

Hadron Calorimeters Forward Calorimeters

S.C. Air Core

Mass Effects at Higher Orders of QCD

M. Czakon

RWTH Aachen University

Inner Detector

Muon Shieldings

Collaborators: P. Bärnreuther A. Mitov, G. Sterman M. Beneke, P. Falgari, C. Schwinn

QCD: The Modern View of The Strong Interactions Berlin, October 4th – 9th 2009 ATLAS

Forward Calorimeters

0. Top Motivation

A. Factorization and Divergences

Hadron

B. Factorization and Resummation

Inner Detector

C. Fixed Orders

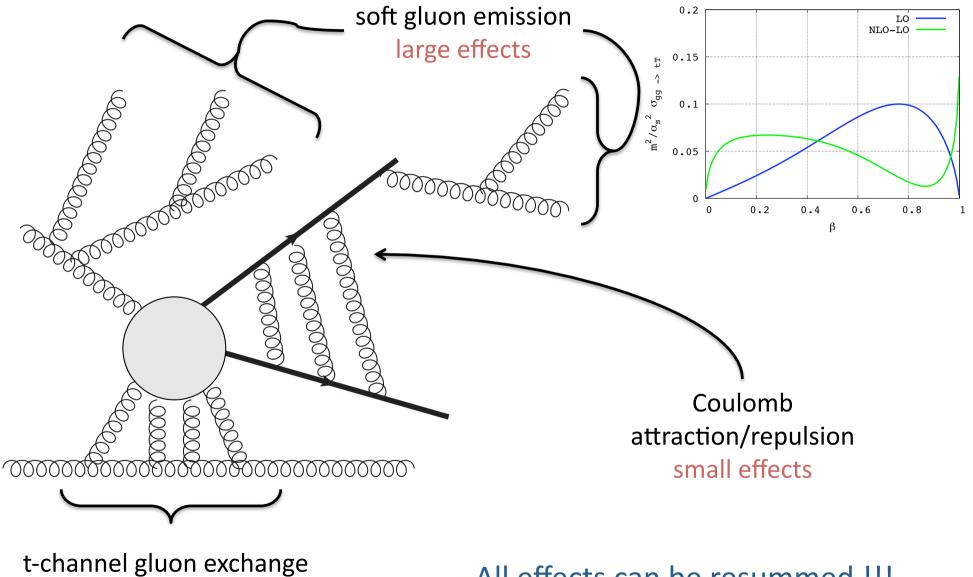
M Calorimeters

Muon Shieldings

Top Quark Pairs at the LHC

- Total cross section numbers published by three groups
 - Moch, Uwer '08
 - Cacciari, Frixione, Mangano, Nason, Ridolfi '08
 - Kidonakis, Vogt '08
- No consensus on the error estimate !!!
- We expect a common understanding within the next few months
- New contributions all at or below 1% level !!!

The Physics

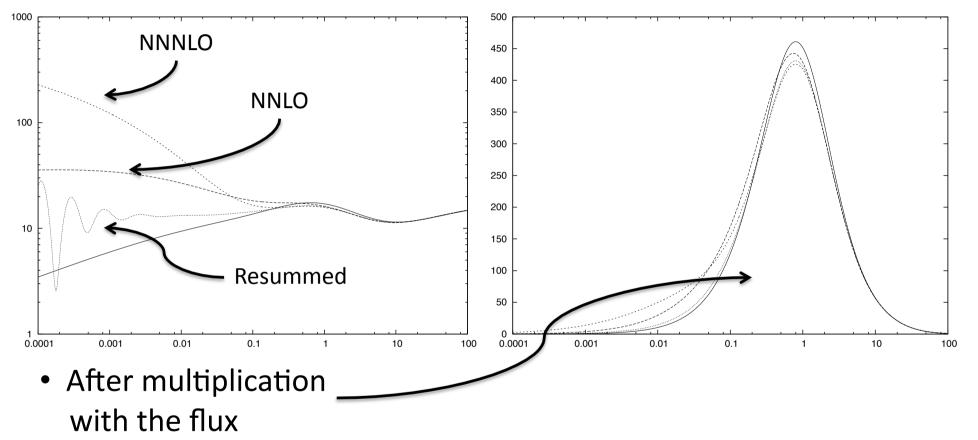


negligible effects

All effects can be resummed !!!

