### Dark Matter Searches in ATLAS

Katharina Behr

### DESY LHC Physics Discussion 06.11.2017









- Searches in many final states and probing a wide variety of models
- Models of varying complexity
  - EFTs: model-independent, few signatures





- Searches in many final states and probing a wide variety of models
- Models of varying complexity
  - EFTs: model-independent, few signatures
  - Simplified models: reduced model dependency, complementary searches



- Searches in many final states and probing a wide variety of models
- Models of varying complexity
  - EFTs: model-independent, few signatures
  - Simplified models: reduced model dependency, complementary searches



- Searches in many final states and probing a wide variety of models
- Models of varying complexity
  - EFTs: model-independent, few signatures
  - Simplified models: reduced model dependency, complementary searches
  - BSM theories, e.g. SUSY: consistent, UV-complete, rich phenomenology



# Public Results on 2015+2016 Data

#### Mono-X searches

- Mono-jet [ATLAS-CONF-2017-060]
- Mono-photon [arxiv:1704.03848]

#### **Mediator searches**

- Dijet resonances [arxiv:1703.09127]
- Dilepton resonances [arxiv:1707.01302]
- ▶ BSM A/H → ττ [arxiv:1709.07242]
- ▶ BSM A/H → tt [arxiv:1707.06025]

#### **Mono-Higgs searches**

- ▶ Mono-*h*(*bb*) [arxiv:1707.01302]
- Mono-h(γγ) [arxiv:1706.03948]

### **Invisible Higgs decays**

Z + h(inv.) [arxiv:1708.09624]



Many more searches in progress!

# Outline

Focus on selected models and final states:

Simplified model with a vector or axialvector mediator

- Complementarity of mono-X and resonance searches
- 2 Simplified model: 2HDM + Z'
  - Complementarity of mono-h searches
- Less simplified model: 2HDM+pseudoscalar
  - Rich collider phenomenology
  - New ATLAS/CMS benchmark model



http://clipart-library.com

Disclaimer:

Will not cover SUSY models, EFTs, FCNC models, ... or more exotic signatures such as emerging jets, ...



Simplified model with a vector or axialvector mediator



### Vector or Axialvector Mediator

- Benchmark models suggested by LHC DM WG
- Mediator with vector or axialvector interactions (s-channel)
- Probed by both mono-X and resonance searches



- 6 free parameters
- Mediator couplings:  $g_{\ell}, g_q, g_{DM}$
- Masses m<sub>A/V</sub> and m<sub>DM</sub>
- Mediator width F<sub>A/V</sub> fixed minimal allowed value for chosen masses and couplings

| Goal of scenario                              | Mediator type | <b>g</b> <sub>q</sub> | <b>g</b> <sub>lep</sub> | $\mathbf{g}_{DM}$ |
|-----------------------------------------------|---------------|-----------------------|-------------------------|-------------------|
|                                               | Autobar star  | 0.05                  | 0.00                    | 1.00              |
| A1: previous A1 LAS benchmark                 | Axialvector   | 0.25                  | 0.00                    | 1.00              |
| A2: highlight contribution of dilepton search | Axialvector   | 0.10                  | 0.10                    | 1.00              |
| (close to previous dilepton benchmark)        |               |                       |                         |                   |
| V1: highlight contribution of dijet searches  | Vector        | 0.25                  | 0.00                    | 1.00              |
| in leptophobic case                           |               |                       |                         |                   |
| (close to previous ATLAS benchmark)           |               |                       |                         |                   |
| V2: highlight complementarity of              | Vector        | 0.10                  | 0.01                    | 1.00              |
| DM/dilepton/dijet searches                    |               |                       |                         |                   |

### Results for A1 and V1

Complementarity between mono-X and resonance searches

- No couplings to leptons
- Observed limits



V1

A1

### Results for A2 and V2

- Complementarity between mono-X and resonance searches
- Non-zero couplings to leptons
- Observed limits only



