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N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.

strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical laboratory for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]
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Scattering Amplitudes: dσ ∝ ∣A∣2

For N = 4, all fields massless and in adjoint of gauge group SU(N).

Can thus use helicity h = S⃗ ⋅ p̂ to classify on-shell particle content,

h ∶ −1 −1/2 0 1/2 1

G− Q1

Ð→ Γ̄A
Q2

Ð→ ΦAB
Q3

Ð→ ΓA
Q4

Ð→ G+

For the gluons G±, the gluinos Γ, Γ̄, and the scalars Φ. For n gluons,

AL−loopn ({ki, hi, ai})
= ∑
σ∈Sn/Zn

Tr(T aσ(1)⋯T aσ(n)) A(L)
n (σ(1h1), . . . , σ(nhn))

+multitrace terms, subleading by powers of 1/N2 .

A
(L)
n : color-ordered amplitude, all color factors removed.
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Maximally Hellicity Violating (MHV) Amplitudes

These are the simplest amplitudes: A
(L)
n (1+, . . . , i−, . . . , j−, . . . , n+)

They also have remarkable properties, namely they
▸ are dual to null polygonal Wilson loops.

[Alday,Maldacena][Drummond,Korchemsky,Sokatchev][Brandhuber,Heslop,Travaglini]

x1

x2

x3

xn

An

k1

k2

k3

kn ki ≡ xi+1 − xi ≡ xi+1,i ,

k2
i = x2

i+1,i = 0

∑ki = 0 automatically satisfied

logWn = log
AMHV
n

AMHV
n,tree

+O(ε)

▸ exhibit (formally) dual conformal invariance (DCI) under xµi →
xµi
x2
i
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MHV Scattering Amplitudes

▸ In reality DCI broken by divergences, (IR in massless N = 4/UV in
cusped WL). Breaking controlled by conformal Ward identity.
[Drummond,Henn,Korchemsky,Sokatchev]

▸ For n = 4,5, the latter uniquely determines the dimensionally
regularized An/Wn to all loops! Given by ansatz WBDS

n of
[Anastasiou,Bern,Dixon,Kosower][Bern,Dixon,Smirnov]

▸ For n ≥ 6,

Wn =WBDS
n eRn(u1,...,um)

where the ‘remainder function’ Rn is conformally invariant, and thus

a function of conformal cross ratios, e.g u = x2
46x

2
13

x2
36x

2
14

.

▸ # of independent ui: m = 4n − n − 15 = 3n − 15
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Nonperturbative Definition via the Collinear Limit

▸ Form null square (OPSF). Invariant under dilatations D, boosts M01,
and rotations on (x2, x3) plane M23

▸ Collinear limit: Act with e−τ(D−M01) on A and B, and take τ →∞.
Parametrise u1, u2, u3 by group coordinates τ, σ, φ.

▸ Can think of (PO),(SF ) as a color-electric flux tube sourced by qq̄,
and decompose the Wilson loop with respect its excitations.

Schematically,

W =∑
ψi

e−τEi+ipi+imiφP(0∣ψ1)P(ψ1∣0)

▸ Propagation of square eigenstates

▸ Pentagon Transition between squares

⇒WL ‘Operator Product Expansion’ (OPE)

[Alday,Gaiotto,Maldacena,Sever,Vieira]
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Wilson Loop OPE & Integrability

In N = 4 SYM, flux tube dynamics is integrable:
▸ Excitation energies calculable to all loops from a spin chain[Basso]

▸ Same for pentagon transitions, related to S-matrix of excitations on
top of the GKP string [Basso,Rej]

▸ Has culminated in an all-loop proposal for 6-point amplitude as an
infinite series around collinear kinematics [Basso,Sever,Vieira]

▸ Necessary for completing the picture: Extension to higher points and
evaluation/resummation to closed form. For progress on the latter see
[GP’13][GP’14][Drummond,GP], based on technology of [Moch,Uwer,Weinzierl]
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infinite series around collinear kinematics [Basso,Sever,Vieira]

▸ Necessary for completing the picture: Extension to higher points and
evaluation/resummation to closed form. For progress on the latter see
[GP’13][GP’14][Drummond,GP], based on technology of [Moch,Uwer,Weinzierl]
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If exact S-matrix within reach, look at
many “data points” at weak/strong cou-
pling to extract its general pattern.
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How do we compute R
(L)
n in general kinematics?