Do We Need Resummation ?

• Partonic gg cross section



• The third order of the expansion contributes less than 1%

NO, WE DON'T !!!

Fixed Order NNLO Effects

$$\begin{aligned} \hat{\sigma}_{gg \to t\bar{t}}^{(1)} &= \hat{\sigma}_{gg \to t\bar{t}}^{(0)} \left\{ 96 \ln^2 \beta - 9.5165 \ln \beta + 35.322 + 5.1698 \frac{1}{\beta} \right\}, \\ \hat{\sigma}_{gg \to t\bar{t}}^{(2)} &= \hat{\sigma}_{gg \to t\bar{t}}^{(0)} \left\{ 4608 \ln^4 \beta - 1894.9 \ln^3 \beta + \left(-3.4811 + 496.30 \frac{1}{\beta} \right) \ln^2 \beta \right. \\ &+ \left(3144.4 + 321.17 \frac{1}{\beta} \right) \ln \beta + 68.547 \frac{1}{\beta^2} - 196.93 \frac{1}{\beta} + C_{gg}^{(2)} \right\} \end{aligned}$$

- Pick a guess at $C_{gg}^{(2)}$... Why not ≈ 1000 ?
- The correction is relative to the LO value (no need to integrate) $\left(\frac{\alpha_s}{4\pi}\right)^2 \hat{\sigma}_{gg \to t\bar{t}}^{(0)} C_{gg}^{(2)} \approx \left(\frac{10\%}{12}\right)^2 \hat{\sigma}_{gg \to t\bar{t}}^{(0)} 1000 \approx 10\% \ \hat{\sigma}_{gg \to t\bar{t}}^{(0)}$
- Since the NLO is a further 50% away and there is another channel, the total is about 5%
- In conclusion: NNLO could be anything around 5% !!!

Factorization for Amplitudes

- By the factorization theorem every amplitude can be decomposed into three functions
 - jet
 - soft
 - hard jet function collinear/mass singularities $|\mathcal{M}_{p}\rangle = \mathcal{I}_{0}^{[p]} \left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2}), \varepsilon\right) \mathcal{S}_{0}^{[p]} \left(\{k_{i}\}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2}), \varepsilon\right) |\mathcal{H}_{p}\rangle$ soft function coherent color flow hard part IR finite

Divergences at Two Loops

- Ambiguities are fixed by requiring the jet functions to be square roots of form factors for example
- The soft function can be obtained from renormalization group arguments

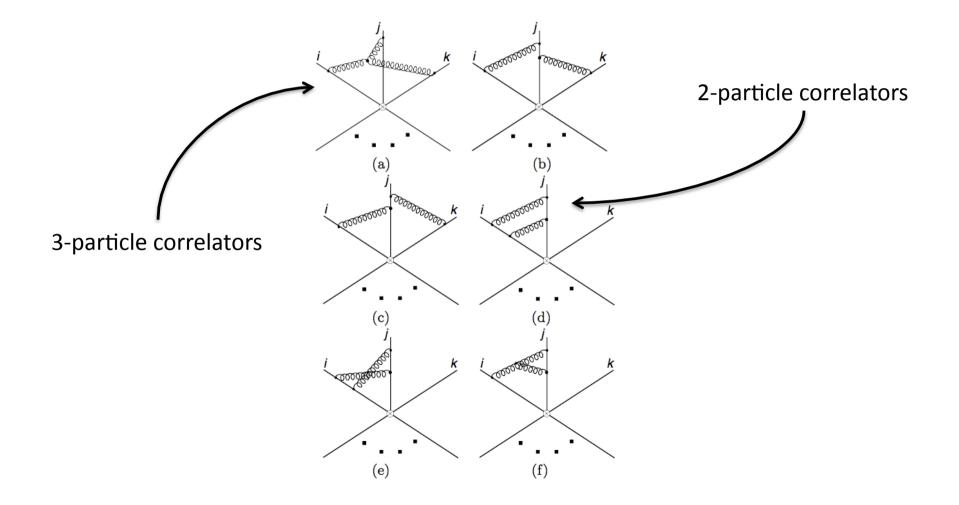
$$\mathbf{s}(\epsilon,\dots) = \mathcal{P} \exp \left\{ -\int_0^1 rac{dx}{1-x} \; \mathbf{\Gamma}_S \left(ar{lpha}_s \left[(1-x)^2 Q^2
ight]
ight)
ight\}$$

