

Observation of H → ττ Decays at CMS Alexei Raspereza

LHC Physics Discussion, 2017/09/11

Why studying $H \rightarrow \tau\tau$ decays ?

- sizable BR → high signal rate is expected
- probe Yukawa coupling → testing mass-coupling relation for fermions
- access to CP quantum numbers (CP mixing)

- one of the most sensitive channels to VBF production
 - boosted Higgs bosons in gg → H
 → sensitivity to new physics

Results from Run1 and goals for Run2

• Run1

- signal established with significance of 5.4σ in combination of ATLAS and CMS data
- measurements consistent with SM expectations

• Run2

- observation of signal by single experiment
- larger dataset and higher center-of-mass energy → improve precision of coupling measurements (search for possible deviations from the SM)

Analysed Dataset and Decay Modes

• Dataset :

35.9 fb⁻¹ collected by CMS at c-o-m energy of 13 TeV

 four decay modes of tau pairs exploited (94% of final states)

 $e\mu$, $\mu\tau_h$, $e\tau_h$, $\tau_h\tau_h$

 Final states with hadronically decaying tau leptons amount to 88% of all di-tau decays

- efficient triggering and identification of τ_h in harsh pileup environment is essential

τ, Identification at CMS

- τ_h seeded by anti- k_T jets ($\Delta R_{cone} = 0.4$)
- uses as input particle-flow objects

τ_h Identification

- Run 1 approach : cut on isolation variables
- Run 2 approach : MVA discrimination of τ_h against hadronic jets
 - isolation variables (p_T sums)

calorimeter cluster shapes

- τ_h decay length information (track impact parameters, SV decay length)
- multiplicity of particle-flow objects in signal/isolation cones

- significant improvement compared to Run 1 approach
- $\tau_{_h}$ efficiency of \simeq 45% for mis-ID probability of \simeq $2\cdot 10^{\text{-3}}$

Di-tau Mass Reconstruction

- Fully reconstructed di-tau mass is key variable discriminating signal against dominant Z $\rightarrow \tau \tau$ background
- Reconstruction of $m_{\tau\tau}$ with dynamic likelihood algorithm
- Inputs : $ec{p}_{ au_1}, \ ec{p}_{ au_2}, \ ec{p}_{ ext{mis}}, \ ext{cov}(ec{p}_{ ext{mis}})$
- Estimate of $m_{ au au}$ is obtained by maximizing likelihood combining
 - matrix elements of tau decays
 - \cdot χ^2 of $ec{p}_{
 m mis}$ measurement

- Better separation of H $\rightarrow \tau\tau$ signal and Z $\rightarrow \tau\tau$ background compared to the invariant mass of visible τ decay products
- the peak position is shifted to the nominal value of resonance mass
- mass resolution : 15-20%

Event categorization

Major production mechanisms are targeted with specific event categories

$\frac{0-jet}{p_{T}}$: no jets with $p_{T} > 30$ GeV, $|\eta| < 4.7$

largest signal yield but also largest bkgd

•

calibration of tau reconstruction with Z → ττ standard candle

constrain uncertainties related to instrumental noise

<u>boosted</u> : high p_T(H) (not in 0jet or VBF)

- Small signal yield
- but highest S/B ratio

- enhanced S/B compared to 0-jet category
- improved di-tau mass resolution

Overview of search channels : τ_{h}

- largest branching fraction of 42%
- Triggering is major a challenge
 - Improvements in L1 and HLT
 - higher readout granularity
 - sophisticated ID using dynamic clustering at hardware level
 - → same p_T thresholds as in Run1 but faster turn-on and higher efficiency

Channel	Trigger requirement	Lepton selection		
		$p_{\rm T}$ (GeV)	η	Isolation
$\tau_{\rm h} \tau_{\rm h}$	$ au_{\rm h}(35) \& au_{\rm h}(35)$	$p_{\rm T}^{\tau_{\rm h}} > 50 \& 40$	$ \eta^{ au_{h}} < 2.1$	MVA $ au_{ m h}$ ID

