Non-perturbative Heavy Quark Effective Theory

Rainer Sommer

NIC, DESY, A Research Centre of the Helmholtz Association

The Modern View of Strong Interactions, Berlin, October 2009

Why are we interested in HQET today?

Why are we interested in HQET today?

▶ Believed to describe the true asymptotic expansion in 1/m_b of spectrum, matrix elements, Euclidean long-distance correlation functions

Why are we interested in HQET today?

 Believed to describe the true asymptotic expansion in 1/m_b of spectrum, matrix elements, Euclidean long-distance correlation functions

Part of understanding QCD

Why are we interested in HQET today?

Believed to describe the true asymptotic expansion in 1/m_b of spectrum, matrix elements, Euclidean long-distance correlation functions

Part of understanding QCD

► Searches of physics beyond the SM in *Flavour physics* have seen no significant sign.

Uncertainties are probably too large \rightarrow precision physics.

Why are we interested in HQET today?

 Believed to describe the true asymptotic expansion in 1/m_b of spectrum, matrix elements, Euclidean long-distance correlation functions

Part of understanding QCD

- Searches of physics beyond the SM in *Flavour physics* have seen no significant sign.
 Uncertainties are probably too large → precision physics.
- ▶ More precise & reliable lattice calculations are needed.

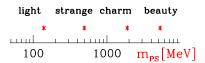
Why are we interested in HQET today?

▶ Believed to describe the true asymptotic expansion in 1/m_b of spectrum, matrix elements, Euclidean long-distance correlation functions

Part of understanding QCD

- Searches of physics beyond the SM in *Flavour physics* have seen no significant sign.
 Uncertainties are probably too large → precision physics.
- ▶ More precise & reliable lattice calculations are needed.
 - HQET is a great help

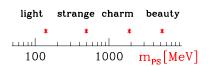
multiple scale problem always difficult for a numerical treatment



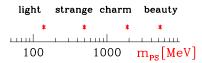
multiple scale problem always difficult for a numerical treatment

lattice cutoffs:

$$\Lambda_{\rm UV} = a^{-1}$$
 $\Lambda_{\rm IR} = L^{-1}$



multiple scale problem always difficult for a numerical treatment



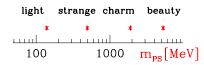
lattice cutoffs:

$$\Lambda_{\rm UV} = a^{-1}$$
 $\Lambda_{\rm IR} = L^{-1}$

$$L^{-1} \ll m_{\pi}, \ldots, m_{\mathrm{D}}, m_{\mathrm{B}} \ll a^{-1}$$
 $\mathrm{O}(\mathrm{e}^{-Lm_{\pi}}) \qquad m_{\mathrm{D}}a \lesssim 1/2$ \downarrow \downarrow $L \gtrsim 4/m_{\pi} \sim 6 \, \mathrm{fm}$ $a \approx 0.05 \, \mathrm{fm}$

$$L/a \ge 120$$

multiple scale problem always difficult for a numerical treatment



lattice cutoffs:

$$\Lambda_{\rm UV} = a^{-1}$$
 $\Lambda_{\rm IR} = L^{-1}$

$$L^{-1} \ll m_{\pi}, \ldots, m_{\mathrm{D}}, m_{\mathrm{B}} \ll a^{-1}$$
 $\mathrm{O}(\mathrm{e}^{-Lm_{\pi}}) \qquad m_{\mathrm{D}}a \lesssim 1/2$ \downarrow \downarrow $L \gtrsim 4/m_{\pi} \sim 6 \, \mathrm{fm}$ $a \approx 0.05 \, \mathrm{fm}$

$$L/a \gtrsim 120$$

beauty not accomodated: need an effective theory, $\Lambda_{
m QCD}/m_{
m b}$ expansion

Mass dependence in QCD

heavy light current
$$A_{\mu}(x) = \overline{\psi}_{\rm b}(x) \gamma_{\mu} \gamma_5 \psi_{\rm l}(x)$$

$$A_{\mu}(x) = \overline{\psi}_{\rm b}(x)\gamma_{\mu}\gamma_{5}\psi_{\rm l}(x)$$

matrix element
$$\Phi(m_b) = \langle \beta, b | A_\mu(x) | \alpha \rangle$$

(non-relativistic, mass independent normalization of states)