• The divergences are then

$$\begin{split} M^{(1)}(\epsilon) &= \left\{ \frac{1}{\epsilon} \Gamma_1 + J^{(1)} \right\} M^{(0)} + \mathcal{O}(\epsilon^0) \,, \\ M^{(2)}(\epsilon) &= \left\{ J^{(2)} - \left(J^{(1)} \right)^2 + \frac{1}{\epsilon} \left(-J^{(1)} \Gamma_1 + \Gamma_2 \right) + \frac{1}{\epsilon^2} \left(-\frac{1}{2} (\Gamma_1)^2 - \frac{\beta_0}{4} \Gamma_1 \right) \right\} M^{(0)} \\ &+ \left\{ \frac{1}{\epsilon} \Gamma_1 + J^{(1)} \right\} M^{(1)} + \mathcal{O}(\epsilon^0) \,. \end{split}$$

How to Get the Anomalous Dims?

• The soft anomalous dimensions are obtained from calculations in the eikonal approximation (scattering of Wilson lines)



How to Get the Anomalous Dims?

 As long as only two particle correlations are needed it is sufficient to use form factors and similar results at two loops

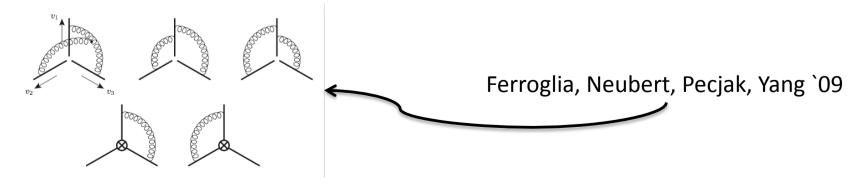
$$\begin{split} \Gamma_{S}^{(2)} &= \frac{1}{2} \sum_{(i \neq j)=1}^{n} T_{i} \cdot T_{j} \ \frac{K}{2} \ \ln\left(-\frac{\mu^{2}}{\sigma_{ij}}\right) + \frac{1}{2} \sum_{(i \neq j) \in \mathcal{N}_{m}} T_{i} \cdot T_{j} \ P_{ij}^{(2)} + 3E \ \text{terms} \\ P^{(2)} &= \frac{K}{2} P^{(1)} + P^{(2),\text{m}} \\ P^{(2),\text{m}}(x) &= \frac{C_{A}}{(1-x^{2})^{2}} \left\{ -\frac{(1+x^{2})^{2}}{2} \operatorname{Li}_{3}(x^{2}) + \left(\frac{(1+x^{2})^{2}}{2} \ln(x) - \frac{1-x^{4}}{2}\right) \operatorname{Li}_{2}(x^{2}) \right. \\ &+ \frac{x^{2}(1+x^{2})}{3} \ln^{3}(x) + x^{2}(1-x^{2}) \ln^{2}(x) \\ &+ \left(-(1-x^{4}) \ln\left(1-x^{2}\right) + x^{2}(1+x^{2})\zeta_{2} \right) \ln(x) + x^{2}(1-x^{2})\zeta_{2} + 2x^{2}\zeta_{3} \right\}, \end{split}$$

Others obtained this result with different methods

Kidonakis `09(trivial color case)Becher, Neubert `09 (general, based on old results by Korchemsky and Radyushkin)