For n = 6, very successful amplitude bootstrap
up to L = 5 loops. [Dixon,Drummond,Henn]

[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]

[Caron-Huot,Dixon,McLeod,von Hippel]

A. Construct an ansatz assuming

1. What the general class of functions that suffices to express R
(L)
n is

2. What the function arguments (encoding the kinematics) are

B. Fix the coefficients of the ansatz by imposing consistency conditions
(e.g. collinear data we described in previous part of talk)

Motivated by this progress, we upgraded this procedure for n = 7, with
information from the cluster algebra structure of the kinematical space.

Surprisingly, we found that heptagon bootstrap is more power-

ful than the hexagon one! Obtained the symbol of R
(3)
7 from

very little input. [Drummond,GP,Spradlin]
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What are the right functions?
Generalised polylogarithms (GPLs)

fk is a GPL of weight k if its differential may be written as a finite linear
combination

dfk =∑
α

f
(α)
k−1 d logφα

over some set of φα, where f
(α)
k−1 functions of weight k − 1.

Very convenient tool for describing them: The symbol S(fk),

encapsulating recursive application of above definition (on f
(α)
k−1 etc)

S(fk) = ∑
α1,...,αk

f
(α1,α2,...,αk)
0 (φα1 ⊗⋯⊗ φαk) .

Collection of φα : symbol alphabet ∣ f
(α1,...,αk)
0 rational

Empeirical evidence: L-loop amplitudes=GPLs of weight k = 2L
[Duhr,Del Duca,Smirnov][Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka][GP]
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What are the right variables?

More precisely, what is the symbol alphabet?
▸ For n = 6, 9 letters, motivated by analysis of relevant integrals
▸ More generally, strong motivation from cluster algebra structure of

kinematical configuration space Confn(P3)
[Golden,Goncharov,Spradlin,Vergu,Volovich]

The latter is a collection of n ordered momentum twistors Zi on P3, (an
equivalent way to parametrise massless kinematics), modulo dual
conformal transformations.

xi ∼ Zi−1 ∧Zi
(xi − xj)2 ∼ εIJKLZIi−1Z

J
i Z

K
j−1Z

L
j = det(Zi−1ZiZj−1Zj) ≡ ⟨i − 1ij − 1j⟩
=
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Momentum Twistors ZI [Hodges]

▸ Represent dual space variables xµ ∈ R1,3 as projective null vectors

XM ∈ R2,4 , X2 = 0 , X ∼ λX.

▸ Repackage vector XM of SO(2,4) into antisymmetric representation

XIJ = −XJI = of SU(2,2)

▸ Can build latter from two copies of the fundamental ZI = ,

XIJ = Z[I Z̃J] = (ZI Z̃J −ZJ Z̃I)/2 or X = Z ∧ Z̃

▸ After complexifying, ZI transform in SL(4,C). Since Z ∼ tZ, can be
viewed as homogeneous coordinates on P3.

▸ Can show

(x−x′)2 ∝ 2X ⋅X ′ = εIJKLZI Z̃JZ ′KZ̃ ′L = det(ZZ̃Z′Z̃ ′) ≡ ⟨ZZ̃Z ′Z̃ ′⟩

▸ (xi+i − xi)2 = 0 ⇒Xi = Zi−1 ∧Zi
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Confn(P3) and Graßmannians

Can realize Confn(P3) as 4 × n matrix (Z1∣Z2∣ . . . ∣Zn) modulo rescalings
of the n columns and SL(4) transformations, which resembles a
Graßmannian Gr(4, n).