Interested in the behaviour at large $m = m_b$; no other large scale.

some massless scheme:

$$(\overline{m}(\mu), \ \overline{g}(\mu))$$
 $\mu \frac{\partial \overline{g}}{\partial \mu} = \beta(\overline{g}) \ , \quad \frac{\mu}{\overline{m}} \frac{\partial \overline{m}}{\partial \mu} = \tau(\overline{g})$

fix the scale:

$$\mu = m_\star = \overline{m}(m_\star)\,, \hspace{0.5cm} g_\star = \overline{g}(m_\star)\,,$$

mass dependence

$$\frac{m_{\star}}{\Phi} \frac{\partial \Phi}{\partial m_{\star}} = \gamma_{\text{match}}^{\Phi}(g_{\star}) \xrightarrow{m_{\star} \to \infty} -g_{\star}^{2} \qquad Y_{0} \qquad +O(g_{\star}^{4})$$
[Shifman & Voloshin]
$$= -1/(4\pi^{2})$$

"factorization", effective theory:

$$\gamma_{
m match}^{f \Phi}(g_{\star}) = \underbrace{\gamma_{
m match}(g_{\star})}_{+{
m O}(\Lambda/m_{\star})}$$

universal for all ME

Mass dependence in QCD

$$\frac{m_\star}{\Phi} \frac{\partial \Phi}{\partial m_\star} = \gamma_{\mathrm{match}}(g_\star) + \mathrm{O}(\Lambda/m_\star)$$
 depends on the scheme

 \rightarrow switch to RGI's Λ , M

$$\Lambda = m_\star \, \exp\left\{-\int^{g_\star} \mathrm{d}x \frac{1}{\beta(x)}\right\} \,, \qquad M = m_\star \, \exp\left\{-\int^{g_\star} \mathrm{d}x \frac{\tau(x)}{\beta(x)}\right\} \,,$$

then

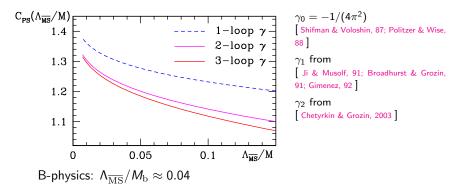
$$\frac{M}{\Phi} \frac{\partial \Phi}{\partial M} = \gamma_{A,M}(M/\Lambda) + O(\Lambda/M)$$
$$\gamma_{A,M}(M/\Lambda) = \frac{\gamma_{\text{match}}(g_{\star}(M/\Lambda))}{1 - \tau(g_{\star}(M/\Lambda))}$$

Integrate:

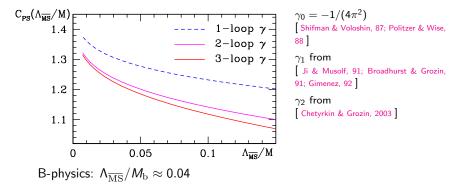
$$\Phi(M,\Lambda) = C_{\mathrm{PS}}(M/\Lambda) \Phi_{\mathrm{RGI}} + \mathrm{O}(\Lambda/M), \quad C_{\mathrm{PS}} = \exp\left\{ \int_{-\infty}^{g_{\star}(M/\Lambda)} \mathrm{d}x \frac{\gamma_{A,M}(x)}{\beta(x)} \right\}$$

 $\Phi_{\rm RGI}$ unambiguous, computable in the effective theory, mass-independent

Perturbative conversion functions

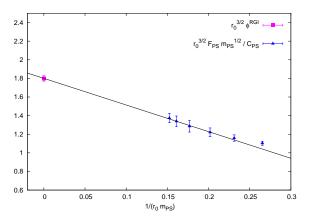


Perturbative conversion functions



For a large range of 1/m the functions are almost linear!

Application of perturbative conversion functions



Example of an interpolation between a static result and results with $m_{\rm h} < m_{\rm b}$. Continuum extrapolations are done before the interpolation. The point at $1/r_0 m_{\rm PS} = 0$ is given by $r_0^{3/2} \Phi_{\rm RGI}$.