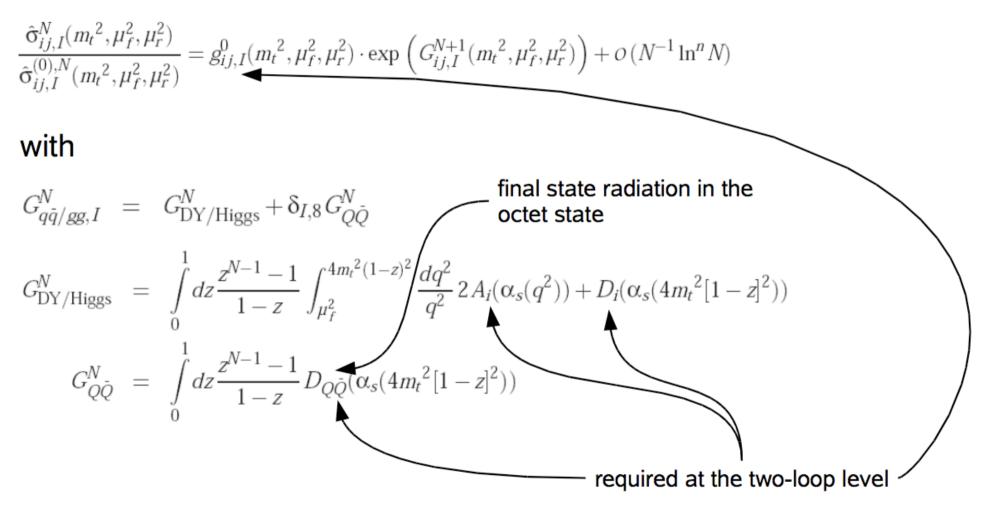
ATLAS Checks and Predictions

- Checked the qq -> tt divergences against explicit calculation MC, Mitov, Sterman `09
- Given explicit formulae for divergences in both channels Ferroglia, Neubert, Pecjak, Yang `09
- Confirmed the gg -> tt poles Baernreuther, MC, in preparation
- The divergences are in priciple known for any massive 2-loop amplitude, thanks to the evaluation of triple correlators



Total Cross Section Resummation

• Until recently resummation in Mellin space was written as



• The requirements stand for NNLL resummation

The Matching Story

- For years matching coefficients taken from a numerical evaluation of the cross sections, color dependence ignored
- First determined correctly in the context of Coulomb corrections in Hagiwara, Sumino, Yokoya `08
- Determination based on quarkonium production results Kühn, Mirkes `93 (singlet)
 Petrelli et al. `98 (octet, incorrect, missing decoupling constant)
- Importance for soft gluon resummation first realised in MC, Mitov `08
- Values confirmed by direct evaluation, the largest numerical effect discovered until now

The Soft Function

• Same factorization as for amplitudes but in Mellin space

 $J_1(N, \alpha_s(\mu^2)) \dots J_k(N, M/\mu, m/\mu, \alpha_s(\mu^2))$

× Tr
$$\left[\mathbf{H}^P\left(\frac{M^2}{\mu^2}, \frac{m^2}{\mu^2}, \alpha_s(\mu^2)\right) \mathbf{S}^P\left(\frac{N^2\mu^2}{M^2}, \frac{M^2}{m^2}, \alpha_s(\mu^2)\right)\right] + \mathcal{O}(1/N)$$

• The soft function satisfies the same renormalization group equation for cross sections and amplitudes, but the solution is different

$$\overline{\mathcal{P}} \exp\left\{ \int_{0}^{1} dx \frac{x^{N-1}-1}{1-x} \Gamma_{S}^{\dagger} \left(\beta_{i} \cdot \beta_{j}, \alpha_{s} \left((1-x)^{2} M^{2} \right) \right) \right\}$$

$$\times \mathbf{S} \left(1, \beta_{i} \cdot \beta_{j}, \alpha_{s} \left(M^{2}/N^{2} \right) \right)$$

$$\times \mathcal{P} \exp\left\{ \int_{0}^{1} dx \frac{x^{N-1}-1}{1-x} \Gamma_{S} \left(\beta_{i} \cdot \beta_{j}, \alpha_{s} \left((1-x)^{2} M^{2} \right) \right) \right\}$$
same anomalous dimension to be expanded at threshold