• Main backgrounds

- Irreducible $Z \rightarrow \tau \tau$
- → estimated with simulation with data-driven corrections (kinematics of Z and accompanying jets) derived from Z → $\mu\mu$ control region
- QCD multijet background (suppressed by tight tau ID)
 - → measured exclusively from data (extrapolation from sideband with loose tau ID)

Overview of search channels : $\mu + \tau_h$ and $e + \tau_h$

lower branching fractions (23% +23%) but cleaner signature

single-lepton triggers with higher p_{τ} thresholds compared to Run1

 $\mu + \tau_{h}$ channel : combination of single-muon and muon+tau cross trigger \rightarrow increase in acceptance

Final state	Trigger requirement	Lepton selection		
		p_T (GeV)	η	Isolation
$\mu \tau_{\rm h}$	$\mu(22)$	$p_{\rm T}^{\mu} > 23$	$ \eta^{\mu} < 2.1$	$I^{\mu} < 0.15$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.3$	MVA τ_h ID
	$\mu(19) \& \tau_{\rm h}(21)$	$20 < p_{ m T}^{\mu} < 23$	$ \eta^{\mu} < 2.1$	$I^{\mu} < 0.15$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.3$	MVA τ_h ID
$e\tau_h$	e(25)	$p_{\rm T}^{\rm e} > 26$	$ \eta^{\rm e} < 2.1$	$I^{\rm e} < 0.1$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.3$	MVA $\tau_{\rm h}$ ID

Major backgrounds :

٠

٠

- Irreducible Z → ττ (estimated as in τ_hτ_h channel)
- W+Jets with jet → τ_h fakes
 - suppressed by $\textbf{m}_{\scriptscriptstyle T}$ cut
 - estimated from high m_{τ} sideband
- QCD multijets (estimated from sideband regions with same sign lepton pairs and relaxed lepton ID)
 - $Z \rightarrow ee/\mu\mu$ with $e/\mu \rightarrow \tau_h$ fakes (estimated from simulation corrected for $e/\mu \rightarrow \tau_h$ misidentification rates measured in data)

Overview of search channels : e+µ

Cleanest signature but small branching fraction (6%) \rightarrow lowest sensitivity inter-calibration of Drell-Yan background w/o τ_h

e+ μ cross triggers with asymmetric thresholds are used \rightarrow high signal acceptance

Channel	Trigger requirement	Lepton selection		
		$p_{\rm T}$ (GeV)	η	Isolation
еµ	$e(12) \& \mu(23)$	$p_{\rm T}^{\rm e} > 13$	$ \eta e < 2.5$	$I^{\rm e} < 0.15$
		$p_{\mathrm{T}}^{\mu}>24$	$ \eta\mu < 2.4$	$I^{\mu} < 0.2$
	$e(23) \& \mu(8)$	$p_{\mathrm{T}}^{\mathrm{e}} > 24$	$ \eta \mathbf{e} < 2.5$	$I^{\rm e} < 0.15$
		$p_{ extsf{T}}^{\mu} > 15$	$ \eta\mu < 2.4$	$I^{\mu} < 0.2$

- Major backgrounds :
 - Irreducible Z \rightarrow ττ (estimated as in other channels)
 - top-pairs

٠

٠

- suppressed by b-tag veto and requiring alignment of missing $p_{\rm T}$ with visible decay tau products (e, μ)
- estimated from simulation corrected for top pT distribution
- constrained in the sideband region
- **QCD** multijets (estimated from sideband regions with same sign lepton pairs and relaxed lepton isolation)