This quenched computation is done for validating and demonstrating the applicability of HQET.

The effective theory: HQET
 [Eichten; Isgur & Wise; Georgi]
 QCD:
$$\mathcal{L}_{\rm QCD} = -\frac{1}{2g_0^2} \operatorname{tr} \{ F_{\mu\nu} F_{\mu\nu} \} + \sum_f \overline{\psi}_f [D_\mu \gamma_\mu + m_f] \psi_f$$

QCD:
$$\mathcal{L}_{\rm QCD} = -\frac{1}{2g_0^2} \operatorname{tr} \left\{ F_{\mu\nu} F_{\mu\nu} \right\} + \sum_f \overline{\psi}_f [D_\mu \gamma_\mu + m_f] \psi_f$$

HQET: in the rest frame of $\overline{\psi}_{\rm b}[D_{\mu}\gamma_{\mu}+m_{
m b}]\psi_{
m b}$ ightarrow $\mathcal{L}_{\rm stat}+\mathcal{L}^{(1)}+{
m O}(1/m_{
m h}^2)\,,$ a B-meson $\mathcal{L}_{\text{stat}} = \overline{\psi}_{\text{L}} D_0 \psi_{\text{L}}$ $\frac{1}{2}(1+\gamma_0)\psi_h = \psi_h$, "large" components $\mathcal{L}^{(1)} = \frac{1}{2m_h} \overline{\psi}_h (-\sigma \cdot \mathbf{B} - \frac{1}{2} \mathbf{D}^2) \psi_h$

easily derived for smooth (classical) fields (FWT trafo)

QCD:
$$\mathcal{L}_{\rm QCD} = -\frac{1}{2g_0^2} \operatorname{tr} \left\{ F_{\mu\nu} F_{\mu\nu} \right\} + \sum_f \overline{\psi}_f [D_\mu \gamma_\mu + m_f] \psi_f$$

HQET: in the rest frame of $\overline{\psi}_{\rm b}[D_{\mu}\gamma_{\mu}+m_{
m b}]\psi_{
m b}$ ightarrow $\mathcal{L}_{\rm stat}+\mathcal{L}^{(1)}+{
m O}(1/m_{
m h}^2)\,,$ a B-meson $\mathcal{L}_{\text{stat}} = \overline{\psi}_{\text{L}} D_0 \psi_{\text{b}} (*)$ $\frac{1}{2}(1+\gamma_0)\psi_h = \psi_h$, "large" components $\mathcal{L}^{(1)} = \frac{1}{2m} \overline{\psi}_{h} (-\sigma \cdot \mathbf{B} - \frac{1}{2} \mathbf{D}^{2}) \psi_{h}$

easily derived for smooth (classical) fields (FWT trafo)

(*) and $E_{
m QCD}=E^{
m stat}+m_{
m b}$ (universal energy shift)

The effective theory: HQET [Eichten; Isgur & Wise; Georgi]

QCD:
$$\mathcal{L}_{\rm QCD} = -\frac{1}{2g_0^2} \operatorname{tr} \left\{ F_{\mu\nu} F_{\mu\nu} \right\} + \sum_f \overline{\psi}_f [D_\mu \gamma_\mu + m_f] \psi_f$$

HQET: in the rest frame of a B-meson
$$\begin{array}{cccc} \overline{\psi}_b[D_\mu\gamma_\mu+m_b]\psi_b & \to & \mathcal{L}_{\rm stat}+\mathcal{L}^{(1)}+{\rm O}(1/m_b^2)\,, \\ & \mathcal{L}_{\rm stat} & = & \overline{\psi}_h\,D_0\,\psi_h & (*) \\ & & \frac{1}{2}(1+\gamma_0)\psi_h & = & \psi_h\,, & \text{``large'' components} \\ & \mathcal{L}^{(1)} & = & \frac{1}{2m_b}\overline{\psi}_h(-\sigma\cdot \mathbf{B}-\frac{1}{2}\mathbf{D}^2)\psi_h \end{array}$$

easily derived for smooth (classical) fields (FWT trafo)

(*) and $E_{\rm QCD} = E^{\rm stat} + m_{\rm b}$ (universal energy shift) Similarly: $1/m_b$ -terms for composite fields, e.g.