• The boundary is crucial for NNLL

$$\mathbf{S}(1,\alpha_s(Q^2/N^2)) = \mathbf{S}^{(0)} \left[1 + \frac{\alpha_s(Q^2/N^2)}{\pi} C_A\begin{pmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} + \dots \right]$$

$$= \mathbf{S}^{(0)} \left[1 + C_A \frac{\alpha_s(\mu^2)}{\pi} \left\{ 1 + \frac{\alpha_s(\mu^2)}{\pi} \frac{\beta_0}{4} \ln\left(\frac{N^2\mu^2}{Q^2}\right) \right\} \begin{pmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} + \dots \right]$$

$$MC, \text{ Mitov, Sterman}$$

`09

NNLL Resummation

• The resummation looks now rather like

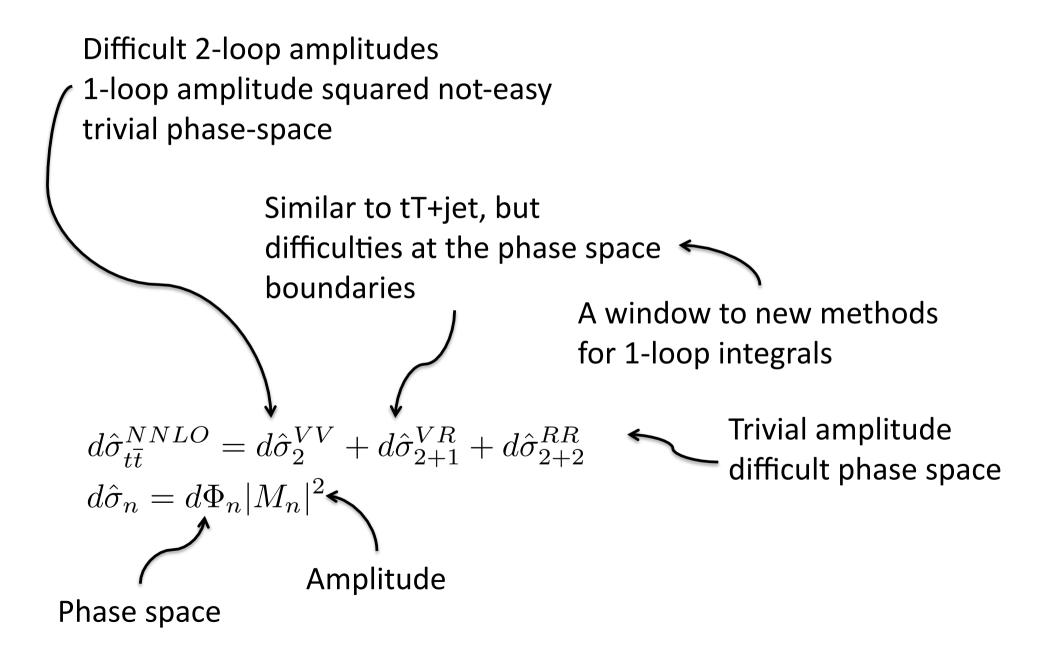
$$\begin{aligned} \frac{\sigma^{P}(N,m^{2},\mu^{2})}{\sigma^{P}_{\text{Born}}(N)} &= \operatorname{Tr}\left[\hat{\mathbf{H}}^{P}(m^{2},\mu^{2})\mathbf{S}_{P}^{(0)}\left[1 + \frac{\alpha_{s}\left(Q^{2}/N^{2}\right)}{\pi} C_{A} \mathbf{\Pi}_{8}\right] \exp\left\{\int_{0}^{1} dx \frac{x^{N-1}-1}{1-x} \right. \\ & \left. \left. \left. \left(\int_{\mu_{F}^{2}}^{4m^{2}(1-x)^{2}} \frac{dq^{2}}{q^{2}} 2 A_{P}\left(\alpha_{s}\left[q^{2}\right]\right) \mathbf{1} + \hat{D}_{Q\overline{Q}}^{P}\left(\alpha_{s}\left[4m^{2}(1-x)^{2}\right]\right) \right) \right\}\right] + \mathcal{O}(1/N,N^{3}LL) \end{aligned}$$

• Can be cast into the traditional formula with a modified D_{QQ} MC, Mitov, Sterman `09

$$D_{Q\overline{Q}}^{P} = \frac{\alpha_{s}(\mu^{2})}{\pi} (-C_{A}) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \left(\frac{\alpha_{s}(\mu^{2})}{\pi}\right)^{2} \left\{ D_{\mathrm{P}}^{(2)} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \left(-C_{A}\frac{K}{2} - \frac{\zeta_{3} - 1}{2}C_{A}^{2} - C_{A}\frac{\beta_{0}}{2}\right) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