V2

A2

### **Comparison with Direct Detection Results**

- ▶ Complementarity of LHC and direct detection searches
- ▶ Caveat: ATLAS limits at 95% CL compared to 90% for direct detection



Simplified model: 2HDM + Z'



12/23

Extension of 2HDM (type-II) in the alignment limit

- 5 Higgs bosons: scalars h, H, pseudoscalar A, charged  $H^{\pm}$
- ▶ Heavy vector Z' mediator mixes with Z boson



▶ Parameters as recommended by LHC DM WG:  $\tan \beta = 1$ ,  $g_{Z'} = 0.8$ ,  $m_{\chi} = 100$  GeV

• Charged Higgs bosons:  $m_{H^{\pm}} = 300$  GeV (CMS:  $m_{H^{\pm}} = m_A$ )

# **2HDM+**Z': Mono- $h(b\bar{b})$

- Dominant decay channel with BR $(h \rightarrow b\bar{b})$ =57%
- ▶ Trigger on  $E_{\rm T}^{\rm miss}$  > 110 GeV  $\Rightarrow$  Offline:  $E_{\rm T}^{\rm miss}$  > 150 GeV
- 8 signal regions
  - (4  $E_{\rm T}^{\rm miss}$  bins)  $\times$  (1 or 2 *b*-tags)
- Merged approach for  $E_{\rm T}^{\rm miss} > 500$  GeV



Single AKT10 jet with associated b-tagged track jets



# **2HDM+**Z': Mono- $h(\gamma\gamma)$

- ▶ Clean decay channel with small BR $(h \rightarrow \gamma \gamma)$ =0.24%
- Diphoton trigger
- Main DM sensitive signal region:
  - $E_{
    m T}^{
    m miss}/\sum E_{T}>$ 7,  $p_{T}^{\gamma\gamma}>$ 90 GeV, lepton veto
- ▶ Likelihood fit to  $m_{\gamma\gamma}$  distribution around Higgs mass
  - 105 GeV  $< m_{\gamma\gamma} <$  160 GeV



# **2HDM+***Z*': Constraints

• Complementary exclusion from mono- $h(\gamma\gamma)$  and mono- $h(b\bar{b})$ 

- Mono- $h(b\bar{b})$  dominates for  $p_T^h > 150$  GeV
- Mono- $h(\gamma\gamma)$  can probe lower  $m_A$  and  $m_{Z'}$



### Less simplified model: 2HDM+pseudoscalar



# 2HDM+Pseudoscalar

- Extension of 2HDM (type-II) in the alignment limit
- Pseudoscalar mediator a mixes with heavy pseudoscalar A of 2HDM
- Rich phenomenology of  $E_{T}^{miss}$ +X signatures with complementary sensitivity



Additional sensitivity from resonance searches for A/H ( $b\bar{b}$ ,  $\tau\tau$ ,  $t\bar{t}$ )

# 2HDM+PS: Parameters

- 14 parameters
- ► Alignment limit: the lighter of CP-even states *h* is SM Higgs  $\Rightarrow \sin(\beta \alpha) = 1$ ,  $m_h = 125$  GeV, v = 246 GeV
- Fix quartic couplings such that  $\lambda_3 \ge m_h^2/v^2 = 0.258$  (stability of the potential)  $\Rightarrow \lambda_3 = \lambda_{P1} = \lambda_{P2} = 3$
- ► Impose EW/flavour constraints  $\Rightarrow m_A = m_H = m_{H^{\pm}}$
- Fix DM mass and coupling:  $m_{\chi} = 10$  GeV and  $y_{\chi} = 1$

#### 4 free parameters

- m<sub>A</sub>: mass of heavy pseudoscalar A
- m<sub>a</sub>: mass of mediator a
- $\triangleright$  sin  $\theta$ : mixing angle between a and A
- $\tan \beta$ : ratio of VEVs of the two Higgs doublets

