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Hopf algebra of graphs H = Q1 & @2, H/

» The coproduct
A'(T)

AN =T®1+1®l+ > 7@/

y=U;vi,wa(7i)>0

» The antipode
MN=-r-> S(y/y=-mS®P)A
» The character group
G20 d:H— V,0(hUh) = d(h)d(h)

» The counterterm

SR = —R(®(h) = SEM(/7))

= —-R¢ (m(SR ® ¢ P)A(T))
» The renormalized Feynman rules
dr = m(SP @ d)A
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An Example

» The co-product

(4T AARGP) = 320 =
42 Q5 4+ 0 Q 5.

» The counterterm
53(@‘@%@%%@?@)=—Rm[5£®¢/ﬂ X
XA (G0
:—R{¢<“<§“§“§“€“%?§“@)+
+R[P(B s +2 e + o) (=)}
» The renormalized result
b = (id — R)m(SE @ OP)A (4T 4~ )
= (id = RY{& (0400

+R[®P(B = +2 o + o )]P (=)}
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Lie algebra of graphs

» The Milnor Moore Theorem

H = U*(L)
» The pairing
(Zr, 6rr) = diSgomecker (6)
» the Lie algebra
[Zr, Zr] = Zrrer—rar (7)

R
ok o :2%

» Leads to an identification of S-functions and anomalous
dimenions, and lifts the Birkhoff decomposition ®p = ng * O
to diffeomorphisms of physical parameters.
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sub-Hopf algebras

» summing order by order

1
r
= T
“k > [Aut(n)]

|F|=k,res(l)=r
then

ZPO] ) ® ;.

» Hochschild closedness

X'=1£Y ol =1£) /B (X Q(a)),
J J

. X . .
) = —=—==——. Evaluates to invariant charge.
Hedgeseatvx

> bB'/ =0.

AB(X) =B (X)®1 + (id @ BIY)A(X).

(9)

(10)

(11)

Implies locality of counterterms upon application of Feynman

rules.
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Symmetry

» Ward and Slavnov—Taylor ids

=V M (12)

span Hopf (co-)ideal I:

A(l)CH®I+1®H. (13)

. . . 1F? b . .
Al)=hbh®1+1® b+ (cf +c{”4¢+ll)®/1+/1®c;”w.

» Feynman rules vanish on / < Feynman rules respect
quantized symmetry:
SR H/I — V.

» lIdeals for Slavnov—Taylor ids generated by equality of
renormalized charges, also for the master equation in
Batalin-Vilkovisky (see Walter van Suijlekom's work)
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Dynkin operators

> SxY
Y(I) = |T'|l the grading operator

S Y () =m(S® Y)A(T). (14)

Vanishes on products.

» The leading log expansion

corad(T")
oR() = Z ¢i(MNIn's (15)
J
1 j-1 -
:>CJ:—I()'®®O'A ,_/Z]- (16)
S
J times

where 0 = ®R 0 Sx Y « v, = vi(m).
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Kinematics and Cohomology

» Exact co-cycles ] ) )
BY) = B+ b

with ¢/ : H - C

» Variation of momenta

GR({g},Ins, {©}) = 1£ O 16, (X"({g}))
with X' =1+ /Bl (X" Q/(g)), bB}Y = 0. Also,

G' = {Zw({g},{e})ij] +

Jj=1

Then, for MOM and similar schemes (not MS!):
{0} - {0} & B} — Bl + bp.

(17)

(18)

(19)
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Leading log expansions and the RGE

» The invariant charge QY
For each vertex v, a charge QV:

TILVXE 20

e adjacent to v.

