Hopf Algebras and Renormalization

Dirk Kreimer¹

Talk given at *QCD: the modern view of the strong interactions* Berlin, October 04-09, 2009

October 06, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

¹kreimer@ihes.fr, http://www.ihes.fr and http://math.bu.edu/research/mathphys/

Acknowledgments and Literature

Thanks to people involved:

Paolo Aluffi, Marc Bellon, Christoph Bergbauer, Isabella Bierenbaum, Spencer Bloch, David Broadhurst, Francis Brown, Alain Connes, Bob Delbourgo, Dzimitri Doryn, Hélène Esnault, Kurusch Ebrahimi-Fard, Loic Foissy, Herbert Gangl, John Gracey, Dominique Manchon, Matilde Marcolli, Igor Mencattini, Oliver Schnetz, Walter van Suijlekom, Matt Szczesny, Ivan Todorov, Stefan Weinzierl, Karen Yeats

Acknowledgments and Literature

Thanks to people involved:

Paolo Aluffi, Marc Bellon, Christoph Bergbauer, Isabella Bierenbaum, Spencer Bloch, David Broadhurst, Francis Brown, Alain Connes, Bob Delbourgo, Dzimitri Doryn, Hélène Esnault, Kurusch Ebrahimi-Fard, Loic Foissy, Herbert Gangl, John Gracey, Dominique Manchon, Matilde Marcolli, Igor Mencattini, Oliver Schnetz, Walter van Suijlekom, Matt Szczesny, Ivan Todorov, Stefan Weinzierl, Karen Yeats

Literature:

D. Kreimer, Algebra for quantum fields, arXiv:0906.1851 [hep-th],
Clay Math. Inst. Proc. and references there.
G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, The QED beta-function from global solutions to Dyson-Schwinger equations,
Annals Phys. 324 (2009) 205 [arXiv:0805.0826 [hep-th]].
G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, The QCD beta-function from global solutions to Dyson-Schwinger equations,
Annals of Physics, submitted, arXiv:0906.1754 [hep-th].

Feynman graphs and their algebraic properties

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Hopf algebras
- Lie algebras
- sub-Hopf algebras
- Dynkin operators $S \star Y$

- Feynman graphs and their algebraic properties
 - Hopf algebras
 - Lie algebras
 - sub-Hopf algebras
 - Dynkin operators $S \star Y$
- The structure of a Green function
 - Kinematics as cohomology
 - Leading-log expansions the RGE from $S \star Y$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Reductions to \(\gamma_1\)
- ► ODEs for β-functions

- Feynman graphs and their algebraic properties
 - Hopf algebras
 - Lie algebras
 - sub-Hopf algebras
 - Dynkin operators $S \star Y$
- The structure of a Green function
 - Kinematics as cohomology
 - Leading-log expansions the RGE from $S \star Y$
 - Reductions to \u03c6₁
 - ► ODEs for β-functions
- Hodge structures and Feynman graphs
 - renormalization as a limiting mixed Hodge structure

- periods in QFT
- digression: AdS/CFT

- Feynman graphs and their algebraic properties
 - Hopf algebras
 - Lie algebras
 - sub-Hopf algebras
 - Dynkin operators $S \star Y$
- The structure of a Green function
 - Kinematics as cohomology
 - Leading-log expansions the RGE from $S \star Y$
 - Reductions to \u03c6₁
 - ODEs for β-functions
- Hodge structures and Feynman graphs
 - renormalization as a limiting mixed Hodge structure

- periods in QFT
- digression: AdS/CFT
- Nonperturbative aspects of QED and QCD
 - QED
 - QCD

The coproduct

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \overbrace{\gamma = \cup_i \gamma_i, \omega_4(\gamma_i) \ge 0}^{\Delta'(\Gamma)} \gamma \otimes \Gamma/\gamma$$
(1)

The coproduct

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \overbrace{\gamma = \cup_i \gamma_i, \omega_4(\gamma_i) \ge 0}^{\Delta'(\Gamma)} \gamma \otimes \Gamma/\gamma$$
(1)

The antipode

$$S(\Gamma) = -\Gamma - \sum S(\gamma)\Gamma/\gamma = -m(S \otimes P)\Delta$$
 (2)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The coproduct

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \overbrace{\gamma = \cup_i \gamma_i, \omega_4(\gamma_i) \ge 0}^{\Delta'(\Gamma)} \gamma \otimes \Gamma/\gamma$$
(1)

