Extrapolating Between Electroweak Bosons.

Frank Tackmann

Deutsches Elektronen-Synchrotron

LHC Physics Discussion DESY, November 06, 2017

Introduction: V_2/V_1

2 Mono-jet Backgrounds: Z/W and Z/γ at high p_T

3 Higgs \rightarrow Invisible

< 67 >

Introduction: V_2/V_1 .

< 67 ►

Extrapolating from V_1 to V_2 .

Goal: Use precise measurement for V_1 to get an improved prediction for V_2

$$\frac{\mathrm{d}\sigma(V_2)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(V_2)/\mathrm{d}p_T}{\mathrm{d}\sigma(V_1)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(V_1)}{\mathrm{d}p_T}\right]_{\mathrm{measured}}$$

- Whenever $d\sigma(V_1)$ is measured (much) more precisely than $d\sigma(V_2)$ can be measured or calculated
- Requires theory prediction for V_2/V_1 to be much more precise than for individual processes
 - This is equivalent to the theory uncertainties being strongly correlated between processes
 - Resulting theory uncertainty is entirely driven by correlation model

Typical examples

- NP and DM mono-jet searches: Z/W and Z/γ at high p_T
- Higgs \rightarrow invisible: Z/W in VBF topology and high p_T
- mono-Z and Z+Higgs \rightarrow invisible: ZZ/V_1V_2
- m_W measurement: W/Z at low p_T

Theory Uncertainties and Correlations.

$$\frac{\mathrm{d}\sigma(V_2)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(V_2)/\mathrm{d}p_T}{\mathrm{d}\sigma(V_1)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(V_1)}{\mathrm{d}p_T}\right]_{\mathrm{measured}}$$

- ⇒ Extrapolation hinges entirely on correlations of theory uncertainties between $d\sigma(V_1)$ and $d\sigma(V_2)$
 - Irrespectively of how it is implemented, whether by taking explicit ratio or combined fit to signal and control regions or ...
 - Correlations, hm? Often we don't even know what our theory uncertainties really mean ...

Correlations (only) come from common sources of uncertainties

- In principle straightforward for parametric uncertainties (PDFs, ...)
- More tricky for theory uncertainties (missing higher orders, ...)
 - Scale variations are intrinsically ill-suited for this
 - ▶ Not impossible either, but has to be studied case by case, e.g.
 - Use differences between known corrections as correlation model
 - Try to identify largely (in)dependent perturbative series

It is not automagically a theory uncertainty!

< (7)

So What is a Scale Variation?

It is an easy way to obtain (slightly) different expansions for the same quantity

$$egin{array}{rcl} \epsilon = lpha_s(\mu) & o & \sigma = c_0 + \epsilon \, c_1 + \epsilon^2 \, c_2 + \cdots \ ilde{\epsilon} = lpha_s(ilde{\mu}) & o & \sigma = c_0 + ilde{\epsilon} \, ilde{c}_1 + ilde{\epsilon}^2 \, ilde{c}_2 + \cdots \end{array}$$

- The full result is the same and independent of the choice of ϵ vs. $\tilde{\epsilon}$
 - We only know the first few orders, which do depend on the choice
 - Comparing both expansions *might* provide a way to estimate the typical size of the missing $\epsilon^3 c_3 + \cdots$ terms
 - It also might not, because it only knows about the structures present in c₁ and c₂ and so cannot estimate the effect of possible new structures appearing in c₃ and beyond
- QCD scales are not physical parameters
 - They do not have an uncertainty that can be propagated
 - They also cannot be regarded as the fundamental sources of uncertainties, i.e. they cannot be used as nuisance parameters to imply correlations
 - A priori, scale variations do not imply anything about correlations among different processes or different kinematic regions

 $\left[\frac{\mathrm{d}\sigma(V_2)/\mathrm{d}p_T}{\mathrm{d}\sigma(V_1)/\mathrm{d}p_T}\right]_{\mathrm{theory}} = \frac{c_0(p_T) + \epsilon \, c_1(p_T) + (\epsilon^2 \, c_2(p_T) + \cdots)}{d_0(p_T) + \epsilon \, d_1(p_T) + (\epsilon^2 \, d_2(p_T) + \cdots)}$

QCD corrections for W, Z, γ are *largely* the same but also *not entirely*

- Using correlated scale variations between numerator and denominator
 - Scale dependence will largely cancel, can easily reduce by factor 10 or more
 - Possible differences between processes at higher order are precisely not probed by scale variations
 - ⇒ The resulting residual scale dependence has little to no meaning in terms of uncertainties
- Crucial to identify and separately probe intrinsic differences
 - At minimum, explicitly include some uncorrelated uncertainty components
 - E.g. separately treat heavy-flavor channels

EW corrections for W, Z, γ will generally be different

• There are also important corrections that are common (EW Sudakov logs)

< 🗇 >

Z/W and Z/γ at high p_T .

