High-Energy Gamma Rays

M. Punch APC – CNRS/IN2P3

The Gamma-ray World

Multi-messenger observations of the Cosmos

cosmic accelerator

protons $E > 10^{19} eV (10 Mpc)$

gammas (z < 1)

protons E<10¹⁹ eV

protons/nuclei:

photons: neutrinos: Deviated by magnetic fields, Absorbed by radiation field (GZK) Absorbed by dust & radiation field (CMB) Difficult to detect

- neutrinos

Us

⇒ Three "astronomies" possible...

Cherenkov Imaging Technique

Current sensitive ACT Detectors: with Standard Candle, The Crab Nebula

- H.E.S.S.
 - @ Large Zenith angle 27 σ/\sqrt{h} (6 γ/min)
 - now up to 80 TeV
- MAGIC
 - 19 σ/√ h
 - Curvature seen
 - Peak: 77±47 GeV
- VERITAS
 - 31 σ/\sqrt{h} with 3 tels
- MILAGRO (now shutdown) ^{*}_m
 - ~2 σ in 50 days
 - First spectrum from ASM
- ARGO YBJ
 - 5 σ in 50 days

Current sensitive ACT Detectors: with Standard Candle, The Crab Nebula

- H.E.S.S.
 - @ Large Zenith angle 27 σ/\sqrt{h} (6 γ/min)
 - now up to 80 TeV
- MAGIC
 - 19 σ/√ h
 - Curvature seen
 - Peak: 77±47 GeV
- VERITAS
 - 31 σ/\sqrt{h} with 3 tels
- MILAGRO (now shutdown)
 - ~2 σ in 50 days
 - First spectrum from ASM
- ARGO YBJ
 - 5 σ in 50 days
- Updated with Fermi LAT

Latest Satellite Detector: FermiLAT

Anticoincidence Detector:

- 89 scintillator tiles
- First step in reduction of large charged cosmic ray background
- Segmentation reduces self veto at high energy

Overall LAT Design:

- 4x4 array of identical towers
- 3000 kg, 650 W (allocation)
- 1.8 m \times 1.8 m \times 1.0 m
- 20 MeV \rightarrow 300 GeV

Electronics System:

 Includes flexible, highly-efficient, multi-level trigger

Thermal Blanket:

And micro-meteorite shield

Launched 11 June 2008!

Hodoscopic Csl Calorimeter:

- Segmented array of 1536 CsI(TI) crystals
- 8.5 X0: shower max contained <100 GeV
- Measures the incident gamma energy
- Rejects cosmic ray backgrounds

The VHE Gamma-Ray Sky

From 1 source in 1988, 2 in 1992, 10 in ~2000
 Today > 60 published sources
 SNRs, AGNs, Binaries, PWNs, WR, Starburst, UFOs...

Current VHE Source Numbers

Class	2003	2005	2007	2009
PWN (Pulsar Wind Nebula)	1	6	18	23
SNR (Supernova Remnant)	2	3	7	11
Binary		2	4	5
Diffuse		2	2	2
AGN (Active Galactic Nucleus)	7	11	19	24
WR (Wolf-Rayet)				3
Starburst Galaxy				2
UnId (unidentified)	2	6	21	26
Total	12	30	71	96

2009: Including 7 Milagro "source candidates"

H.E.S.S. Galactic plane survey

ICRC 2009

H.E.S.S. Galactic plane survey

First publication from $-30^{\circ} < I < 30^{\circ}$ gave Sources > 4 sigma: 16 new (18 total), ApJ 636 (2006) 777 After extension $-85^{\circ} < I < 60^{\circ}$, currently **52 sources**.

VERITAS survey of Cygnus region

140h of observations (112 in survey, rest in follow-up)
Source search with r=0.11°, 0.24° regions
No hotspots above 5σ post-trials in base survey
Limits 3% Crab flux for point sources at points below 3σ
8.5% Crab flux for extended 0.2° sources

VERITAS survey of Cygnus region

140h of observations (112 in survey, rest in follow-up)
Source search with r=0.11°, 0.24° regions
No hotspots above 5σ post-trials in base survey
Limits 3% Crab flux for point sources at points below 3σ
8.5% Crab flux for extended 0.2° sources

VERITAS survey of Cygnus region

Confirmed by H.E.S.S./MAGIC

140h of observations (112 in survey, rest in follow-up)
Source search with r=0.11°, 0.24° regions
No hotspots above 5σ post-trials in base survey
Limits 3% Crab flux for point sources at points below 3σ
8.5% Crab flux for extended 0.2° sources

MILAGRO survey, Northern sky

Milagro Sources and Candidates

- 7 year map γ /hadron cut raises median energy to 20 TeV γ /hadron cut raises
- 3 new sources significant post trials
- 4 'hotspots'
- Interesting regime of hard spectrum/ extended sources