### **2HDM+PS:** Scan in $m_a$ – tan $\beta$

- 4 benchmark scenarios considered in originally
- LHC DM WG deviate from orignal benchmarks to ensure stability/unitarity
  - Mass degeneracy:  $m_A = m_H = m_{H^\pm} = 600$  GeV (original:  $|m_A m_H| \sim 250$  GeV)
  - Quartic couplings:  $\lambda_3 = \lambda_{P1} = \lambda_{P2} = 3$  (original: = 0)



Note:  $t\bar{t} + E_{T}^{miss}$  contour for 200 fb<sup>-1</sup> (40 fb<sup>-1</sup> for all others)

# **2HDM+PS: Scan in** $m_a - m_A$

• Complementarity of mono- $h(\gamma\gamma)$  and mono- $h(b\bar{b})$ 





20/23

# **2HDM+PS: Scan in** $m_a - m_A$

- Complementarity of mono- $Z(\ell \ell)$  and mono-Z(had)
  - Fix  $\tan \beta = 1.0$ ,  $\sin \theta = 0.35$

20/23



# 2HDM+PS: Other Scans

- Sensitivity dominated by mono-h and mono-V (resonant production modes)
- $t\bar{t} + E_{T}^{miss}$  and  $b\bar{b} + E_{T}^{miss}$  provide additional constraints

- $t\bar{t} + E_{T}^{miss}$  at larger  $\sin \theta \Rightarrow$  Scan in  $\sin \theta$
- More interesting with more data



# 2HDM+PS: Other Scans

- Sensitivity dominated by mono-h and mono-V (resonant production modes)
- $t\bar{t} + E_{T}^{miss}$  and  $b\bar{b} + E_{T}^{miss}$  provide additional constraints

- $t\bar{t} + E_{T}^{miss}$  at larger  $\sin \theta \Rightarrow$  Scan in  $\sin \theta$
- More interesting with more data



▶ Sensitivity dominated by mono-*h* and mono-*V* (resonant production modes)
 ▶ tt̄ + E<sub>T</sub><sup>miss</sup> and b̄ + E<sub>T</sub><sup>miss</sup> provide additional constraints



# Summary

- Diverse programme of DM searches in ATLAS
  - Complementarity between different final states
- Probing a variety of benchmark models
  - Trend towards less simplified models with more data
- Cooperation between ATLAS/CMS/Theory via LHC DM WG
  - Whitepaper summarising 2HDM+PS recommendations (in preparation)

Many more searches in progress... ... and more data coming in!



# BACKUP



### **Comparison with Direct Detection Results**



Katharina Behr

25/23

DM@ATLAS

### Comparison with DD for A2



Comparison with DD for V1 and V2

27/23



28/23



# Baryonic Z'

29/23

- Simplified model [arxiv:1312.2592]
- Gauge symmetry  $U(1)_B$  for conservation of baryon number  $B \Rightarrow$  gauge boson  $Z'_B$
- Spontaneously broken by baryonic Higgs  $h_b$  that mixes with SM Higgs with angle  $\theta$



- Parameters as recommended by LHC DM WG
- ▶  $g_q = 1/3$ ,  $g_{\chi} = 1$ ,  $g_{hZ'Z'} = m_{Z'}$ ,  $\sin \theta = 0.3 \Rightarrow \text{Mono-}h \text{ signature!}$

# **2HDM+PS:** lighter scalar *h*



Figure 2. Branching ratios of the lighter scalar h as a function of the pseudoscalar mass  $M_a$  for two different choices of  $m_{\chi}$  as indicated in the headline of the plots. The other relevant parameters have been set to  $\tan \beta = 1$ ,  $M_H = M_A = M_{H^{\pm}} = 750 \,\text{GeV}$ ,  $\sin \theta = 1/\sqrt{2}$ ,  $\lambda_3 = \lambda_{P1} = \lambda_{P2} = 0$ and  $y_{\chi} = 1$ .

# 2HDM+PS: mediator a



Figure 1. Branching ratios of the lighter pseudoscalar a as a function of its mass for two different choices of  $\sin \theta$  and  $m_{\chi}$  as indicated in the headline of the plots. The other relevant parameters have been set to  $\tan \beta = 1$ ,  $M_H = M_A = M_{H^{\pm}} = 750$  GeV and  $y_{\chi} = 1$ . Notice that for this specific  $\tan \beta$  value the branching ratios of the pseudoscalar a do not depend on the choice of Yukawa sector.