$$A_0^{\rm HQET} = Z_A^{\rm HQET} \{ \overline{\psi}_1 \gamma_0 \gamma_5 \psi_{\rm h} + c_A^{\rm HQET} \overline{\psi}_1 \gamma_k \overleftarrow{D}_k \gamma_5 \psi_{\rm h} \}$$

Remarks on the effective theory

- "Derivation" is essentially classical high momentum fluctuations <u>assumed</u> to produce only local terms
- Renormalizable by looking at engineering dimensions of the terms in the Lagrangian \rightarrow continuum limit exists iff $1/m_{\rm b}$ -terms are treated as insertions
- Lattice: static Lagrangian is automatically O(a) improved [M. Kurth & R.S., 2001] discretization errors: $O(a^2, a/m_b)$

Remarks on the effective theory

- "Derivation" is essentially classical high momentum fluctuations <u>assumed</u> to produce only local terms
- Renormalizable by looking at engineering dimensions of the terms in the Lagrangian \rightarrow continuum limit exists iff $1/m_{\rm b}$ -terms are treated as insertions
- Lattice: static Lagrangian is automatically O(a) improved [M. Kurth & R.S., 2001] discretization errors: $O(a^2, a/m_b)$
- Verification of these properties:
 1 loop PT (lattice reg.) [Eichten & Hill, 90; Boucaud et al; Flynn & Hill, 91; M. Kurth & R.S., 01]
 1-3 loop (dim.reg.) renormalization [Eichten & Hill, 90; Flynn & Hill, 91; Ji & Musolf, 91; Broadhurst & Grozin, 91; Gimenez, 92, Chetyrkin & Grozin, 2003; ...]
 numerical tests, see later

Remarks on the effective theory

- "Derivation" is essentially classical high momentum fluctuations <u>assumed</u> to produce only local terms
- Renormalizable by looking at engineering dimensions of the terms in the Lagrangian \rightarrow continuum limit exists iff $1/m_{\rm b}$ -terms are treated as insertions
- Lattice: static Lagrangian is automatically O(a) improved [M. Kurth & R.S., 2001] discretization errors: $O(a^2, a/m_b)$
- ➤ Verification of these properties:

 1 loop PT (lattice reg.) [Eichten & Hill, 90; Boucaud et al; Flynn & Hill, 91; M. Kurth & R.S., 01]

 1-3 loop (dim.reg.) renormalization [Eichten & Hill, 90; Flynn & Hill, 91; Ji & Musolf, 91; Broadhurst & Grozin, 91; Gimenez, 92, Chetyrkin & Grozin, 2003; ...]

 numerical tests, see later
- ▶ Lattice: precise computations are possible ...

... precise lattice computations are possible

after some developments

- a suitable choice of action
- "all-to-all" propagators
- ► GEVP method

Della Morte, Shindler, S, 2005

Foley, Juge, O'Cais, Peardon, Ryan, Skullerud, 05

Blossier, Della Morte, von Hippel, Mendes, S, 2008

Generalized EigenValue Problem

matrix of correlation functions on an infinite T, finite L, lattice

$$C_{ij}(t) = \langle O_i(0)O_j(t)\rangle = \sum_{n=1}^{\infty} e^{-E_n t} \psi_{ni} \psi_{nj}, \quad i, j = 1, \dots, N$$

$$\psi_{ni} \equiv (\psi_n)_i = \langle n|\hat{O}_i|0\rangle = \psi_{ni}^* \quad E_n \leq E_{n+1}$$

the GEVP is

$$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0), \quad n = 1, ..., N \quad t > t_0,$$

prooven that λ_n and v_n can be combined to make a

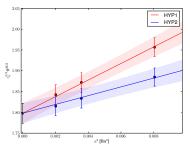
creation operator for the state $|n\rangle$ [Blossier, Della Morte, von Hippel, Mendes, S, 2008]

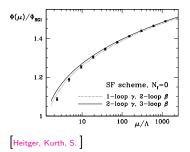
$$A_n(t_0) = \sum_i (t_0) c_i O_i(t_0), \quad A_n(t_0) |0\rangle = |n\rangle + O(e^{-(E_{N+1} - E_n) t_0})$$

fast convergence for the ground state: $(O(e^{-(E_{N+1}-E_1)t_0}))$ access to excited state matrix elements!