Milagro Sources and Candidates

- 7 year map
- γ /hadron cut raises
 median energy to 20 TeV
- 3 new sources significant^a post trials
- 4 'hotspots'
- Interesting regime of hard spectrum/ extended sources
- NEW analysis:
- Comparison with Fermi BSL (bright source list), 205 srcs
- In BSL, 14 are correlated with MILAGRO excesses (>5σ that this correlation is not by chance)

FermiLAT: 3 month High Confidence Source List BSL

- 205 sources with significance > 10σ (EGRET found fewer than 30)
- Typical 95% CL error radius is <10 arcmin (Abdo et al. 2009 ApJS, 183, 46)

Supernova Remnants

- Long held to be the likely acceleration sites of the (hadronic) galactic cosmic rays
 - Diffusive shock acceleration
 - Require ~10% efficiency of kinetic energy to CR acceleration

Several young objects well studied in X-ray synchrotron radiation

 Thin filaments suggest rapid cooling of electrons: B_{shock} >> B_{ISM} Matter and photon fields

Gamma-Ray Morphology of SNRs

RX J1713.7-3946 First-ever resolved γ-ray source Strong correlation with X-rays: ~80% RX J0852.0-4622 (Vela jr) Thin shell resolved with HESS Correlation with X-rays: ~65% + Correlation with Radio

Angular resolution < 0.1°

Gamma-Ray Morphology of SNRs

Latest addition:

SN 1006

expands in uniform environment

above the Galactic plane

1% Crab flux

Good correlation between VHE g-rays an X-rays

Similar spectra (index -2.4) for both regions of shell seen

2 – 4.5 keV X-rays VHE γ -rays VHE γ -rays VHE γ -rays

Comparison of Emission models

For RX J1713, γ -rays detected beyond 20 TeV \Rightarrow particles up to >100 TeV But is the emission Hadronic or Leptonic ??? (link to the origin of Galactic CR?)

• Leptonic scenario implies a low magnetic field

Hadronic scenario requires relatively dense medium

Other Supernova Remnants

- RCW 86, young (~1-2 ky ?) shell-type SNR
 H.E.S.S. 9.4 σ in 30 hours, E^{-2.5 ± 0.1} spectrum
 - Probably the third TeV SNR shell

- W28, old (>10⁴ year) SNR
 - H.E.S.S. TeV emission coincident with molecular clouds
 - First evidence for p-p in SNR/Cloud interactions

Other Supernova Remnants (2)

- IC433, 30kyr old, SNR
 - Maser showing shocked gas + PWN at edge of remnant
 - MAGIC 5.7σ in 29 h Steep spectrum E ^{-3.1±0.3}
 - VERITAS 7.1σ in 16 h Consistent position
 - Position compatible with Maser
 - Interaction of SNR-accelerated hadrons?
- Cas A, young, bright radio/X-ray shell
 - MAGIC confirmation, 5.2σ in 47 h
 - Consistent with HEGRA measurement, Γ = 2.4 ± 0.2

Supernovae interacting with clouds: e or p?

VERITAS 2007, 2008: arXiv:0810.0799

Pulsar Wind Nebulae

Major galactic TeV source population

- Associated with relatively young (<10⁵ year old) and energetic pulsars
- Extended sources, 10s of pc
- Often displaced from pulsar (expansion into inhomogenous medium)
- Generally believed that we see inverse Compton emission of 1-100 TeV electrons

PWN Energy Dependant Morphology

- HESS J1825-137 associated with energetic pulsar
- Spectral steepening seen away from the pulsar
- Very likely this is evidence for cooling of electrons in the Nebula
 - Seen in several X-ray PWN
- A first in gamma-ray astronomy!

Many other VHE Pulsar Wind Nebulae

Many other candidates, e.g. PSR J1846-0258 in Kes 75, G21.5-0.9, HESS J1357-645, J1718-385, J1809-193, J1912+102, PSR B1706-44, Boomerang...

Boomerang / PSR J2229+6114 Black contours: radio, purple: CO Also: MGRO source

> S. Wakely ICRC 2009

Most distant: N 157B / PSR J0537-6910 in LMC

ICRC 2009

LMC seen in HE (EGRET/FermiLAT)

-HE: resolved for the first time! Significant part of the radiation (but not all) coming from 30 Doradus (containing SN1987A).