Gr(k,n): The space of k-dimensional planes passing through the origin in
an n-dimensional space. Equivalently the space of k × n matrices modulo
GL(k) transformations:

▸ k-plane specified by k basis vectors that span it ⇒ k × n matrix

▸ Under GL(k) transformations, basis vectors change, but still span the
same plane.

Comparing the two matrices,

Confn(P3) = Gr(4, n)/(C∗)n−1
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an n-dimensional space. Equivalently the space of k × n matrices modulo
GL(k) transformations:

▸ k-plane specified by k basis vectors that span it ⇒ k × n matrix

▸ Under GL(k) transformations, basis vectors change, but still span the
same plane.

Comparing the two matrices,

Confn(P3) = Gr(4, n)/(C∗)n−1
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Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras equipped with a distinguished set of
generators (= cluster variables), grouped into overlapping subsets (=
clusters) with the same number of elements (= the rank of the algebra).
Constructed from an initial cluster by an iterative process (= mutation).

Example: A2 Cluster algebra

▸ Cluster variables: am, m ∈ Z
▸ Initial cluster: {a1, a2}
▸ Clusters: {am, am+1}, m ∈ Z
▸ Mutation: {am−1, am}→ {am, am+1} with am−1 → am+1 = 1+am

am−1

Here, finite number of cluster variables:

a3 =
1 + a2

a1
, a4 =

1 + a1 + a2

a1a2
, a5 =

1 + a1

a2
, a6 = a1 , a7 = a2
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Cluster algebras (cont’d)

For our purposes, can be described by quivers, where each variable ak of a
cluster corresponds to node k.

▸ Mutation at node k: ∀ i→ k → j, add arrow i→ j, reverse all arrows
to/from k, remove ⇄ and ⟳.

▸ In this manner, obtain new quiver/cluster where

ak → a′k =
1

ak

⎛
⎝ ∏

arrows i→k

ai + ∏
arrows k→j

aj
⎞
⎠

Example: A3 Cluster algebra

▸ Initial cluster:
a1 a2 a3

▸ Mutate at 2:
a1 a′2 a3

▸ Leads to new cluster {a1, a
′
2, a3} with a′2 = (a1 + a3)/a2 and so on
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Connection with Confn(P3) = Gr(4, n)/(C∗)n−1

▸ Graßmannians Gr(k,n) equipped with cluster algebra structure [Scott]

▸ Initial cluster made of a special set of Plücker coordinates ⟨i1 . . . ik⟩
▸ Mutations also yield certain homogeneous polynomials of Plücker

coordinates

▸ Crucial observation: For all known cases, symbol alphabet of n-point
amplitudes for n = 6,7 are Gr(4, n) cluster variables (also known as
A-coordinates) [Golden,Goncharov,Spradlin,Vergu,Volovich]

Symbol alphabet is made of cluster A-coordinates on
Confn(P3). For the heptagon, 42 of them.

Fundamental assumption of “cluster bootstrap”
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Heptagon Symbol Letters

Multiply A-coordinates with suitable powers of ⟨i i + 1 i + 2 i + 3⟩ to form
conformally invariant cross-ratios,

a11 =
⟨1234⟩⟨1567⟩⟨2367⟩
⟨1237⟩⟨1267⟩⟨3456⟩ , a41 =

⟨2457⟩⟨3456⟩
⟨2345⟩⟨4567⟩ ,

a21 =
⟨1234⟩⟨2567⟩
⟨1267⟩⟨2345⟩ , a51 =

⟨1(23)(45)(67)⟩
⟨1234⟩⟨1567⟩ ,

a31 =
⟨1567⟩⟨2347⟩
⟨1237⟩⟨4567⟩ , a61 =

⟨1(34)(56)(72)⟩
⟨1234⟩⟨1567⟩ ,

where
⟨ijkl⟩ ≡ ⟨ZiZjZkZl⟩ = det(ZiZjZkZl)