The static B-meson decay constant: $\Phi = F_{\rm B} \sqrt{m_{\rm B}}$

in lowest order of HQET (static)





Blossier et al., in prep.

$$F_{
m B}\sqrt{m_{
m B}} = \Phi(M_{
m b}/\Lambda) = \underbrace{C_{
m PS}(M_{
m b}/\Lambda)}_{\Uparrow} imes \Phi_{
m RGI} + \underbrace{O(1/m_{
m b})}_{\Uparrow}$$
in PT: error $\sim lpha(m_{
m b})^n \sim \left\{ rac{1}{2b_0 \ln(m_{
m b}/\Lambda)}
ight\}^n \stackrel{m_{
m b} o \infty}{\gg} rac{\Lambda}{m_{
m b}}$

$$F_{
m B}\sqrt{m_{
m B}} = \Phi(M_{
m b}/\Lambda) = \underbrace{C_{
m PS}(M_{
m b}/\Lambda)}_{\Uparrow} imes \Phi_{
m RGI} + \underbrace{O(1/m_{
m b})}_{\Uparrow}$$
in PT: error $\sim lpha(m_{
m b})^n \sim \left\{ rac{1}{2b_0 \ln(m_{
m b}/\Lambda)}
ight\}^n \stackrel{m_{
m b} o \infty}{\gg} rac{\Lambda}{m_{
m b}}$

general problem: clean computation of power corrections needs full non-perturbative treatment of the leading term

$$F_{
m B}\sqrt{m_{
m B}} = \Phi(M_{
m b}/\Lambda) = \underbrace{C_{
m PS}(M_{
m b}/\Lambda)}_{\Uparrow} imes \Phi_{
m RGI} + \underbrace{O(1/m_{
m b})}_{\Uparrow}$$
in PT: error $\sim lpha(m_{
m b})^n \sim \left\{ rac{1}{2b_0 \ln(m_{
m b}/\Lambda)}
ight\}^n \stackrel{m_{
m b} o \infty}{\gg} rac{\Lambda}{m_{
m b}}$

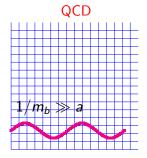
- general problem: clean computation of power corrections needs full non-perturbative treatment of the leading term
- ▶ in addition, on the lattice: $1/a^n$ power divergences need to be removed non-perturbatively (otherwise $a \rightarrow 0$ does not exist)

$$F_{
m B}\sqrt{m_{
m B}} = \Phi(M_{
m b}/\Lambda) = \underbrace{C_{
m PS}(M_{
m b}/\Lambda)}_{\Uparrow} imes \Phi_{
m RGI} + \underbrace{O(1/m_{
m b})}_{\Uparrow}$$
in PT: error $\sim lpha(m_{
m b})^n \sim \left\{ rac{1}{2b_0 \ln(m_{
m b}/\Lambda)}
ight\}^n \stackrel{m_{
m b} o \infty}{\gg} rac{\Lambda}{m_{
m b}}$

- general problem: clean computation of power corrections needs full non-perturbative treatment of the leading term
- ▶ in addition, on the lattice: $1/a^n$ power divergences need to be removed non-perturbatively (otherwise $a \rightarrow 0$ does not exist)
- do everything on the lattice, including matching renormalization factor of axial curent
 - coefficients in the Lagrangian, e.g. $\omega_{\rm spin}\,\overline{\psi}_{\rm h}\sigma\cdot{f B}\psi_{\rm h}$

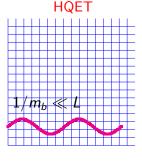
Non-perturbative matching of HQET and QCD [Heitger, S., 2001]

- ▶ The trick: start in small volume, $L = L_1 \approx 0.4 \, \text{fm}$, $a = 0.01 \, \text{fm}$
- Φ_k finite volume masses, decay constants ...



$$\Phi_k^{\text{QCD}} = \Phi_k^{\text{HQET}}$$
$$k = 1, 2, \dots, N_{\text{HQET}}$$

$$N_{
m HQET} = \# ext{ of parameters}$$



Non-perturbative matching of HQET and QCD [Heitger, S., 2001]