The antipode

$$S(\Gamma) = -\Gamma - \sum S(\gamma)\Gamma/\gamma = -m(S \otimes P)\Delta$$
(2)

The character group

$$G_V^H \ni \Phi \Leftrightarrow \Phi : H \to V, \Phi(h_1 \cup h_2) = \Phi(h_1)\Phi(h_2)$$
 (3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The coproduct

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \overbrace{\gamma = \cup_i \gamma_i, \omega_4(\gamma_i) \ge 0}^{\Delta'(\Gamma)} \gamma \otimes \Gamma/\gamma$$
(1)

The antipode

$$S(\Gamma) = -\Gamma - \sum S(\gamma)\Gamma/\gamma = -m(S \otimes P)\Delta$$
(2)

The character group

$$G_V^H \ni \Phi \Leftrightarrow \Phi : H \to V, \Phi(h_1 \cup h_2) = \Phi(h_1)\Phi(h_2)$$
 (3)

The counterterm

$$S_{R}^{\Phi}(\Gamma) = -R\left(\Phi(h) - \sum S_{R}^{\Phi}(\gamma)\Phi(\Gamma/\gamma)\right)$$
$$= -R \Phi\left(m(S_{R}^{\Phi} \otimes \Phi P)\Delta(\Gamma)\right)$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The coproduct

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \overbrace{\gamma = \cup_i \gamma_i, \omega_4(\gamma_i) \ge 0}^{\Delta'(\Gamma)} \gamma \otimes \Gamma/\gamma$$
(1)

The antipode

$$S(\Gamma) = -\Gamma - \sum S(\gamma)\Gamma/\gamma = -m(S \otimes P)\Delta$$
 (2)

The character group

$$G_V^H \ni \Phi \Leftrightarrow \Phi : H \to V, \Phi(h_1 \cup h_2) = \Phi(h_1)\Phi(h_2)$$
 (3)

The counterterm

$$S^{\Phi}_{R}(\Gamma) = -R\left(\Phi(h) - \sum S^{\Phi}_{R}(\gamma)\Phi(\Gamma/\gamma)\right)$$
$$= -R \Phi\left(m(S^{\Phi}_{R} \otimes \Phi P)\Delta(\Gamma)\right)$$
(4)

The renormalized Feynman rules

$$\Phi_R = m(S_R^{\Phi} \otimes \Phi) \Delta \tag{5}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

An Example

► The co-product

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

An Example

► The co-product

$$\begin{array}{rcl} \Delta' \left(\begin{array}{ccc} & & & & \\ & & & \\ \end{array} \right) & = & 3 \div \otimes \div \\ & +2 & \underline{\frown} & \otimes \div + \cdot \diamond \otimes \div \end{array} \right) & = & 3 \div \otimes \div \end{array}$$

The counterterm

An Example

► The co-product

$$\begin{array}{rcl} \Delta' \left(\begin{array}{ccc} -\sqrt{2} & \sqrt{2} \\ +2 & \bigtriangleup & \heartsuit & + & - & \circlearrowright & \heartsuit & \curlyvee \end{array} \right) & = & 3 \ \varTheta & \bigtriangleup & \diamondsuit & \diamondsuit & \diamondsuit & \vspace{-1.5ex} \\ \end{array}$$

The counterterm

▶ The renormalized result

$$\begin{split} \Phi_{R} &= (\mathrm{id} - R)m(S_{R}^{\Phi} \otimes \Phi P)\Delta \left(\begin{array}{c} \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ = (\mathrm{id} - R) \left\{ \Phi \left(\begin{array}{c} \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ + R \left[\Phi \left(3 \Leftrightarrow + 2 & - \frac{1}{2} & - \frac{1}{2} & \sqrt{2} \right) \right] \Phi \left(\begin{array}{c} \varphi \end{array} \right) \right\} \end{split}$$

200

æ

► The Milnor Moore Theorem H = U*(L)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

- ► The Milnor Moore Theorem H = U*(L)
- ► The pairing

$$\langle Z_{\Gamma}, \delta_{\Gamma'} \rangle = \delta_{\Gamma, \Gamma'}^{\mathrm{Kronecker}}$$
 (6)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- ► The Milnor Moore Theorem H = U*(L)
- ► The pairing

$$\langle Z_{\Gamma}, \delta_{\Gamma'} \rangle = \delta_{\Gamma, \Gamma'}^{\mathrm{Kronecker}}$$
 (6)

the Lie algebra

$$[Z_{\Gamma}, Z_{\Gamma'}] = Z_{\Gamma' \star \Gamma - \Gamma \star \Gamma'} \tag{7}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

$$\begin{array}{cccc} \uparrow \star & \frown & = & & & & \\ \frown & \star & \uparrow & = & 2 & & \\ \hline & & & & & \\ \end{array}$$

