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Fig. 6.— Joint two-dimensional marginalized constraint on the vacuum energy density, ΩΛ, and the spatial curvature parameter, Ωk
(§ 3.4.3). The contours show the 68% and 95% CL. (Left) The WMAP-only constraint (light blue) compared with WMAP+BAO+SN (pur-
ple). Note that we have a prior on ΩΛ, ΩΛ > 0. This figure shows how powerful the extra distance information is for constraining Ωk. (Mid-
dle) A blow-up of the region within the dashed lines in the left panel, showing WMAP-only (light blue), WMAP+HST (gray), WMAP+SN
(dark blue), and WMAP+BAO (red). The BAO provides the most stringent constraint on Ωk. (Right) One-dimensional marginalized
constraint on Ωk from WMAP+HST, WMAP+SN, and WMAP+BAO. We find the best limit, −0.0178 < Ωk < 0.0066 (95% CL), from
WMAP+BAO+SN, which is essentially the same as WMAP+BAO. See Fig. 12 for the constraints on Ωk when dark energy is dynamical,
i.e., w "= −1, with time-independent w. Note that neither BAO nor SN alone is able to constrain Ωk: they need the WMAP data for lifting
the degeneracy. Note also that BAO+SN is unable to lift the degeneracy either, as BAO needs the sound horizon size measured by the
WMAP data.

The curvature parameter at the beginning of inflation
must be below of order unity, as inflation would not begin
otherwise. However, it is plausible that Ωbegin

k was not
too much smaller than 1; otherwise, we have to explain
why it was so small before inflation, and probably we
would have to explain it by inflation before inflation. In
that case Ntot would refer to the sum of the number
of e-foldings from two periods of inflation. From this
argument we shall take Ωbegin

k ∼ 1.
The reheating temperature can be anywhere between

1 MeV and 1016 GeV. It is more likely that it is between
1 TeV and 108 GeV for various reasons, but the allowed
region is still large. If we scale the result to a reasonably
conservative lower limit on the reheating temperature,
Tend ∼ 1 TeV, then we find, from our limit on the cur-
vature of the universe,

Ntot > 36 + ln
Tend

1 TeV
. (31)

A factor of 10 improvement in the upper limit on |Ωbegin
k |

will raise this limit by ∆Ntot = 1.2.
Again, Ntot here refers to the total number of e-foldings

of inflation. In § 3.3 we use N ≡ ln(aend/aWMAP ), which
is the number of e-foldings between the end of inflation
and the epoch when the wavelength of fluctuations that
we probe with WMAP left the horizon during inflation.
Therefore, by definition N is less than Ntot.

3.5. Primordial non-Gaussianity

3.5.1. Motivation and Background

In the simplest model of inflation, the distribution of
primordial fluctuations is close to a Gaussian with ran-
dom phases. The level of deviation from a Gaussian
distribution and random phases, called non-Gaussianity,
predicted by the simplest model of inflation is well below
the current limit of measurement. Thus, any detection of
non-Gaussianity would be a significant challenge to the
currently favored models of the early universe.

The assumption of Gaussianity is motivated by the
following view: the probability distribution of quan-

tum fluctuations, P (ϕ), of free scalar fields in the
ground state of the Bunch-Davies vacuum, ϕ, is a
Gaussian distribution; thus, the probability distribu-
tion of primordial curvature perturbations (in the co-
moving gauge), R, generated from ϕ (in the flat
gauge) as R = −[H(φ)/φ̇0]ϕ (Mukhanov & Chibisov
1981; Hawking 1982; Starobinsky 1982; Guth & Pi 1982;
Bardeen et al. 1983), would also be a Gaussian distribu-
tion. Here, H(φ) is the expansion rate during inflation,
and φ0 is the mean field, i.e., φ = φ0 + ϕ.

This argument suggests that non-Gaussianity can be
generated when (a) scalar fields are not free, but have
some interactions, (b) there are non-linear corrections to
the relation between R and ϕ, and (c) the initial state is
not in the Bunch-Davies vacuum.

For (a) one can think of expanding a general scalar
field potential V (φ) to the cubic order or higher, V (φ) =
V̄ + V ′ϕ + (1/2)V ′′ϕ2 + (1/6)V ′′′ϕ3 + . . .. The cu-
bic (or higher-order) interaction terms can yield non-
Gaussianity in ϕ (Falk et al. 1993). When perturba-
tions in gravitational fields are included, there are many
more interaction terms that arise from expanding the
Ricci scalar to the cubic order, with coefficients contain-

ing derivatives of V and φ0, such as φ̇0V ′′, φ̇0
3
/H , etc.

(Maldacena 2003).
For (b) one can think of this relation, R =

−[H(φ)/φ̇0]ϕ, as the leading-order term of a Taylor
series expansion of the underlying non-linear (gauge)
transformation law between R and ϕ. Salopek & Bond
(1990) show that, in the single-field models, R =

4πG
∫ φ0+ϕ

φ0
dφ (∂ lnH/∂φ)−1. Therefore, even if ϕ is pre-

cisely Gaussian, R can be non-Gaussian due to non-linear
terms such as ϕ2 in a Taylor series expansion of this re-
lation. One can write this relation in the following form,
up to second order in R,

R = RL −
1

8πG

(

∂2 lnH

∂φ2

)

R2
L, (32)

where RL is a linear part of the curvature perturba-