- The same result obtained with SCET Beneke, Falgari, Schwinn `09 (separation of Coulomb effects made transparent)
- A fixed order expansion of the cross section soon available Beneke, Falgari, MC, Mitov, Schwinn, in preparation

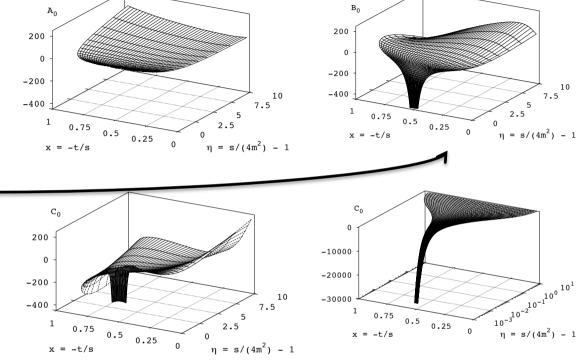
Fixed Order Cross Section



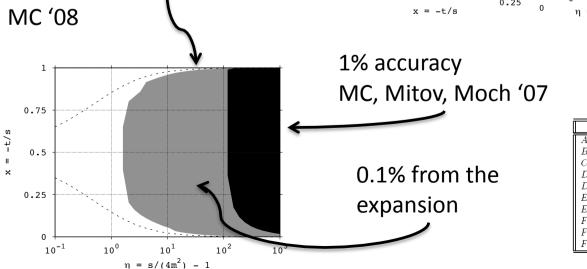
Amplitudes for Quark Annihilation

- complexity
 - 190 diagrams \bigcirc
 - 2812 integrals \bigcirc
 - 145 masters \bigcirc

Convergence region for A small mass expansion MC '08



MC '08



	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
A	0.22625	1.391733154	-2.298174307	-4.145752449	17.37136599
B	-0.4525	-1.323646320	8.507455541	6.035611156	-35.12861106
C	0.22625	-0.06808683395	-18.00716652	6.302454931	3.524044913
D_l		-0.22625	0.2605057339	-0.7250180282	-1.935417247
D_h			0.5623350684	0.1045606449	-1.704747998
E_l		0.22625	-0.3323207300	7.904121951	2.848697837
E_h			-0.5623350684	4.528240788	12.73232424
F_l					-1.984228442
F_{lh}					-2.442562819
F_h					-0.07924540546

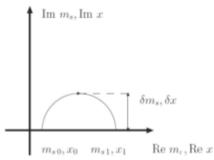
Numerical Techniques

The new invention based on some earlier ideas by Czyz, Caffo, Remiddi '02

 Determine the coefficients of the mass expansions using differential equations in m_s obtaining the power corrections

$$m_s \frac{d}{dm_s} M_i(m_s, x, \epsilon) = \sum_j C_{ij}(m_s, x, \epsilon) M_j(m_s, x, \epsilon)$$

- Evaluate the expansions for $m_{\!_{\rm S}}\!\ll\!1\,$ to obtain the desired numerical precision of the boundaries
- Evolve the functions from the boundary point with differential equations first in m_e and then in x (**ZVODE**)



The hardest part

invented for Bhabha scattering by MC, Gluza, Riemann '06

 Compute the high energy asymptotics of the master integrals using Mellin-Barnes representations in order to obtain the leading behaviour of the amplitude

Beyond Differential Equations

• Problems at the singular points of the differential equations

ĺ	Jacobian singularity	branching	allowed	interpretation]
	$m_s = 0$	yes		collinear singularity	
	$m_s = 1/4$	yes		s-channel threshold	
	$m_s = -1/4$				
	x = 0	yes		t-channel threshold	
	x = 1	yes		u-channel threshold	
	x = 1/2		yes	perpendicular scattering	
1	$m_s = x (1 - x)$			forward/backward scattering	
	$m_s = x$				
	$m_s = 1 - x$				finite part of the bosonic + heavy lepton
	$m_s = -x$				inite part of the bosonic + neavy lepton
	$m_s = x - 1$				contribution
	$m_s = 1/2 x (1-x)$		yes		contribution
	$m_s = 1/2 x$		yes		
	$m_s = 1/2 (1-x)$		yes		
- [$m_s = 1/2 \left(1 - x^2\right)$				m = 0.2 $d = 1/10(x = 0.45)$
	$m_s = -1/2 (1-x)^2$				$m_s = 0.2, d = 1/10(x - 0.45)$
				/	