# **2HDM+PS:** pseudoscalar A



Figure 4. Branching ratios of the heavier pseudoscalar A as a function of  $M_a$  for two different choices of  $M_A$  and  $\sin \theta$  as indicated in the headline of the plots. The other parameter choices are  $\tan \beta = 1$ ,  $M_H = M_{H^{\pm}} = 750 \text{ GeV}$ ,  $\lambda_3 = \lambda_{P1} = \lambda_{P2} = 0$ ,  $y_{\chi} = 1$  and  $m_{\chi} = 1 \text{ GeV}$ .

### **2HDM+PS:** heavier scalar *H*

33/23



Figure 3. Branching ratios of the heavier scalar H as a function of  $M_a$  for two different choices of  $\sin \theta$  and  $M_H$  as indicated in the headline of the plots. The other used input parameters are  $\tan \beta = 1$ ,  $M_A = M_{H^{\pm}} = 750 \text{ GeV}$ ,  $\lambda_3 = \lambda_{P2} = 0$  and  $\lambda_{P1} = 1$ .

# **2HDM+PS:** charged Higgs $H^{\pm}$



Figure 5. Branching ratios of the charged scalar  $H^+$  as a function of  $M_a$  for two different sets of input parameters as indicated in the headline of the plots. In the left (right) panel in addition  $\tan \beta = 1$  and  $M_A = M_{H^{\pm}} = 750 \text{ GeV}$  ( $M_H = M_{H^{\pm}} = 750 \text{ GeV}$ ) is used.

# **2HDM+PS:** Sensitivity for mono- $h(b\bar{b})$

- Use limits on visible cross-section
  - "Model-independent" limits
- 1. simulate parton-level x-sec
- 2. bin into 4 MET bins
- 3. fold (bin-by-bin) with  $\mathcal{A} imes arepsilon$
- 4. multiply with SM BR( $h\rightarrow bb$ )
- 5. divide (bin-by-bin) by observed upper limit on  $\sigma_{vis,h+DM}^{obs}$
- 6. sum over 4 MET bins

|                                 | 7112710                                   | 00111 20                                | 11 020                           |
|---------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------|
| Range in                        | $\sigma_{{\rm vis},h+{\rm DM}}^{\rm obs}$ | $\sigma_{{\rm vis},h+{ m DM}}^{ m exp}$ | $\mathcal{A} \times \varepsilon$ |
| $E_{\rm T}^{\rm miss}/{ m GeV}$ | [fb]                                      | [fb]                                    | %                                |
| [150, 200)                      | 19.1                                      | $18.3^{+7.2}_{-5.1}$                    | 15                               |
| [200, 350)                      | 13.1                                      | $10.5^{+4.1}_{-2.9}$                    | 35                               |
| [350, 500)                      | 2.4                                       | $1.7_{-0.5}^{+0.7}$                     | 40                               |
| [500,∞)                         | 1.7                                       | $1.8^{+0.7}_{-0.5}$                     | 55                               |

ATLAS COME 2017 028

Signal significance, summed over the four  $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$  bins





- Scans in sin  $\theta$  for two points in  $m_a m_A$  grid (tan  $\beta = 1$ )
  - $m_a = 200 \text{ GeV}, m_A = 600 \text{ GeV}$
  - $m_a = 350 \text{ GeV}, m_A = 1000 \text{ GeV}$
- Scan in  $m_{\rm DM}$  fixing  $m_a = 250$  GeV,  $m_A = 600$  GeV,  $\tan \beta = 1$ ,  $\sin \theta = 0.35$ 
  - Current default:  $m_{
    m DM}=10$  GeV (authors assumed  $m_{
    m DM}=1$  GeV)
  - Higher values of  $m_{\rm DM}$  preferred by relic density constraints
  - [Details]