- ► The Milnor Moore Theorem H = U*(L)
- The pairing

$$\langle Z_{\Gamma}, \delta_{\Gamma'} \rangle = \delta_{\Gamma, \Gamma'}^{\mathrm{Kronecker}}$$
 (6)

the Lie algebra

$$[Z_{\Gamma}, Z_{\Gamma'}] = Z_{\Gamma' \star \Gamma - \Gamma \star \Gamma'} \tag{7}$$

$$\begin{array}{rcl} \varphi \star \bigtriangleup & = & & & & & \\ \bigtriangleup & \star \varphi & = & 2 & & \\ \end{array}$$

► Leads to an identification of β -functions and anomalous dimenions, and lifts the Birkhoff decomposition $\Phi_R = S_R^{\Phi} \star \Phi$ to diffeomorphisms of physical parameters.

sub-Hopf algebras

summing order by order

$$c_k^r = \sum_{|\Gamma|=k, \operatorname{res}(\Gamma)=r} \frac{1}{|Aut(\Gamma)|} \Gamma,$$
(8)

then

$$\Delta(c_k^r) = \sum_j \operatorname{Pol}_j(c_m^s) \otimes c_{k-j}^r.$$
(9)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

sub-Hopf algebras

summing order by order

$$c_k^r = \sum_{|\Gamma|=k, \operatorname{res}(\Gamma)=r} \frac{1}{|Aut(\Gamma)|} \Gamma,$$
(8)

then

$$\Delta(c_k^r) = \sum_j \operatorname{Pol}_j(c_m^s) \otimes c_{k-j}^r.$$
(9)

Hochschild closedness

$$X^{r} = 1 \pm \sum_{j} c_{j}^{r} \alpha^{j} = 1 \pm \sum_{j} \alpha^{j} B_{+}^{r;j} (X^{r} Q^{j}(\alpha)), \quad (10)$$
$$Q^{j} = \frac{X^{v}}{\sqrt{\prod_{\text{edges e at v}} X^{e}}}. \text{ Evaluates to invariant charge.}$$

sub-Hopf algebras

summing order by order

$$c_k^r = \sum_{|\Gamma|=k, \operatorname{res}(\Gamma)=r} \frac{1}{|Aut(\Gamma)|} \Gamma,$$
(8)

then

$$\Delta(c_k^r) = \sum_j \operatorname{Pol}_j(c_m^s) \otimes c_{k-j}^r.$$
(9)

Hochschild closedness

$$X^{r} = 1 \pm \sum_{j} c_{j}^{r} \alpha^{j} = 1 \pm \sum_{j} \alpha^{j} B_{+}^{r;j} (X^{r} Q^{j}(\alpha)), \quad (10)$$

$$Q^{j} = \frac{X^{v}}{\sqrt{\Pi_{\text{edges e at v}} X^{e}}}. \text{ Evaluates to invariant charge.}$$

$$bB_{+}^{r;j} = 0.$$

$$\Delta B_{+}^{r;j} (X) = B_{+}^{r;j} (X) \otimes 1 + (id \otimes B_{+}^{r;j}) \Delta(X). \quad (11)$$

Implies locality of counterterms upon application of Feynman rules.

Symmetry

Ward and Slavnov–Taylor ids

$$i_k := c_k^{\bar{\psi}\psi} + c_k^{\bar{\psi}A\psi} \tag{12}$$

span Hopf (co-)ideal I:

$$\Delta(I) \subseteq H \otimes I + I \otimes H. \tag{13}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

$$\Delta(i_2)=i_2\otimes 1+1\otimes i_2+(c_1^{rac{1}{4}{F^2}}+c_1^{ar{\psi}{A\psi}}+i_1)\otimes i_1+i_1\otimes c_1^{ar{\psi}{A\psi}}.$$

Symmetry

Ward and Slavnov–Taylor ids

$$i_k := c_k^{\bar{\psi}\psi} + c_k^{\bar{\psi}A\psi} \tag{12}$$

span Hopf (co-)ideal I:

$$\Delta(I) \subseteq H \otimes I + I \otimes H. \tag{13}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

$$\Delta(i_2)=i_2\otimes 1+1\otimes i_2+(c_1^{\frac{1}{4}F^2}+c_1^{\bar\psi}A^{\psi}+i_1)\otimes i_1+i_1\otimes c_1^{\bar\psi}A^{\psi}.$$

 Feynman rules vanish on *I* ⇔ Feynman rules respect quantized symmetry: Φ^R : H/I → V.