• Taylor expansions around arbitrary points as a possible solution

```
\begin{array}{c} 469.555-14.5383\,d+17.4298\,d^2-0.448744\,d^3-0.0600637\,d^4+\\ 0.0325809\,d^5-0.00888086\,d^6+0.00212687\,d^7-0.000528458\,d^8+\\ 0.000118944\,d^9-0.0000286279\,d^{10}+6.39261\times10^{-6}\,d^{11}-1.51017\times10^{-6}\,d^{12}+\\ 3.37839\times10^{-7}\,d^{13}-7.88119\times10^{-8}\,d^{14}+1.76849\times10^{-8}\,d^{15}-4.09387\times10^{-9}\,d^{16}+\\ 9.10803\times10^{-10}\,d^{17}-2.2892\times10^{-10}\,d^{18}+9.93296\times10^{-12}\,d^{19}-8.09343\times10^{-11}\,d^{20} \end{array}
```

• Extremely efficient implement with sparse matrix multiplication and multiple precision (e.g. 128 digits needs 10 seconds for 21 terms)

High Precision Total Cross Section

- Contribution to the total cross section at $m_s = 0.2$, obtained with
 - 2 Taylor expansions around x = 0.45 and x = 0.55 (unrenormalized)

$$\int_{-1}^{+1} \mathrm{d}\cos\theta (1 - \cos^2\theta)^{-\epsilon} 2\,\Re \langle \mathsf{M}^{(0)} | \mathsf{M}^{(2)} \rangle \approx$$

with 17 terms

 $\frac{53.0963}{\epsilon^4} - \frac{665.629}{\epsilon^3} + \frac{2524.60}{\epsilon^2} - \frac{21.6349}{\epsilon} + 16206.6$

with 18 terms

$$\frac{53.0963}{\epsilon^4} - \frac{665.630}{\epsilon^3} + \frac{2524.60}{\epsilon^2} - \frac{21.6359}{\epsilon} + 16206.6$$

with 19 terms

$$\frac{53.0963}{\epsilon^4} - \frac{665.630}{\epsilon^3} + \frac{2524.60}{\epsilon^2} - \frac{21.6353}{\epsilon} + 16206.6$$

Analytic Results

- Fermionic and leading color results in the same channel have been obtained recently through analytic integration of DEQs
 Bonciani, Ferroglia, Gehrmann, Maitre, Studerus `08
 Bonciani, Ferroglia, Gehrmann, Studerus `09
- Only a handful of new integrals to determine

$$\begin{array}{c} A_{-4} = \frac{1}{24(1+y)^2}, \\ A_{-3} = \frac{1}{96(1+y)^2} \left[-10G(-1;y) + 3G(0;x) - 6G(1;x) \right], \\ A_{-3} = \frac{1}{96(1+y)^2} \left[-47\zeta(2) - 24G(-1;y)G(0;x) + 48G(-1;y)G(1;x) + 32G(-1, -1;y) - 6G(0, -1;y) \right], \\ A_{-2} = \frac{1}{192(1+y)^2} \left[-47\zeta(2) - 24G(-1;y)G(0;x) + 48G(-1;y)G(1;x) + 32G(-1, -1;y) - 6G(0, -1;y) \right], \\ A_{-1} = \frac{1}{192(1+y)^2} \left[-85\zeta(3) + 188\zeta(2)G(-1;y) + 96\zeta(2)G(1;x) - 96\zeta(2) G(-1/y;x) + 96G(0;x)G(-1, -1;y) - 96G(1;x)G(0, -1;y) + 96\zeta(2)G(1, -1;y) - 96G(1;x)G(0, -1;y) + 96G(0;x)G(-1, -1;y) - 96G(1;x)G(0, -1;y) + 24G(-1/y;x)G(0, -1;y) + 96G(0;x)G(0, -1;y) + 24G(-1/y;x)G(0, -1;y) + 24G(-1/y;x)G(0, -1;y) + 24G(-1;y)G(1, -1;x) - 24G(-1;y)G(1, -1;x) - 24G(-1;y)G(1, -1;x) - 24G(-1;y)G(-1, -1;y) - 24G(-1;y)G(-1, -1;y) - 24G(-1;y)G(-1, -1;y) - 24G(-1, -1;y) - 24G(-1;y)G(-1, -1;y) - 24G(-1;y)G(-1, -1;y) - 24G(-1, -1;y) - 24G(-1,$$