⟨a(bc)(de)(fg)⟩ ≡ ⟨abde⟩⟨acfg⟩ − ⟨abfg⟩⟨acde⟩ ,

together with aij obtained from ai1 by cyclically relabeling Zm → Zm+j−1.
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Imposing Constraints

1. Locality: Amplitudes may only have singularities when intermediate
particles go on-shell ⇒ constrains first symbol entry (7-pts: a1j)

2. Integrability: For given S, ensures ∃ function with given symbol

∑
α1,...,αk

f
(α1,α2,...,αk)
0 (φα1 ⊗⋯⊗ φαk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
omitting φαj ⊗ φαj+1

d logφαj ∧ d logφαj+1 = 0 ∀j .

3. Dual superconformal symmetry ⇒ constrains last symbol entry of
MHV amplitudes (7-pts: a2j , a3j)

[Caron-Huot,He]

4. Collinear limit: By definition, limi+1∥iR
(L)
n = R(L)

n−1 ⇒
further linear constraints on coefficients of ansatz

Define heptagon symbol: A symbol of the aforementioned 42-letter
alphabet, obeing 1 & 2.
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Results

Weight k = 1 2 3 4 5 6

Number of heptagon symbols 7 42 237 1288 6763 ?

well-defined in the 7 ∥ 6 limit 3 15 98 646 ? ?

which vanish in the 7 ∥ 6 limit 0 6 72 572 ? ?

well-defined for all i+1 ∥ i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table: Heptagon symbols and their properties.
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with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table: Heptagon symbols and their properties.

The symbol of the two-loop seven-particle MHV remainder function

R
(2)
7 is the only weight-4 heptagon symbol which is well-defined in

all i+1 ∥ i collinear limits.
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which vanish in the 7 ∥ 6 limit 0 6 72 572 ? ?

well-defined for all i+1 ∥ i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table: Heptagon symbols and their properties.

The symbol of the three-loop seven-particle MHV remainder function

R
(3)
7 is the only weight-6 heptagon symbol which satisfies the last-

entry condition and which is finite in the 7 ∥ 6 collinear limit.
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Comparison with the hexagon case

Weight k = 1 2 3 4 5 6

Number of hexagon symbols 3 9 26 75 218 643

well-defined (vanish) in the 6 ∥ 5 limit 0 2 11 44 155 516

well-defined (vanish) for all i+1 ∥ i 0 0 2 12 68 307

with MHV last entries 0 3 7 21 62 188

with both of the previous two 0 0 1 4 14 59

Table: Hexagon symbols and their properties.

Surprisingly, heptagon bootstrap more powerful than hexagon one! Fact that

lim7∥6R
(3)
7 = R(3)

6 , as well as discrete symmetries such as cyclic Zi → Zi+1, flip
Zi → Zn+1−i or parity symmetry follow for free, not imposed a priori.
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Steinmann Relations Upgrade

[Steinmann][Cahill,Stapp][Bartels,Lipatov,Sabio Vera]

▸ Greatest challenge of amplitude bootstrap program: Contruction of
function space, whose size increases very fast with weight

▸ Recent discovery: Steinmann relations (=second-entry condition)
vastly reduce the size of this space
⇒ 5-loop Hexagon [Caron-Huot,Dixon,McLeod,von Hippel]

▸ More powerful at 7 points ⇒ 3-loop NMHV/4-loop MHV Heptagon
[Dixon,Drummond,Harrington,McLeod,GP,Spradlin]
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Steinmann Relations

Double discontinuities vanish for any set of overlapping channels

Discs345 [Discs234A] = 0

▸ Channel labelled by Mandelstam invariant we analytically continue
▸ Channels overlap if they divide particles in 4 nonempty sets.