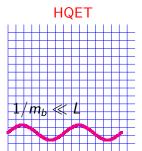
The trick: start in small volume. $L = L_1 \approx 0.4 \, \text{fm}$, $a = 0.01 \, \text{fm}$

 Φ_{k} finite volume masses. decay constants ...



$$\Phi_k^{\text{QCD}} = \Phi_k^{\text{HQET}}$$
$$k = 1, 2, \dots, N_{\text{HOET}}$$

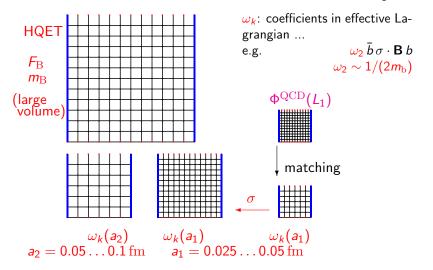
 $N_{\text{HOET}} =$ # of parameters



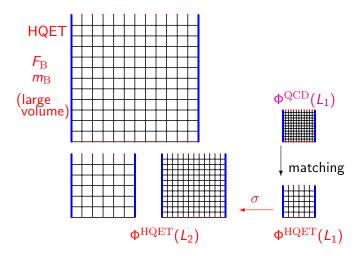
- → HQET-parameters from QCD-observables in small volume at small lattice spacing $L^{-1} \ll m_{\rm b} \ll a^{-1}$ power divergences subtracted non-perturbatively

The HQET strategy: first view

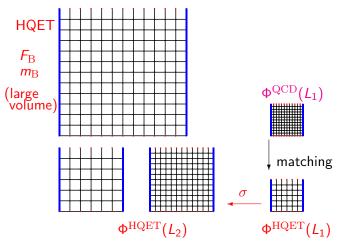
Heitger, S., 2001



The HQET strategy: second view



The HQET strategy: second view



continuum limit can be taken in all steps

Schrödinger functional toolbox for finite volume

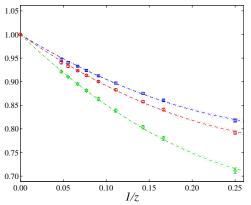
 $T \times L^3$, Euclidean Dirichlet boundary conditions in time Lüscher, Narayanan, Weisz, Wolff, 92; Sint, 93; ALPHA Collaboration, 92-... space

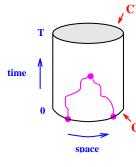
- no zero-modes
- boundary fields for gauge invariant quark correlation functions
- running coupling ...

An example with $N_{\rm f}=2$ dynamical fermions is [$\overline{{}^{7}\!\!\!{}^{LP\!HA}_{_{Collaboration,\ 2008}}}$]

$$R_{AV} = rac{-f_{
m A}(L/2)}{k_{
m V}(L/2)} = C_{
m PS}/C_{
m V} + {
m O}(1/z) \qquad z = ML$$

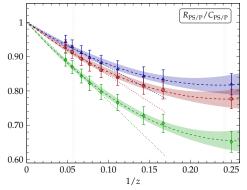
$$N_{\rm f}=2,~L\approx 0.5\,{\rm fm}$$

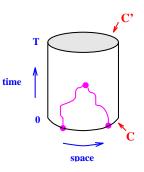




$$R_{AP} = rac{-f_{
m A}(L/2)}{f_{
m P}(L/2)} = C_{
m PS}/C_{
m P} + {
m O}(1/z)$$

The ratio R_{AP} from Patrick Fritzsch with $N_{\rm f}=2$.



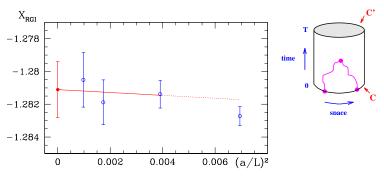


axial current matrix element, quenched

$$Y_{\mathrm{PS}}(L, M_{\mathrm{b}})/C_{\mathrm{PS}}(M_{\mathrm{b}}/\Lambda) = X_{\mathrm{RGI}} + \mathrm{O}(1/z)\,,\quad z = M_{\mathrm{b}}L\,,$$

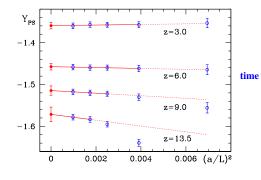
Continuum extrapolation of X_{RGI} (static approx.)