< 🗗 >

Mono-jet + MET Search.

[ATLAS EXOT-2015-03; arXiv:1604.07773]

Need precise predictions for $Z(\rightarrow \nu \bar{\nu})$ +jets and also $W(\rightarrow \tau \bar{\nu})$ +jets backgrounds

- Combined fit to several control regions
 - ► $Z(\rightarrow \ell \bar{\ell})$ +jets: very precise at low p_T , statistics-limited at high p_T
 - $W(\rightarrow \ell \bar{\nu})$ +jets: much larger statistics
 - γ +jets: clean and large statistics at high p_T
- Effectively amounts to

$$\frac{\mathrm{d}\sigma(Z)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(Z)/\mathrm{d}p_T}{\mathrm{d}\sigma(W,\gamma)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(W,\gamma)}{\mathrm{d}p_T}\right]_{\mathrm{measured}}$$

50 Ge'

- 10-20% scale dependence cancels to <1% if taken fully correlated
 - Add additional 3% for $Z(\rightarrow \nu \bar{\nu})$ +jets
 - NLO EW effects taken as uncertainty: 2 4% for $Z(\rightarrow \nu \bar{\nu})$ +jets
 - Total background uncertainty 4 12% from lowest to highest $E_T^{
 m miss}$

Mono-jet + MET Search.

[ATLAS EXOT-2015-03; arXiv:1604.07773]

Need precise predictions for $Z(\rightarrow \nu \bar{\nu})$ +jets and also $W(\rightarrow \tau \bar{\nu})$ +jets backgrounds

- Combined fit to several control regions
 - ► $Z(\rightarrow \ell \bar{\ell})$ +jets: very precise at low p_T , statistics-limited at high p_T
 - $W(\rightarrow \ell \bar{\nu})$ +jets: much larger statistics
 - γ +jets: clean and large statistics at high p_T
- Effectively amounts to

$$\frac{\mathrm{d}\sigma(Z)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(Z)/\mathrm{d}p_T}{\mathrm{d}\sigma(W,\gamma)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(W,\gamma)}{\mathrm{d}p_T}\right]_{\mathrm{measured}}$$

50 Ge

- 10-20% scale dependence cancels to <1% if taken fully correlated
 - Add additional 3% for $Z(
 ightarrow
 u ar{
 u})$ +jets
 - NLO EW effects taken as uncertainty: 2 4% for $Z(\rightarrow \nu \bar{\nu})$ +jets
 - Total background uncertainty 4 12% from lowest to highest $E_T^{
 m miss}$
- \Rightarrow Q: Do you think this is realistic, too conservative, or too aggressive?

(A)

QCD Corrections.

Recent analysis of theory uncertainties of V+jet ratios at high p_T [Lindert et al. 1705.04664]

Consider 3 uncertainty sources

- $\delta^{(1)}K^{(V)}$: from 7-point $\{\mu_R,\mu_F\}$ variation
 - Determines absolute unc. for individual processes, taken as fully correlated
- $\delta^{(2)}K^{(V)}$: p_T -shape uncertainty

$$\frac{p_T^2-p_{T,0}^2}{p_T^2+p_{T,0}^2}\,\delta^{(1)}K^{(V)}$$

- Size still proportional to scale variation
- Fixed crossing point $p_{T,0} = 600 \, \mathrm{GeV}$
- δ⁽³⁾K^(V) : differences of relative (N)NLO corrections between processes

$$\frac{\sigma_{(\mathrm{N})\mathrm{NLO}}^{(V)}}{\sigma_{(\mathrm{N})\mathrm{LO}}^{(V)}} - \frac{\sigma_{(\mathrm{N})\mathrm{NLO}}^{(Z)}}{\sigma_{(\mathrm{N})\mathrm{LO}}^{(Z)}}$$

Serves to decorrelate processes

2017-11-06 7 / 15

QCD Corrections.

Recent analysis of theory uncertainties of V+ jet ratios at high p_T [Lindert et al. 1705.04664]

Consider 3 uncertainty sources

- $\delta^{(1)}K^{(V)}$: from 7-point { μ_R, μ_F } variation
 - Determines absolute unc. for individual processes, taken as fully correlated
- $\delta^{(2)}K^{(V)}$: p_T -shape uncertainty

$$\frac{p_T^2-p_{T,0}^2}{p_T^2+p_{T,0}^2}\,\delta^{(1)}K^{(V)}$$

- Size still proportional to scale variation
- Fixed crossing point $p_{T,0} = 600 \, \text{GeV}$
- $\delta^{(3)}K^{(V)}$: differences of relative (N)NLO corrections between processes

$$\frac{\sigma_{(\mathrm{N})\mathrm{NLO}}^{(V)}}{\sigma_{(\mathrm{N})\mathrm{LO}}^{(V)}} - \frac{\sigma_{(\mathrm{N})\mathrm{NLO}}^{(Z)}}{\sigma_{(\mathrm{N})\mathrm{LO}}^{(Z)}}$$

Serves to decorrelate processes

NNLO QCD for V+jet @ 13 TeV

KNNLO/KNLO

QCD Corrections: Impact on Ratio.