Here: {2}, {3,4}, {5}, and {6,7,1}
▸ Focus on si−1,i,i+1 ∝ a1i (si−1i more subtle)

Disca1i
[Disca1jA] = 0 if j ≠ i, i + 3, i + 4 .
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BDS versus BDS-like normalized amplitudes

▸ BDS ansatz: Essentially the exponentiated 1-loop amplitude
▸ Contains 3-particle invariants si−1,i,i+1

▸ BDS-like: Remove si−1,i,i+1 from BDS in conformally invariant fashion

ABDS-like
7 ≡ ABDS

7 exp [Γcusp

4
Y7]

Y7 = −
7

∑
i=1

[Li2 (1 − 1

ui
) + 1

2
log ( ui+2ui−2

ui+3uiui−3
) logui] ,

ui =
x2
i+1,i+5 x

2
i+2,i+4

x2
i+1,i+4 x

2
i+2,i+5

, Γcusp = 4g2 − 4π2

3
g4 +O(g6) ,

This way, Discsi−1,i,i+1A7 = ABDS-like
7 Discsi−1,i,i+1[A7/ABDS-like

7 ]

BDS-like normalized amplitudes obey Steinmann relations,
BDS normalized ones do not!
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Results: Steinmann Heptagon symbols

Weight k = 1 2 3 4 5 6 7 7′′

parity +, flip + 4 16 48 154 467 1413 4163 3026

parity +, flip − 3 12 43 140 443 1359 4063 2946

parity −, flip + 0 0 3 14 60 210 672 668

parity −, flip − 0 0 3 14 60 210 672 669

Total 7 28 97 322 1030 3192 9570 7309

Table: Number of Steinmann heptagon symbols at weights 1 through 7, and those
satisfying the MHV next-to-final entry condition at weight 7. All of them are organized
with respect to the discrete symmetries of the MHV amplitude.

1. Compare with 7, 42, 237, 1288, 6763 non-Steinmann heptagon symbols
2. 28

42 = 6
9 = 2

3 reduction at weight 2
3. Increase by a factor of ∼ 3 instead of ∼ 5 at each weight
4. E.g. 6-fold reduction already at weight 5!
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Results: 4-loop MHV Heptagon

Loop order L = 1 2 3 4

Steinmann symbols 28 322 3192 ?

MHV final entry 1 1 2 4

Well-defined collinear 0 0 0 0

For last step, we need to convert BDS-like normalized amplitude F to
BDS normalized one F ,

F = Fe
Γcusp

4
Y7

symbolÐÐÐÐÐ→
Γcusp→4g2

F(L) =
L

∑
k=0

F (k) Y L−k
n

(L − k)! .

Independence of limi+1∥iF on 9 additional letters no longer a
homogeneous constraint, fixes amplitude completely!

Strong tension between collinear properties and Steinmann re-
lations.
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Further checks: Multi-Regge limit
Phenomenologically relevant high-energy gluon scattering

s12 ≫ s3⋯N−1, s4⋯N ≫ s3⋯N−2, s4⋯N−1, s5⋯N ≫ ⋯
. . .≫ s34, . . . , sN−1N ≫ −t1,⋯,−tN−3 .

Actively studied at weak and strong coupling [Bartels,Kormilitzin,Lipatov(Prygarin)]

[Bartels,Schomerus,Sprenger][Bargheer,Papathanasiou,Schomerus][Bargheer]

▸ To obtain nontrivial result, necessary to analytically continue the
energies of kp+1, . . . kq

▸ Compared limit of heptagon to results on the leading logarithmic
approximation (LLA) [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]

▸ Obtained new results for all terms beyond LLA
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Further checks: Multi-Regge limit
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Beyond seven particles

For N ≥ 8, Gr(N,8) cluster algebra becomes infinite

▸ However, in multi-Regge limit, Gr(N,8)→ AN−5 ×AN−5: finite!
[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]

▸ The two AN−5 factors not independent: Related by single-valuedness

Exploiting this analytic structure, and generalizing the BFKL-type disper-
sion formula to N -pts, obtained LLA contributions of MHV amplitudes
to 5 loops for any N , and NMHV amplitudes up to 4 loops and N = 8.
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Summary

In this presentation, we talked about the Steinmann Cluster Bootstrap for
constructing N = 4 SYM amplitudes at fixed-order/general kinematics,
and its rich interplay with the analysis of ‘integrable’ limits (OPE,MRK).