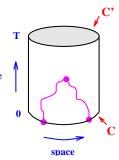
quenched, $m_{
m l}=$ 0, $L\approx 0.2~{
m fm}$



$$Y_{\rm PS}(L, M_{\rm b})/C_{\rm PS}(M_{\rm b}/\Lambda) = X_{\rm RGI} + \mathrm{O}(1/z)\,,\quad z = M_{\rm b}L\,,$$

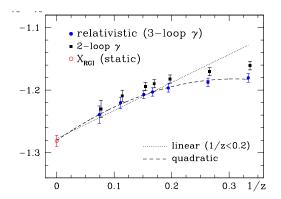
Continuum extrapolation of Y_{RGI} (QCD) quenched, $m_1 = 0$, $L \approx 0.2$ fm





$$Y_{\rm PS}(L,M_{\rm b})/C_{\rm PS}(M_{\rm b}/\Lambda) = X_{\rm RGI} + \mathrm{O}(1/z)\,,\quad z = M_{\rm b}L\,,$$

quenched, $m_1 = 0$, $L \approx 0.2$ fm



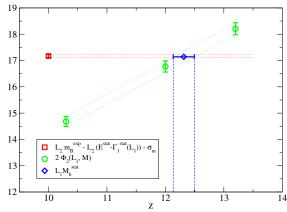
Large volume quenched results

... test HQET strategy, see achievable precision

... not for phenomenology

$$m_{\mathrm{B}} = \lim_{a \to 0} [E^{\mathrm{stat}} - \Gamma^{\mathrm{stat}}(L_2, a)] + \lim_{a \to 0} [\Gamma^{\mathrm{stat}}(L_2, a) - \Gamma^{\mathrm{stat}}(L_1, a)] + \frac{1}{L_1} \lim_{a \to 0} \Phi_1(L_1, M_{\mathrm{b}}, a)$$

After continuum extrapolations



Quenched results

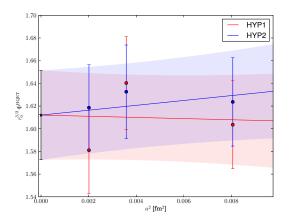
	$r_0 M_{ m b}^{(0)}$		$r_0(M_{ m b}^{(0)}+M_{ m b}^{(1)})$	
		$(\theta_1, \theta_2) = (0, 0.5)$	$(\theta_1, \theta_2) = (0.5, 1)$	$(\theta_1,\theta_2)=(1,0)$
$\theta_0 = 0$	17.15 ± 0.25	17.45 ± 0.26	17.45 ± 0.26	17.45 ± 0.26
$\theta_0 = 0.5$	17.11 ± 0.26	17.43 ± 0.27	17.43 ± 0.27	17.43 ± 0.27
$ heta_0=1$	16.93 ± 0.28	17.39 ± 0.30	17.39 ± 0.30	17.39 ± 0.30

Table: Interpolated b-quark mass, obtained from the spin averaged B_s meson, for the different values of the θ angles.

spread in
$$r_0(M_{\rm b}^{(0)})$$
: $O(1/(r_0M_{\rm b}))$
 $r_0(M_{\rm b}^{(0)}+M_{\rm b}^{(1)})$: $O(1/(r_0M_{\rm b})^2)$: very small

Quenched results (unpublished) including $1/m_{ m b}$ terms

[M. Della Morte, N. Garron, G. von Hippel T. Mendes, H. Simma & R.S.] Continuum extrapolation of $\Phi^{
m HQET}=r_0^{3/2}F_{
m B}\sqrt{m_{
m B}}$



Quenched results

Decay constants in MeV, using $r_0 = 0.5 \, \mathrm{fm}$.