Pulsar (pulsation) detections

- FermiLAT is a "pulsar detection machine" !
- 46 gamma-ray pulsars !!! (6 were known previous to Fermi flight)
 - 16 previously unknown pulsars (orange).
 - Gamma-ray emission from known radio pulsars (magenta, cyan)
 - Gamma-ray emission from known or suspected gamma-ray pulsars (green)

Pulsar emission, the framework

Diego F. Torres ICRC 2009 Rapporteur Talk

SR

0

Log Energy (MeV)

0

0

Log Energy (MeV)

ICS

kT

-3

SR

-3

-3

kT

SR

CR

6

ICS

6

6

ICS

CR

3

CR

3

3

1st VHE detection of pulsar's pulsed emission

MAGIC, Science 322, 2008 using special low-energy trigger

Spectral Fit: Power-law with an exponential cutoff

F: 8.8±1.1+2.9-1.1 M: 17.7±2.8±5

Power law with Hyper-exponential cutoff rejected > 5σ

Cutoff energy limits the height of the emission (to avoid absorption) to be beyond 4 / 6 R_{*}

... leading to preference for outer gap model

Emission from polar cap and slot gap cut off around 10 GeV due to pair production

Other Galactic sources

No time to discuss !! :

- Binaries, a laboratory to study particle acceleration "periodically":
 - LS5039, superbly measured orbital period (4day) at VHE
 - LS I +61 303 (26day)
 - PSR B1259-63, long period (3.5yrs), new results on 2nd orbit
 - Cyg X-1 awaiting confirmation
 - HESS J0632+057, a possible new candidate
 - Fermi detections of LS5039 and LS I +61 303, with anti-correlation between GeV-TeV!
- Young Stellar Clusters / star forming regions
 - containing Wolf-Rayet and OB stars
 - Emission due to collective stellar winds, colliding winds of binaries, Supernovae, Pulsar Wind Nebulae ... ?

Extragalactic sources

- Historically, the "second VHE source"
- Majority of extragalactic sources are distant AGNs (Active Galactic Nuclei), made visible by Doppler beaming/boosting from jet

Strong relativistic boosting (~ factor δ^4) favours detection of blazars/BL Lac

BL Lac (HBL, LBL) and FSRQ

- More recently at VHE, detections also of nearby "off-axis" AGNs
- This year, detection of new nearby extragalactic class: "Starburst galaxies"

Extragalactic sources

Accumulating catalogue

- Nearby observations test source emission models (e.g. short time-scale variation of M 87 and PKS 2155-304 test emission region size and location)
- Observation of "Distant" (z~0.2-0.3...) sources at VHE probes

Cosmic Infra-Red background produced by first stars and galaxies

Key questions for Blazars

- Emission mechanisms (especially for high energy component)
 - Leptonic (IC of synchrotron or external photons) vs hadronic ($\pi_0 \rightarrow \gamma \gamma$, proton synchrotron)
- Emission location
 - Single zone for all wavebands (completely constraining for simplest leptonic models)
 - Opacity effects and energy-dependent photospheres
- Particle acceleration mechanisms
 - Shocks, Blandford-Znajek
- Jet composition
 - Poynting flux, leptonic, ions
- Jet confinement
 - External pressure, magnetic stresses
- Accretion disk—black hole—jet connection
- Blazars as probes of the extragalactic background light (EBL)
- Effect of blazar emission on host galaxies and galaxy clusters

Extragalactic VHE sample (july 2009)

- 25 blazars :
 - 19 HBL
 - 4 IBL and 1 LBL
 - 1 FSRQ

(High-frequency peaked BL Lac) (Intermediate and Low-frequency peaked BL Lac) (Flat Spectrum Radio Quasar)

- 2 (or 3) radio galaxies
- 2 Starbursts
- LMC

Number of TeV sources per type : highly peculiar !

AGN Redshifts : from 0.00183 to 0.536

(+ 3 uncertain)

TeV variability : already seen in 18 sources (despite poor temporal coverage) « Shortest observed time scales » minutes : 3 sources (flares)

minutes :3 sources(fillday :6 sourcesweek :1 sourcemonth :3 sourcesyear :5 sources

BL Lacs

Jets aligned very close to line of sight

- Beaming allows us to see very distant objects with modest sensitivity
- Characteristic double peaked spectrum

Extragalactic HE catalogue

Variable sources in the FermiLAT Bright Source List

- Based on 1 week time scales
- 68/205 show variability with probability > 99%
- Isotropic distribution \Rightarrow blazars

Extragalactic HE catalogue

FermiLAT skymap: Some of the brightest AGNs are clearly visible

HE Blazar Population Properties

- Aug/Sep/Oct high confidence list: 205 sources with >10 σ detection
- 132 with |b| > 10° (7 pulsars, 9 unid)
 - 116/125 are bright, flat spectrum radio sources
 - 58 FRSQs, 42 BL Lacs, 4 Unc., 2 radio galaxies (+10 low CL associations)
 - CRATES (all-sky radio catalogue), CGRaBS (all-sky optical spectra), BZCAT (multifreq. blazar catalogue)
 - Note also, 3 unidentified transients in Galactic plane, not associated with AGN

arXiv:0902.1559 Abdo et al, ApJ

HE Blazar Population Properties

- 42% BL Lac fraction (vs 23% for EGRET), 10 HBLs
- 8 TeV Blazars

VHE example: Flare From PKS 2155-304

- Best measured rise-time: 173 ± 28 s
- Two orders of magnitude brighter than typical state
- Time-scale probes size of emitting region if causality applies
- Such measurements also used to test Quantum Gravity (LIV)