(8L+ﬁ 8)g— Y, 71) "(g,L)=0 (21)

eadjr

rewrites in terms of the Dynkin operator

(7i(g) = S* Y(X"(g))):

Vi(g) =

x|

(vi(g) - Zsjﬂgag> vioi(g)  (22)

JER
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» RGE+DSE
the iterated integral structure

SR(E(X)) = [ " (X)dry 23)
allows to combine X" =1+} B (X"Q) with RGE to

W=PE)-@PF+> s7igdevi(e).  (24)
JER

» massless gauge theories
B(g) = gv1(g)/2 for 41 anomalous dim of gauge propagator

71(8) = Plg)  —m(g)(1—gdg)nlg) (25)

(Ward Id QED, background field gauge (Abbott) QCD)
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Limiting mixed Hodge structures

» Hopf algebra from flags

The set of all such flags Fr > f determines Hopf algebra
structure, |Fr| is the length of the flag.
» It also determines a column vector v = v(Fr) and a nilpotent
matrix (N) = (N(|Fr|)), (N)**! =0, k = corad(I") such that
lim (=" *M)p(v(Fr)) = (c] (©)Ins, &5 (©), cf(©) Ins)T (27)
where k is determined from the co-radical filtration and t is a

regulator say for the lower boundary in the parametric
representation.
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Periods and functions

» Wanted: p: Graphs — Periods

(p & p)AGraphs = Aperiodsp- (28)

What is p? Which Agrapns? Is Apzy enough???

» What is the role of shuffle/stuffle algebras on graphs?
They are there for flags.
Is there a free Lie algebra structure on graphs?

» What is the number-theoretic meaning of all the graph Hopf
algebras?
Not all of this is hopeless. See Francis Brown, Oliver
Schnetz,...
In general, we need a better algebro-geometric understanding.
See identification of zig-zag graphs by Dzmitri Doryn.
But still no understanding of rational coefficients.
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core Hopf algebra structures: unitarity, gravity, BCFW
» The core Hopf algebra

AMN=Tol+1el+ > y&l/y (29)
Y=Uj7i
Only primitive graphs are one-loop graphs. Appears as the
endpoint in tower

Ho C Hy C Hy C He C -+ C Hoo = Heore (30)
> Gravity

" Hren = Heore (31)

All skeletons are one-loop.

» Britto-Cachazo-Feng-Witten recursion holds —
Maximal Co-ideals of Hcore respected by Feynman rules.
Gravity possibly renormalizable iff full cut-reconstrucbility
holds (co-ly many Ward ids suggested).
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QED

» sub Hopf algebra for vacuum polarization suffices

> v1(x) = P(x) — 71(x)? 4+ 71(x)x0xy1(x) with P(x) > 0
P(x) twice
differentiable "
71(%0) =7 >0
different solutions X
distinguished by e™

behaviour -
;L:Xl =mn-1—-P

da —*n

L= f;;(L) zwﬁl)

> separatrix exists and might have no Landau pole'

_ foo P(z dz _2dz
D(P) - on -fXO Z\/W
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QCD

» sub Hopf algebra for gluon polarization suffices in background
field gauge

> 11(8) = P(g) —11(8)* + 11(8)gdg11(g) with P(g) <0
P(g) twice differentiable
and concave near 0
unique solution which
flows into (0, 0) at large ,
2

| = fg(l-) dz

zm1(z

dz
Ln == [ 7t
Ly =1nQ?/Agcp
fdisp(Q2) — [ S(f(9))do

0 o+Q%*—in
and ODE . . . o
> separatrix exists and gives asymptotic free solution, with finite mass

gap for inverse propagator iff v1(x) < —1 for some x > 0.
|ID(P)| < 0o — 71(x) ~ sx, x — oo. That allows for dispersive
methods as introduced by Shirkov et.al. in field theory.
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Conclusions
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Hopf algebras are the natural habitat of renormalization
Locality reflected in Hochschild cohomology
perturbative structures suggest non-perturbative approaches

reflected nicely in the periods and special functions known by
practitioners

Unitarity, internal symmetry, gravity, multi-leg-recursions vs
co-ideals...

Don't loose trust in local point-particle quantum fields!
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