Signal Extraction

Signal is extracted by simultaneous maximum-likelihood fit in 12 signal channels

4 final states (eµ , $e\tau_h \mu \tau_h$, $\tau_h \tau_h$) x 3 event category (0-jet, VBF, Boosted)

and 12 control regions, constraining W+Jets, QCD and ttbar backgrounds

In all channels but one fit is performed with 2D distributions

	0-jet	VBF	Boosted
Selection			
$\tau_{\rm h} \tau_{\rm h}$	No jet	\geq 2 jets, $p_{\rm T}^{ au au}$ > 100 GeV, $\Delta\eta_{\rm jj}$ > 2.5	Others
$\mu \tau_{ m h}$	No jet	\geq 2 jets, m_{jj} > 300 GeV, $p_{T}^{\tau\tau}$ > 50 GeV, $p_{T}^{\tau_{h}}$ > 40 GeV	Others
$e \tau_h$	No jet	≥ 2 jets, $m_{jj} > 300$ GeV, $p_T^{\tau\tau} > 50$ GeV	Others
eμ	No jet	2 jets, $m_{\rm jj} > 300 {\rm GeV}$	Others
Observables used in fit			
$\tau_{\rm h} \tau_{\rm h}$	$m_{\tau\tau}$	$m_{\rm jj}$, $m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$
$\mu au_{ m h}$	$\tau_{\rm h}$ decay mode, $m_{ m vis}$	$m_{\rm jj},m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$
$\mathrm{e} au_\mathrm{h}$	$ au_{ m h}$ decay mode, $m_{ m vis}$	$m_{ m jj}, m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$
eμ	p_{T}^{μ} , m_{vis}	$m_{\rm jj}, m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$

- Di-tau mass or visible mass is used as 1st observable in 2D fit
- Choice of 2nd observable is motivated by
 - production signatures probed in a given category (boosted, VBF)
 - calibration of backgrounds specific to a given decay channel (0-jet)

Postfit final discriminants : τ_hτ_h channel

- 1D m_{π} distribution used to extract signal in 0-jet category
- No gain by adding second variable

- Moderate excess above background prediction at $m_{_{\rm T}} \sim 125~GeV$

Postfit final discriminants : $\tau_h \tau_h$ channel

- Unrolled 2D distributions in Boosted and VBF categories
- Boosted category $(m_{ au au}, p_T^{ au au})$

 $(m_{\tau\tau}, m_{jj})$

excellent S/B at high m_{jj} (most sensitive channel)

• Signal clearly developing in bins with high S/B ratio

Postfit final discriminants : $l + \tau_h$ channels

• the 2D distribution (m_{vis} vs. τ_h decay mode) used to extract signal in 0-jet category

 \rightarrow better separation between signal and Z \rightarrow ee/µµ background

- Low sensitivity to signal
- But category facilitates calibration of Drell-Yan background and constrains instrumental uncertainties
 - $\rightarrow \tau_{h}$ ID efficiency and momentum scale

 $\rightarrow e/\mu \rightarrow \tau_{_h}$ fake rate and momentum scale

Postfit final discriminants : $l + \tau_h$ channels

Unrolled 2D distributions

Boosted : $(m_{\tau\tau}, p_T^{\tau\tau})$

VBF : $(m_{\tau\tau}, m_{jj})$

Postfit final discriminants : e+µ channel

Unrolled 2D distributions

Boosted : $(m_{\tau\tau}, p_T^{\tau\tau})$

 $VBF: (m_{\tau\tau}, m_{jj})$

e+µ channel has lowest sensitivity

- smallest yield
- poorer mass resolution

Nonetheless, non-negligible contribution to overall sensitivity

Observation of H \rightarrow **tt Decays**

- Distribution of event yield in the analysis bins ordered by S/(S+B)
- clearly visible excess in data w.r.t.
 background-only expectation

- obs. (exp.) significance at $m_{\mu} = 125 \text{ GeV}$
- $4.9\sigma~(4.7\sigma)$ with Run II data only
- Combination with Run I CMS data yields $5.9\sigma~(5.9\sigma)$
- first observation of Yukawa coupling in single fermionic decay channel at CMS

Visualization of signal : m_{π} distribution

- Events are weighted by S/(S+B) in bins of second variable of 2D distributions → unbiased mass spectrum
- Signal is clearly visible in the distribution of physical observable m₁

Measurement of the signal strength

- Measurements are consistent across channels
- Highest sensitivity comes from
 - decay side : $\tau_{_{h}}\tau_{_{h}}$
 - production side : VBF