Obvious Advantages

- Fast evaluation almost out of the box, because functions known (and the authors provide a numerical code)
 - Expansions can be obtained by third party
 $$\begin{split} A(\beta,\xi) &= \frac{A^{(-4)}(\beta,\xi)}{\varepsilon^4} + \frac{A^{(-3)}(\beta,\xi)}{\varepsilon^3} + \frac{A^{(-2)}(\beta,\xi)}{\varepsilon^2} + \frac{A^{(-1)}(\beta,\xi)}{\varepsilon} + A^{(0)}(\beta,\xi) + \mathcal{O}\left(\varepsilon\right) ,\\ A^{(-4)} &= 0.25 - 0.5\beta^2 \left(1-\xi\right)\xi + \mathcal{O}\left(\beta^3\right) ,\\ A^{(-3)} &= 1.68185 + 0.5L_{\mu} + \beta(1-2\xi) - \beta^2 \Big[0.5 + \xi(1-\varepsilon)(5.86371 + L_{\mu}) \Big] + \mathcal{O}\left(\beta^3\right) , \end{split}$$
 $A^{(-2)} = -2.67119 - 0.302961L_{\mu} + 0.5L_{\mu}^2 + \beta \Big[1.84475 + 2L_{\mu} - \xi (3.68951 + 4L_{\mu}) \Big]$ $+\beta^{2} \Big[0.777936 - L_{\mu} - \xi (1-\xi) (7.95)84 + 4.39408 L_{\mu} + L_{\mu}^{2}) \Big] + \mathcal{O} \left(\beta^{3}\right) ,$ $A^{(-1)} = -8.15701 - 5.7593L_{\mu} - 2.3629L_{\mu}^{2} + 0.333333L_{\mu}^{3} + \beta \left[-9.83935 - 3.64382L_{\mu} \right]$ $+2L_{\mu}^{2}+\xi(19.6787+7.28765L_{\mu}-4L_{\mu}^{2})]+\beta^{2}[2.78693+5.22254L_{\mu}]$ $-L_{\mu}^{2} + \xi(1-\zeta)(46.7006 + 8.75816L_{\mu} - 0.727411L_{\mu}^{2} - 0.666667L_{\mu}^{3}) \Big] + \mathcal{O}\left(\beta^{3}
 ight),$ $A^{(0)} = 23.5701 + 7.82592L_{\mu} + 0.754463L_{\mu}^2 - 2.03531L_{\mu}^3 + 0.166667L_{\mu}^4 + 0.166647L_{\mu}^4 + 0.16644L_{\mu}^4 + 0.1664L_{\mu}^4 + 0.1$ $\beta \Big[0.505501 - 11.5953L_{\mu} - 7.31049L_{\mu}^2 + 1.33333L_{\mu}^3 + \xi (-1.011 + 23.1906L_{\mu} + 14.621L_{\mu}^2 - 2.66667L_{\mu}^3) \Big] + \beta^2 \Big[-4.351 - 3.60348L_{\mu} + 7.05587L_{\mu}^2 \Big]$ $-0.666667L_{\mu}^{3} + \xi(1-\xi)(-5.36823 + 43.1864L_{\mu} + 6.73063L_{\mu}^{2} + 0.737281L_{\mu}^{3}$ $-0.3333332L_{\mu}^{4}) + \mathcal{O}(\beta^{3})$. (5.4)

Conclusions

- Required theoretical precision for top quark pair production not met yet
- Divergences at 2-loops fully understood in massive QCD
- NNLL resummation of total cross sections fully understood
- New insights with effective theories, in particular Coulomb enhancements vs. soft gluon enhancements
- Fixed order amplitudes almost finished with various methods
- Integrated real radiation is the next challenge