- $\delta^{(1)}K$ and $\delta^{(2)}K$ cancel (by construction)
 - As expected do not capture higher-order effects in ratio
- Process-dependent δ⁽³⁾K drives the overall uncertainty of ratio
 - Sign change in relative correction inevitably leads to a p_T region where uncertainty becomes unreliable

QCD Corrections: Impact on Ratio.

- $\delta^{(1)}K$ and $\delta^{(2)}K$ cancel (by construction)
 - As expected do not capture higher-order effects in ratio
- Process-dependent δ⁽³⁾K drives the overall uncertainty of ratio
 - Sign change in relative correction inevitably leads to a p_T region where uncertainty becomes unreliable
- Important caveat for γ
 - Relies on p_T-dependent smooth isolation to force effective "photon jet" to have invariant mass around m_Z
 - Needs additional uncertainty to account for realistic experimental isolation
 - Fails for p_T < 200 GeV where δ⁽³⁾K becomes meaningless

Electroweak Corrections.

EW corrections get large for $m_V \ll p_T$

Due to (virtual) EW Sudakov logs

- Can get NNLO estimate from known leading two-loop Sudakov logs
- 3 uncertainty sources to estimate different types of EW effects
 - δ⁽¹⁾κ_{EW} : higher-order Sudakov logs (treated as correlated)
 - δ⁽²⁾κ_{EW} : non-log NNLO effects (treated as uncorrelated)
 - δ⁽³⁾κ_{EW} : NLO² cross terms (treated as uncorrelated)
- Mixed QCD-EW corrections
 - Factorize for dominant Sudakov terms
 - $\delta_{\text{mix}} = (0.1 \dots 0.4) (\sigma_{\text{QCD+EW}} \sigma_{\text{QCD} \times \text{EW}})$

Electroweak Corrections.

EW corrections get large for $m_V \ll p_T$

Due to (virtual) EW Sudakov logs

- Can get NNLO estimate from known leading two-loop Sudakov logs
- 3 uncertainty sources to estimate different types of EW effects
 - δ⁽¹⁾κ_{EW} : higher-order Sudakov logs (treated as correlated)
 - δ⁽²⁾κ_{EW} : non-log NNLO effects (treated as uncorrelated)
 - δ⁽³⁾κ_{EW} : NLO² cross terms (treated as uncorrelated)
- Mixed QCD-EW corrections
 - Factorize for dominant Sudakov terms
 - $\delta_{\text{mix}} = (0.1 \dots 0.4) (\sigma_{\text{QCD+EW}} \sigma_{\text{QCD} \times \text{EW}})$

Electroweak Corrections.

EW corrections get large for $m_V \ll p_T$

Due to (virtual) EW Sudakov logs

- Can get NNLO estimate from known leading two-loop Sudakov logs
- 3 uncertainty sources to estimate different types of EW effects
 - ► $\delta^{(1)} \kappa_{\rm EW}$: higher-order Sudakov logs (treated as correlated)
 - δ⁽²⁾κ_{EW} : non-log NNLO effects (treated as uncorrelated)
 - δ⁽³⁾κ_{EW} : NLO² cross terms (treated as uncorrelated)
- Mixed QCD-EW corrections
 - Factorize for dominant Sudakov terms
 - $\delta_{\text{mix}} = (0.1 \dots 0.4) (\sigma_{\text{QCD+EW}} \sigma_{\text{QCD} \times \text{EW}})$

Higgs \rightarrow Invisible.

< 🗗 >

Higgs \rightarrow Invisible in VBF.