Measurement of couplings

probing universal coupling modifiers

0.6

0.8

1 1.2 1.4

1.6

- Contribution of VH is added but not targeted with specific category
- Contribution from H → WW (significant in eµ channel, sub-dominant in other channels) is treated as signal
- Measurement of couplings is compatible with SM expectation

 κ_v

Summary

- H(125) decays to τ-leptons are studied at CMS using Run II data
- H(125) $\rightarrow \tau\tau$ decay is observed with statistical significance of ~5.9 σ combining data collected at 7, 8 and 13 TeV
 - first observation of Yukawa coupling in a single experiment and single decay channel
- measured H(125) properties in the H $\rightarrow \tau\tau$ decay channel are consistent at current precision level with SM expectations
- Paper is submitted to PLB and made available in hep archive arXiv:1708.00373 [hep-ex]
- larger dataset is expected by end of 2017
 - → better measurement precision
 - → new measurements possible, e.g. probing CP properties

Backup : Uncertainty model

- Refined uncertainty model •
 - split jet energy uncertainties into 27 various sources
 - fine-grane instrumental uncertainties (τ_{L} Id, momentum scale, fake rate)
- Background yields and shape ٠ constrained in a dedicated control regions
- instrumental corrections constrained ٠ in 0-jet category and propagated to VBF and Boosted categories
- Most of uncertainties are ٠ constrained in global fit
- Largest impact on precision comes ٠ from
 - \rightarrow instrumental uncertainties
 - \rightarrow theoretical shape uncertainties
 - \rightarrow limited MC statistics

Source of uncertainty	Prefit	Postfit (%)
$\tau_{\rm h}$ energy scale	1.2% in energy scale	0.2–0.3
e energy scale	1–2.5% in energy scale	0.2–0.5
e misidentified as $\tau_{\rm h}$ energy scale	3% in energy scale	0.6-0.8
μ misidentified as $\tau_{\rm h}$ energy scale	1.5% in energy scale	0.3 - 1.0
Jet energy scale →miss	Dependent upon $p_{\rm T}$ and η	
$p_{\rm T}^{\rm mass}$ energy scale	Dependent upon $p_{\rm T}$ and η	
$\tau_{\rm h}$ ID & isolation	5% per $\tau_{\rm h}$	3.5
$\tau_{\rm h}$ trigger	5% per $\tau_{\rm h}$	3
$\tau_{\rm h}$ reconstruction per decay mode	3% migration between decay modes	2
e ID & isolation & trigger	2%	—
μ ID & isolation & trigger	2%	
e misidentified as τ_h rate		5
μ misidentified as $\tau_{\rm h}$ rate	25%	3-8 15
Jet misidentified as τ_h rate	20% per 100 Gev $\tau_h p_T$	15
$Z ightarrow au au / \ell \ell$ estimation	Normalization: 7–15%	3–15
	Uncertainty in $m_{\ell\ell/\tau\tau}$, $p_{\rm T}(\ell\ell/\tau\tau)$,	
	and m_{ij} corrections	
W + jets estimation	Normalization (eu, $\tau_{\rm h} \tau_{\rm h}$): 4–20%	
·)	Unc. from CR ($e\tau_{\rm h}$, $\mu\tau_{\rm h}$): $\simeq 5-15$	
	Extrap. from high- $m_T CR$ ($e\tau_h$, $\mu\tau_h$): 5–10%	
OCD multijet estimation	Normalization (eq.): $10-20\%$	5_20%
QCD manager estimation	Unc from CR ($e\tau$, τ , τ , $\mu\tau$,): ~5–15%	
	Extrap. from anti-iso. CR ($e\tau_h$, $\mu\tau_h$): 20%	7–10
	Extrap. from anti-iso. CR (τ_h, τ_h) : 3–15%	3–10
Diboson normalization	5%	
	570	
Single top quark normalization	5%	
t t estimation	Normalization from CR: $\simeq 5\%$	
	Uncertainty on top quark $p_{\rm T}$ reweighting	
Integrated luminosity	2.5%	
b-tagged jet rejection ($e\mu$)	3.5–5.0%	—
Limited number of events	Statistical uncertainty in individual bins	
Signal theoretical uncertainty	Up to 20%	