VHE examples: PKS 2155-304 flare, W Com

Many efforts to fit, e.g. Example of modelling light curves and SED by time dependent SSC scenario, with 5 compact components in jet with slightly different parameters + a more extended slowly evolving component

Many other examples, on this and several other sources

- MWL campaigns (with X-rays, radio, FermiLAT)
- Long-term variability and spectral evolution studies
- Detailed MWL spectral studies

Extragalactic Background Absorption

Effect of EBL absorption:

- modifies intrinsic spectral index
- introduces cut-offs or roll-overs,
- renders extremely distant sources undetectable at highest energies

Extragalactic Background Absorption

 VHE detectors... 100 GeV threshold implies can detect z < 1 (but need very luminous sources for larger z !)

EBL Limits from VHE Spectra

Radiogalaxy example: M 87

- Famous nearby radio galaxy
 - 16 Mpc, Jet angle ~30°
- Discovered by HEGRA, confirmed by HESS, VERITAS
- HESS 2-day variability
 - Emission region
 - <58 R_s
- Emission site?
 - Knot HST1?
 - Very close to SMBH?
- Mechanism?
 - Hard spectrum Γ = 2.2 is a challenge for 'standard' models

M87 joint observing campaign 2008

New source category: Starburst galaxies

- M82, the prototype starburst galaxy
 - Distance ~ 3.9 Mpc
 - Diameter ~ 1'
 - SMBH ~ 3 x 107 Msolar
 - Interacts with group of galaxies (M81)
 - HST: 200 massive star clusters
 - High supernova rate ~ 0.1 0.3 per year
 - High gas density 150 particles/cm3
- ⇒ excellent candidate for cosmic ray interactions & gamma ray emission.

- NGC 253: Closest spiral galaxy outside the local group
 - Distance 2.5 3.9 Mpc
 - Starburst nucleus
 - Supernova rate in central ~100 pc comparable to the rate in all Milky way
 - Central gas density almost three orders of magnitude larger than the average in Milky way
 - Luminous in infrared (dust reprocesses star light)
 - Predicted gamma-ray emitter
- probing paradigm that SNRs are origin of CR

Paglione et al. 1996; Aharonian et al. 2005, Domingo & Torres 2005, Rephaeli et al. 2009

New source category: Starburst galaxies

M82, VERITAS measurements

- 2007-09: 137 h live time. Only dark time (no moonlight).
- 5.0 σ excess (pre-trials), 4.8 σ (post-trials).
- E > 700 GeV (LZA observations). Point-like.

152

151

150

148

147

Right Ascension [Degrees]

Among weakest VHE sources ~0.9% Crab

Fit Range: 875 GeV to ~5 TeV

Fit to dN/dE ~ (E / TeV)-F

NGC 253: H.E.S.S. measurement

- Deep observations with the full array, Campaign in 2005, 2007, 2008
- 119 hours of good livetime
- Careful data-quality selection
- Observations close to zenith to achieve low energy threshold
- Significance 5.2 σ , 247 excess events, pt-like

Right Ascension

F(>0.22 TeV) = (5.5 ±1.0_{stat}±2.8_{svs}) x 10¹³ cm⁻²s⁻¹ (0.3% Crab)

Faintest source detected so far in VHE gamma rays H.E.S.S. Declinatic Declinatic 100 VEBITAS: M82 120 $\Gamma = 2.5 \pm 0.6$ 100 60 80 60 **Declination** 60 -25 20 70 40 **NGC 253** 20° -25.5 Benbow, Domainko, PSF 0 **ICRC2009 ICRC2009** 69 -20 -26 -40PSF Model analysis 00h52m 00h50m 00h48m 00h46m 00h44m

Threshold 220 GeV

Comparison with model predictions underway, for understanding of CR production and propagation,

$x^2 = 0.1, 1 \text{ NDF}; P(x^2) = 0.7$

Gamma-Ray Astronomy

So many results, too many to tell No mention of Diffuse emssion, GRBs, Dark Matter searches, etc...

- Gamma-ray astronomy gives us a glimpse into the most energetic regions of the Universe, leading to new insights
- VHE γ -ray astronomy is currently a *very* active field
- Number of sources is rising rapidly with also precision measurements of the brighter sources
- HE field has got a new lease of life with FermiLAT & AGILE

 Future is assured with MAGIC-II and HESS-II coming on-stream (2009/2010) and the preparation of the CTA and AGIS future large-array projects which will make surveys and deep studies more readily achievable

That's all folks...