• Simultaneous fit to both signal region and $W(\rightarrow \ell \bar{\nu})$ +jets and $Z(\rightarrow \ell \bar{\ell})$ +jets control regions

$$\frac{\mathrm{d}\sigma^{\mathrm{QCD}+\mathrm{EW}}(Z)}{\mathrm{d}p_{T}} = \left[\frac{\mathrm{d}\sigma^{\mathrm{QCD}+\mathrm{EW}}(Z)/\mathrm{d}p_{T}}{\mathrm{d}\sigma^{\mathrm{QCD}+\mathrm{EW}}(W)/\mathrm{d}p_{T}}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma^{\mathrm{QCD}+\mathrm{EW}}(W)}{\mathrm{d}p_{T}}\right]_{\mathrm{meas}}$$

- Effective extrapolation for the sum of QCD and EW production processes
- In the presence of nontrivial VBF cuts and veto on 3rd jet
- Uses common QCD scale and parton shower variations
 - ⇒ Should be very cautious to trust any substantially reduced scale dependence to provide meaningful uncertainty estimate

Frank Tackmann (DESY)

2017-11-06 10 / 15

< 47 >

$Z + \text{Higgs} \rightarrow \text{Invisible}.$

- Simultaneous fit to signal and control regions with single normalization for all ZZ and ZW channels with ratios taken from theory
 - EW uncertainties assumed anticorrelated between ZZ and ZW
 - QCD uncertainties from scale variations (not sure about correlation assumption)
- \Rightarrow Total background uncertainty 15% entirely dominated by theory

Fun Things to Explore.

< 67 >

m_W Measurement.

Crucially relies on precise modelling of W kinematics at low $p_T^W \lesssim 30 \, {
m GeV}$

- $\simeq 2\%$ uncertainties in p_T^W translate into $\simeq 10 \, {
 m MeV}$ uncertainty in m_W
- \Rightarrow Use precise low- p_T^Z measurement to get best possible prediction for p_T^W

$$\frac{\mathrm{d}\sigma(W)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(W)/\mathrm{d}p_T}{\mathrm{d}\sigma(Z)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(Z)}{\mathrm{d}p_T}\right]_{\mathrm{r}}$$

- At first sight, low- p_T region seems more complicated due to large logarithms $\ln(p_T/Q)$ that need to be resummed
- But, cross section is dominated by leading singular terms in p_T/Q
 - They are much less process dependent
 - They can be predicted by p_T resummation

Embrace the Resummation Region.

Leading terms at low p_T factorize

$$\begin{split} \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\vec{p}_T^X} &= \sum_{a,b} H_{ab \to X}(Q) \int \mathrm{d}^2 \vec{k}_a \, \mathrm{d}^2 \vec{k}_b \\ &\times B_a(\vec{k}_a) \, B_b(\vec{k}_b) \, \frac{S_{ab}(\vec{p}_T^X - \vec{k}_a - N_b)}{N_b(N_b)^2 - N_b(N_b)^2 - N_b} \end{split}$$

- Hard function $H_{ab \rightarrow X}$: Encodes all dependence on hard process
 - Contains all Born and virtual $ab \rightarrow X$ matrix elements
- Beam and soft functions: Independent of hard process
 - Only depend on color channel (q vs. g)
 - Determine the all-order p_T dependence

 \Rightarrow For $p_T^X \ll Q \equiv \sqrt{p_X^2}$ all color-singlet X are to some degree related

- ► I really mean *all*: Z, W, Higgs, but also V_1V_2 , VH, $V\chi\bar{\chi}$, ...
- True "mono-V" limit (where also most of cross section is)
- It is well-defined to consider different parton channels ab o X separately
- Allows to develop a quantitative theory correlation model [wip ...]

2017-11-06 13/15

Can Be Extended to V + jet.

$$egin{aligned} rac{\mathrm{d}\sigma(Vj)}{\mathrm{d}p_T^{Vj}} &= \sum_{a,b,j} H_{ab o Vj}(p_T^V) \ & imes [B_a \otimes B_b \otimes J_j \otimes S_{abj}](p_T^{Vj} \ & imes [1 + \mathcal{O}(p_T^{Vj}/p_T^V)] \end{aligned}$$

Can increase universality by (in)directly vetoing additional hard emissions

- In a theoretically well-controlled way, i.e. using factorizeable/resummable jet resolution variable, e.g. p_T^{j2} or $p_T^{Vj} \ll Q \sim p_T^V \sim p_T^j$
 - True "mono-jet" limit

In this limit it makes again sense to separate different partonic channels

- ▶ Dependence on hard Vj process is isolated into hard function $H_{ab \to Vj}$, which contains all Born and virtual $ab \to Vj$ matrix elements
- Beam, jet, and soft functions are again process independent and only depend on partonic channel and color representation

\Rightarrow Would be worth exploring

Extrapolation between different processes (or different kinematic regions of the same process) intrinsically requires understanding correlations in theory uncertainties

- Theory uncertainties are tricky business to begin with
 - A theory prediction without an uncertainty is about as useful as an experimental measurement without uncertainties
 - Precision requires meaningful uncertainties, small is not enough ...
 - Providing a knob is not the same as providing an uncertainty estimate
- QCD scales are not physical parameters
 - They should not be regarded as the fundamental sources of uncertainties
- ⇒ There is no general procedure for this
 - Only general advice: Be careful
- ⇒ Good news: There are various avenues for improvement and we are starting to explore them