Symmetry

Ward and Slavnov–Taylor ids

$$i_k := c_k^{\bar{\psi}\psi} + c_k^{\bar{\psi}A\psi} \tag{12}$$

span Hopf (co-)ideal I:

$$\Delta(I) \subseteq H \otimes I + I \otimes H. \tag{13}$$

$$\Delta(i_2)=i_2\otimes 1+1\otimes i_2+(c_1^{rac{1}{4}F^2}+c_1^{ar{\psi}A\psi}+i_1)\otimes i_1+i_1\otimes c_1^{ar{\psi}A\psi}.$$

- Feynman rules vanish on *I* ⇔ Feynman rules respect quantized symmetry: Φ^R : *H*/*I* → *V*.
- Ideals for Slavnov-Taylor ids generated by equality of renormalized charges, also for the master equation in Batalin-Vilkovisky (see Walter van Suijlekom's work)

Dynkin operators

►
$$S \star Y$$

 $Y(\Gamma) = |\Gamma|\Gamma$ the grading operator
 $S \star Y(\Gamma) = m(S \otimes Y)\Delta(\Gamma).$ (14)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

Vanishes on products.

Dynkin operators

•
$$S \star Y$$

 $Y(\Gamma) = |\Gamma|\Gamma$ the grading operator

$$S \star Y(\Gamma) = m(S \otimes Y)\Delta(\Gamma).$$
 (14)

Vanishes on products.

The leading log expansion

$$\Phi^{R}(\Gamma) = \sum_{j}^{corad(\Gamma)} c_{j}(\Gamma) \ln^{j} s$$
(15)

$$\Rightarrow c_j = \frac{1}{j!} \underbrace{\sigma \otimes \cdots \otimes \sigma}_{j \text{ times}} \Delta^{j-1}, j \ge 1$$
 (16)

where $\sigma = \Phi^R \circ S \star Y \leftrightarrow \gamma_k \equiv \gamma_k(\gamma_1)$.

Kinematics and Cohomology

• Exact co-cycles $[B_{+}^{r,j}] = B_{+}^{r,j} + b\phi^{r,j} \qquad (17)$ with $\phi^{r,j} : H \to \mathbb{C}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Kinematics and Cohomology

► Exact co-cycles $[B_{+}^{r,j}] = B_{+}^{r,j} + b\phi^{r,j}$ (17) with $\phi^{r,j} : H \to \mathbb{C}$

Variation of momenta

$$G^{R}(\{g\}, \ln s, \{\Theta\}) = 1 \pm \Phi^{R}_{\ln s, \{\Theta\}}(X^{r}(\{g\}))$$
(18)
with $X^{r} = 1 \pm \sum_{j} g^{j} B^{r;j}_{+}(X^{r} Q^{j}(g)), \ bB^{r;j}_{+} = 0.$ Also,
$$G^{r} = \left[\sum_{j=1}^{\infty} \gamma_{j}(\{g\}, \{\Theta\}) \ln^{j} s\right] + \overbrace{G^{r}_{0}}^{abelian \ factor}$$
(19)

Then, for MOM and similar schemes (not MS!): $\{\Theta\} \rightarrow \{\Theta'\} \Leftrightarrow B_{+}^{r,j} \rightarrow B_{+}^{r,j} + b\phi^{r,j}.$

Leading log expansions and the RGE

The invariant charge Q^v
 For each vertex v, a charge Q^v:

$$Q^{\nu}(g) = \frac{X^{\nu}(g)}{\prod_{e} \sqrt{X^{e}}},$$
(20)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

e adjacent to v.

