
that �(v) = S(v)�
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. If this new BSM physics enters at a
scale ⇤
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, we could expect �
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Sommerfeld enhanced scattering. — The potential in

Eq. (11) diverges faster than r�2 so it is singular and
leads to an unbounded Hamilton operator [44]. This is
of course not physical, since the potential will ultimately
be regularised by UV physics. While the boost factor can
be made independent of the regularisation procedure, it
will depend a bit on the UV completion [43, 44]. We
are just trying to estimate this e↵ect, so we follow the
simplified version of the regularisation procedure outlined
in [43]: we introduce a cut-o↵ in the potential defined by
V (r
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) = ⇤
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) such that
the potential is continuous at r
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size halo.

Γd (T ) = σ v n∝ gd
4T

Γd (TMAX =mχ / 3)< H (TMAX =mχ / 3)
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To compute the Sommerfeld factor, we follow [44] and
write the radial part of the Schrödinger equation as

�00
`

(x) =

✓
m

�

p2
V

✓
x

p

◆
+

`(`+ 1)

x2

� 1

◆
�

`

(x), (16)

=

✓
�g2

d

v

8⇡x3

m

h(Fx
m

)e�Fxm +
`(`+ 1)

x2

� 1

◆
�

`

(x).

with x ⌘ pr and F ⌘ 2m�

m�v
. The continuous box

renormalisation has been implemented by simply using
x
m

⌘ max(x, x
cut

) inside the potential term. The equa-
tion determining the cuto↵ x

cut

is

1 =

✓
m

�

⇤
BSM

◆
g2
d

v3

32⇡x3

cut

h(Fx
cut

)e�Fxcut . (17)

In the limit x ! 0, the complete solution to Eq. (16)
are Ax`+1 + Bx�` for ` � 0. As usual, requiring the
solution to be regular at x = 0 forces B = 0. A can
be absorbed into the overall normalisation of the wave
function, i.e. we put A = 1. In the asymptotic limit x !
1, the solution just becomes a sine with an amplitude
and a phase shift. We have

�
`

(x) ! x`+1, x ! 0, (18)

�
`

(x) ! C sin(x� `⇡/2 + �
`

), x ! 1. (19)

To compute the Sommerfeld factor numerically, we use
Eq. (18) to set initial conditions at x

ini

, 0 < x
ini

< x
cut

.
We then evolve the wave until it has reached its asymp-
tote in Eq. (19) and we denote this point by x

asym.

. This
happens when the wave no longer feels the potential and,
for ` > 0, the centrifugal barrier. The Sommerfeld factor
is related to the asymptotic amplitude C (through the
overall normalisation) by the formula [44]

S
`

=
[(2`+ 1)!!]2

C2

=
[(2`+ 1)!!]2

�2

`

(x
asym.

) + �02
`

(x
asym.

)
. (20)

The last expression is obtained from Eq. (19) and is nu-
merically convenient. Note that the equation for the
boost factor does not depend on the masses but only
on �

`

. The mass dependence in Eq. (16) enters only
through the ratio m

�

/m
�

in the factor h(Fx)e�Fx. This
factor is ⇠ 1 when Fx <⇠ 1, and it is easy to show
that this is the case for all values of x where the po-
tential is non-negligible, provided that m�

m�
< (v/g

d

)
2
3 .

This inequality is easily satisfied for the parameter space
that we are considering. The regularisation procedure
introduces another possible mass dependence through
Eq. (17). The previous argument applies again to
the factor h(Fx)e�Fx, ruling out a dependence on the
(m

�

/m
�

)-ratio. So the only mass dependence will en-
ter through the ratio (m

�

/⇤
BSM

). We have shown the
boost factor in Fig. 3 for two extreme values of this ratio.
Evidently, the e↵ect of Sommerfeld enhancement can be
safely neglected for all reasonable values of g

d

.

FIG. 3: Sommerfeld enhancement factor for ` = 0 due the
potential in Eq. (11) for two extreme values of the ratio
(m�/⇤BSM). Top panel: (m�/⇤BSM) = 1.0. Bottom panel:
(m�/⇤BSM) = 10�5. As discussed in the text, the dependence
on the ratio (m�/m�) is negligible.

Dark acoustic oscillations? — Since our model couples
dark matter to a background of dark radiation we might
worry that the ��� system can undergo acoustic oscilla-
tions close to the epoch of recombination and thus distort
the observed CMB spectrum (see e.g. [46] for a recent
discussion). The interaction around the epoch of CMB
formation is primarily Compton scattering, �� ! ��,
and we can directly compare it to the normal Compton
scattering rate of photons and electrons. The Compton
cross section scales as � / ↵2/m2 where m is the fermion
mass. As long as g2

d

⌧ ↵ and m
�

� m
e

, the dark sec-
tor acoustic oscillations will be completely negligible and
therefore cosmologically safe. This of course also means
that late-time Compton scatterings can be safely ignored
since they have no impact on the ability of � to cluster
gravitationally. Scaling relative to the electron-photon
process we can formulate the bound as

g2
d

⌧ 1.6⇥ 10�2

⇣ m
�

MeV

⌘
. (21)

Discussion. — We have studied a model with secret
sterile neutrino interactions mediated by a massless or
very light pseudoscalar. The model has some of the
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The	condi0on	for	having	observable	consequences	on	galac0c	dynamics	is	that	the	
scaoering	0me	scale	of	DM	self	interac0ons	is	less	than	the	age	of	the	Universe.	
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It	is	just	a	lower	bound	
It	requires	further	
inves0ga0on	
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