In particular, we saw that

▸ Cluster algebras are instrumental in identifying the function space
(arguments) in which the amplitude “lives”

▸ Steinmann relations on analytic structure of amplitude massively
reduce the size of this space ⇒ much simpler to single it out

▸ Surprizingly, 7-particle bootstrap more powerful than 6-particle one!
Minimal input ⇒ obtained symbols of 3-loop NMHV and 4-loop MHV
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Outlook

▸ Where does the surprising power of the Steinmann cluster bootstrap
come from? Relation to Yangian symmetry?

▸ Important to explore and test it at different MHV degree, higher
loops and more legs.

▸ Exploit our results to shed light on yet unknown key quantities in the
integrability-based OPE approach, such as the matrix part of
multi-particle pentagon transitions.

▸ Similar story with the multi-Regge kinematics and BFKL approach.

Ultimately, can the integrability of planar SYM theory, together with
a thorough knowledge of the analytic structure of its amplitudes, lead
us to the theory’s exact S-matrix?
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Imposing Constraints: Integrable Words

Given a random symbol S of weight k > 1, there does not in general exist
any function whose symbol is S. A symbol is said to be integrable, (or, to
be an integrable word) if it satisfies

∑
α1,...,αk

f
(α1,α2,...,αk)
0 d logφαj ∧ d logφαj+1 (φα1 ⊗⋯⊗ φαk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
omitting φαj ⊗ φαj+1

= 0 ,

∀j ∈ {1, . . . , k − 1}. These are necessary and sufficient conditions for a
function fk with symbol S to exist.

Example: (1 − xy)⊗ (1 − x) with x, y independent.

d log(1 − xy) ∧ d log(1 − x) = −ydx − xdy
1 − xy ∧ −dx

1 − x
= x

(1 − xy)(1 − x)dy ∧ dx

Not integrable
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Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate
particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

(pi + pi+1 +⋯ + pj−1)2 = (xj − xi)2 ∝ ⟨i−1 i j−1 j⟩→ 0

Singularities of generalised polylogarithm functions are encoded in the first
entry of their symbols.

First-entry condition: Only ⟨i−1 i j−1 j⟩ allowed in the first entry of S

Particularly for n = 7, this restricts letters of the first entry to a1j .

Define a heptagon symbol: An integrable symbol with alphabet aij that
obeys first-entry condition.
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MHV Constraints: Yangian anomaly equations

▸ Tree-level amplitudes exhibit (usual + dual) superconformal symmetry
[Drummond,Henn,Korchemsky,Sokatchev]

▸ Combination of two symmetries gives rise to a Yangian
[Drummond,Henn,Plefka][Drummond,Ferro]

▸ Although broken at loop level by IR divergences, Yangian anomaly
equations governing this breaking have been proposed [Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear
combination of d log⟨i j−1 j j+1⟩, which implies

Last-entry condition: Only ⟨i j−1 j j+1⟩ may appear in the last entry
of the symbol of any MHV amplitude.

Particularly here: Only the 14 letters a2j and a3j may appear in the last
symbol entry of R7.
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Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS normalized n-particle L-loop
MHV remainder function that it should smoothly approach the
corresponding (n−1)-particle function in any simple collinear limit:

lim
i+1∥i

R(L)
n = R(L)

n−1 .

For n = 7, taking this limit in the most general manner reduces the
42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet,
plus nine additional letters.