Leading log expansions and the RGE

The invariant charge Q^v
 For each vertex v, a charge Q^v:

$$Q^{\nu}(g) = \frac{X^{\nu}(g)}{\prod_{e} \sqrt{X^{e}}},$$
(20)

e adjacent to v.

$$\left(\partial_{L} + \beta(g)\partial_{g} - \sum_{e \text{ adj } r} \gamma_{1}^{e}\right) G^{r}(g, L) = 0$$
 (21)

rewrites in terms of the Dynkin operator $(\gamma_1^r(g) = S \star Y(X^r(g)))$:

$$\gamma_k^r(g) = \frac{1}{k} \left(\gamma_1^r(g) - \sum_{j \in R} s_j \gamma_1^j g \partial_g \right) \gamma_{k-1}^r(g)$$
 (22)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ordinary differential equations vs DSE

RGE+DSE

the iterated integral structure

$$\Phi^{R}(B^{r;j}_{+}(X)) = \int \Phi^{R}(X) d\mu_{r;j}$$
(23)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

allows to combine $X^r = 1 \pm \sum_j B_+(X^r Q^j)$ with RGE to

$$\gamma_1^r = P(g) - [\gamma_1^r(g)]^2 + \sum_{j \in R} s_j \gamma_1^j g \partial_g \gamma_1^r(g).$$
(24)

Ordinary differential equations vs DSE

RGE+DSE

the iterated integral structure

$$\Phi^R(B^{r;j}_+(X)) = \int \Phi^R(X) d\mu_{r;j}$$
(23)

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ = 臣 = のへぐ

allows to combine $X^r = 1 \pm \sum_j B_+(X^r Q^j)$ with RGE to

$$\gamma_1^r = P(g) - [\gamma_1^r(g)]^2 + \sum_{j \in R} s_j \gamma_1^j g \partial_g \gamma_1^r(g).$$
(24)

► massless gauge theories $\beta(g) = g\gamma_1(g)/2$ for γ_1 anomalous dim of gauge propagator $\gamma_1(g) = \overbrace{P(g)}^{existence assumed} -\gamma_1(g)(1 - g\partial_g)\gamma_1(g) \quad (25)$ (Ward Id QED, background field gauge (Abbott) QCD)

Limiting mixed Hodge structures

Hopf algebra from flags

$$f := \gamma_1 \subset \gamma_2 \subset \ldots \subset \Gamma, \ \Delta'(\gamma_{i+1}/\gamma_i) = 0$$
(26)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

The set of all such flags $F_{\Gamma} \ni f$ determines Hopf algebra structure, $|F_{\Gamma}|$ is the length of the flag.

Limiting mixed Hodge structures

Hopf algebra from flags

$$f := \gamma_1 \subset \gamma_2 \subset \ldots \subset \Gamma, \ \Delta'(\gamma_{i+1}/\gamma_i) = 0$$
 (26)

The set of all such flags $F_{\Gamma} \ni f$ determines Hopf algebra structure, $|F_{\Gamma}|$ is the length of the flag.

It also determines a column vector v = v(F_Γ) and a nilpotent matrix (N) = (N(|F_Γ|)), (N)^{k+1} = 0, k = corad(Γ) such that

 $\lim_{t \to 0} (e^{-\ln t(N)}) \Phi_R(v(F_{\Gamma})) = (c_1^{\Gamma}(\Theta) \ln s, c_2^{\Gamma}(\Theta), c_k^{\Gamma}(\Theta) \ln^k s)^{T}$ (27)

where k is determined from the co-radical filtration and t is a regulator say for the lower boundary in the parametric representation.

Periods and functions

• Wanted: ρ : Graphs \rightarrow Periods

$$(\rho \otimes \rho) \Delta_{Graphs} = \Delta_{periods} \rho.$$
 (28)

What is ρ ? Which Δ_{Graphs} ? Is Δ_{MZV} enough???

Periods and functions

• Wanted: ρ : Graphs \rightarrow Periods

$$(\rho \otimes \rho) \Delta_{Graphs} = \Delta_{periods} \rho.$$
 (28)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

What is ρ ? Which Δ_{Graphs} ? Is Δ_{MZV} enough???

What is the role of shuffle/stuffle algebras on graphs? They are there for flags. Is there a free Lie algebra structure on graphs?

Periods and functions

• Wanted: ρ : Graphs \rightarrow Periods

$$(\rho \otimes \rho) \Delta_{Graphs} = \Delta_{periods} \rho.$$
 (28)

What is ρ ? Which Δ_{Graphs} ? Is Δ_{MZV} enough???

- What is the role of shuffle/stuffle algebras on graphs? They are there for flags.
 Is there a free Lie algebra structure on graphs?
- What is the number-theoretic meaning of all the graph Hopf algebras?

Not all of this is hopeless. See Francis Brown, Oliver Schnetz,...