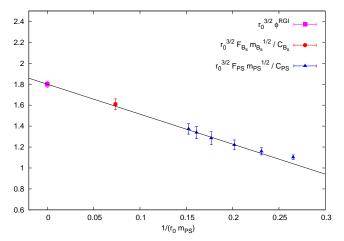
	$f_{ m B_s}^{(0)}$		$f_{ m B_s}^{(0)} + f_{ m B_s}^{(1)}$	
		$(\theta_1, \theta_2) = (0, 0.5)$	$(\theta_1, \theta_2) = (0.5, 1)$	$(\theta_1,\theta_2)=(1,0)$
$\theta_0 = 0$	230.16 ± 8.14	214.45 ± 7.95	214.50 ± 7.54	214.49 ± 7.54
$\theta_0 = 0.5$	226.41 ± 7.97	213.52 ± 7.77	213.39 ± 7.51	213.42 ± 7.51
$\theta_0 = 1$	215.37 ± 7.53	213.51 ± 7.99	212.70 ± 7.74	212.86 ± 7.78

	$f_{\mathrm{B}^{st}_{\mathrm{S}}}^{(0)}$		$f_{{ m B^*}_{ m S}}^{(0)} + f_{{ m B^*}_{ m S}}^{(1)}$	
		$(\theta_1, \theta_2) = (0, 0.5)$	$(\theta_1, \theta_2) = (0.5, 1)$	$(\theta_1,\theta_2)=(1,0)$
$\theta_0 = 0$	234.24 ± 8.28	216.11 ± 7.99	216.62 ± 7.65	216.51 ± 7.65
$\theta_0 = 0.5$	233.76 ± 8.26	215.47 ± 7.86	215.69 ± 7.65	215.65 ± 7.65
$\theta_0 = 1$	232.44 ± 8.23	216.79 ± 8.35	215.88 ± 8.02	216.10 ± 8.08

$$f_{{
m B^*}_{
m S}}^{(0)} + f_{{
m B^*}_{
m S}}^{(1)}$$
 and $f_{{
m B}_{
m S}}^{(0)} + f_{{
m B}_{
m S}}^{(1)}$: O(1/($r_0 M_{
m b}$)²): 1% level

Quenched results: B_s decay constant

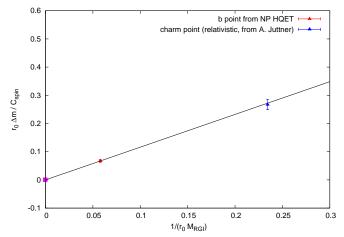
Static results together with results with $m_{\rm h} < m_{\rm b}$ and an HQET computation with $1/m_{\rm b}$ corrections included. $C_{\rm PS}$ at 3-loop.



at charm: -30% $1/m_{\rm c}$ correction, but where is $1/m_{\rm c}^2$?

Quenched results: spin splitting

Static results together with results with $m_{\rm h} < m_{\rm b}$ and an HQET computation with $1/m_{\rm b}$ corrections included.



where is $1/m_c^2$?

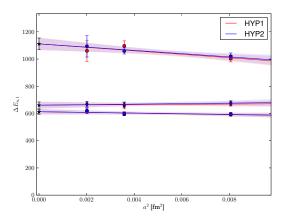
Quenched results: excited pseudo scalars

Continuum extrapolation of pseudoscalar energy levels in HQET. From bottom to top:

2s - 1s splitting static

2s - 1s splitting static $+ 1/m_b$

3s - 1s splitting static



Concluding remarks

- Non-perturbative confirmation of HQET as an effective theory [very nice but: numerics does of course not provide a proof]
- ▶ indications that asymptotic convergence extends to charm: linearity in 1/m seems to extend to $1/m_{\rm c}$ are $1/m_{\rm c}^2$ terms really so small? suggests to carry out a direct HQET computation for charm quarks
- N_f = 2 computations are on the way high precision is expected

Concluding remarks

- Non-perturbative confirmation of HQET as an effective theory [very nice but: numerics does of course not provide a proof]
- ▶ indications that asymptotic convergence extends to charm: linearity in 1/m seems to extend to $1/m_{\rm c}$ are $1/m_{\rm c}^2$ terms really so small? suggests to carry out a direct HQET computation for charm quarks
- N_f = 2 computations are on the way high precision is expected
 - ... once dynamical fermion updating of topological sectors is under control