A function has a well-defined i+1 ∥ i limit only if its symbol is
independent of all nine of these letters.
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Computing Heptagon Symbols

Step 1 (Straightforward)
Form linear combination of all length-k symbols made of aij obeying
initial/Steinmann (+final) entry conditions, with unknown coefficients
grouped in vector X.

Step 2 (Challenging)
Solve integrability constraints, which take the form

A ⋅X = 0 .

Namely all weight-k heptagon functions will be the right nullspace of
rational matrix A.

“Just” linear algebra, however for e.g. 4-loop MHV hexagon A boils down
to a size of 941498 × 60182. Tackled with fraction-free variants of
Gaussian elimination that bound the size of intermediate expressions,
implemented in Integer Matrix Library and Sage. [Storjohann]
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NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the
(dual) superconformal symmetry of N = 4 SYM.

Φ = G++ηAΓA+ 1
2!η

AηBSAB+ 1
3!η

AηBηCεABCDΓ̄D+ 1
4!η

AηBηCηDεABCDG
−

AMHV
n = (2π)4δ(4)(

n

∑
i=1

pi) ∑
1≤j<k≤n

(ηj)4(ηk)4AMHV
n (1+... j−... k−... n+)+. . . ,

E ≡ A
NMHV
7

ABDS-like
7

= P(0)E0 + [(12)E12 + (14)E14 + cyclic] .

▸ E0,E12,E14 the transcendental functions we wish to determine

▸ P(0)
7 = 3

7 (12) + 1
7 (13) + 2

7 (14) + cyclic the tree-level superamplitude
▸ (67) = (76) ≡ [12345] Dual superconformal R-invariants, with

[abcde] =
δ0∣4(χa⟨bcde⟩ + cyclic)

⟨abcd⟩⟨bcde⟩⟨cdea⟩⟨deab⟩⟨eabc⟩ , χAi =
i−1

∑
j=1

⟨ji⟩ηAj .
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Results: 3-loop NMHV Heptagon

Loop order L = 1 2 3

Steinmann symbols 15 × 28 15×322 15×3192

NMHV final entry 42 85 226

Dihedral symmetry 5 11 31

Well-defined collinear 0 0 0

1. Independent R-invariants × functions

2. Relations between 15 × 42 R-invariants × final entries [Caron-Huot]

3. Cyclic: i→ i + 1 on all twistor labels and letters
Flip: i→ 8 − i on all twistor labels and letters, except a2i ↔ a3,8−i

4. We also need collinear limit of R-invariants
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Further check: Heptagon Wilson loop OPE

This is an expansion in two variables e−τ1 , e−τ2 near the double collinear
limit τ1 →∞, τ2 →∞.

Integrability predicts linear terms in e−τi to
all loops in integral form, e.g.[Basso,Sever,Vieira 2]

h =ei(φ1+φ2) e−τ1−τ2 ∫
dudv

(2π)2
µ(u)PFF (−u∣v)µ(v)×

× e−τ1γ1+ip1σ1−τ2γ2+ip2σ2 .

1. Computed its weak-coupling expansion to 3 loops, employing the
technology of Z-sums [Moch,Uwer,Weinzierl][GP’13][GP’14]

2. Expanded our symbol for R
(3)
7 in the same kinematics, relying on

[Dixon,Drummond,Duhr,Pennington]
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NMHV final entry conditions

[Caron-Huot]

(34) log a21, (14) log a21, (15) log a21, (16) log a21, (13) log a21, (12) log a21,

(45) log a37, (47) log a37, (37) log a37, (27) log a37, (57) log a37, (67) log a37,

(45) log
a34

a11
, (14) log

a34

a11
, (14) log

a11a24

a46
, (14) log

a14a31

a34
,

(24) log
a44

a42
, (56) log a57, (12) log a57, (16) log

a67

a26
,

(13) log
a41

a26a33
+ ((14) − (15)) log a26 − (17) log a26a37 + (45) log

a22

a34a35
− (34) log a33 ,
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