In general, we need a better algebro-geometric understanding. See identification of zig-zag graphs by Dzmitri Doryn. But still no understanding of rational coefficients. core Hopf algebra structures: unitarity, gravity, BCFW

The core Hopf algebra

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \sum_{\gamma = \cup_i \gamma_i} \gamma \otimes \Gamma/\gamma$$
(29)

Only primitive graphs are one-loop graphs. Appears as the endpoint in tower

$$H_0 \subset H_2 \subset H_4 \subset H_6 \subset \cdots \subset H_\infty = H_{core}$$
(30)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

core Hopf algebra structures: unitarity, gravity, BCFW

The core Hopf algebra

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \sum_{\gamma = \cup_i \gamma_i} \gamma \otimes \Gamma/\gamma$$
(29)

Only primitive graphs are one-loop graphs. Appears as the endpoint in tower

$$H_0 \subset H_2 \subset H_4 \subset H_6 \subset \cdots \subset H_\infty = H_{core}$$
(30)

Gravity

$$\bigcup_{\omega_{q(r)-2\gamma}+2} H_{ren} = H_{core}$$
(31)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

All skeletons are one-loop.

core Hopf algebra structures: unitarity, gravity, BCFW

The core Hopf algebra

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \sum_{\gamma = \cup_i \gamma_i} \gamma \otimes \Gamma/\gamma$$
(29)

Only primitive graphs are one-loop graphs. Appears as the endpoint in tower

$$H_0 \subset H_2 \subset H_4 \subset H_6 \subset \cdots \subset H_\infty = H_{core}$$
(30)

Gravity

$$\bigcup_{\omega_{d}(\cdot)=2|1|+2} H_{ren} = H_{core}$$
(31)

All skeletons are one-loop.

▶ Britto-Cachazo-Feng-Witten recursion holds → Maximal Co-ideals of H_{core} respected by Feynman rules. Gravity possibly renormalizable iff full cut-reconstrucbility holds (∞-ly many Ward ids suggested). sub Hopf algebra for vacuum polarization suffices

QED

- sub Hopf algebra for vacuum polarization suffices
- $\gamma_1(x) = P(x) \gamma_1(x)^2 + \gamma_1(x)x\partial_x\gamma_1(x)$ with P(x) > 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

QED

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

QCD

 sub Hopf algebra for gluon polarization suffices in background field gauge

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

QCD

 sub Hopf algebra for gluon polarization suffices in background field gauge

• $\gamma_1(g) = P(g) - \gamma_1(g)^2 + \gamma_1(g)g\partial_g\gamma_1(g)$ with P(g) < 0

QCD

- sub Hopf algebra for gluon polarization suffices in background field gauge
- ► $\gamma_1(g) = P(g) \gamma_1(g)^2 + \gamma_1(g)g\partial_g\gamma_1(g)$ with P(g) < 0

P(g) twice differentiable and concave near 0 unique solution which flows into (0,0) at large Q^2

$$\begin{split} L &= \int_{g_0}^{g(L)} \frac{dz}{z\gamma_1(z)} \rightarrow \\ L_\Lambda &= -\int_{g(L_\Lambda)}^{\infty} \frac{dz}{z\gamma_1(z)}, \\ L_\Lambda &= \ln Q^2 / \Lambda_{QCD} \\ f_{disp}(Q^2) &= \int_0^\infty \frac{\Im(f(\sigma))d\sigma}{\sigma + Q^2 - i\eta} \\ \text{and ODE} \end{split}$$

separatrix exists and gives asymptotic free solution, with finite mass gap for inverse propagator iff γ₁(x) < −1 for some x > 0.
 |D(P)| < ∞ → γ₁(x) ~ sx, x → ∞. That allows for dispersive methods as introduced by Shirkov et.al. in field theory.

Hopf algebras are the natural habitat of renormalization

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Hopf algebras are the natural habitat of renormalization

(ロ)、(型)、(E)、(E)、 E、 の(の)

Locality reflected in Hochschild cohomology

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches
- reflected nicely in the periods and special functions known by practitioners

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches
- reflected nicely in the periods and special functions known by practitioners
- Unitarity, internal symmetry, gravity, multi-leg-recursions vs co-ideals...

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches
- reflected nicely in the periods and special functions known by practitioners
- Unitarity, internal symmetry, gravity, multi-leg-recursions vs co-ideals...

Don't loose trust in local point-particle quantum fields!