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Motivations

We know the gauge group

GSM = SU(3)c × SU(2)L × U(1)Y

and fermion content of the Standard Model (SM). But there are many fundamental
questions that are still unanswered about this theory. For example, what role does
Nc = 3 play? What if Nc = 5 or another value? There is also an part of the model
that is not yet verified, namely the Higgs mechanism for electroweak symmetry
breaking. One can gain useful insights by studying the properties of variants of the SM,
e.g., with Nc 6= 3 or without a conventional Higgs mechanism.



Outline

• Models with dynamical electroweak symmetry breaking (EWSB) as an alternate to
the SM Higgs

• SM variants with general Nc

• SM variants with color-nonsinglet electroweak-singlet fermions

• SM variants in which QCD is the dominant source of EWSB



N.B.: Since the topic here is SM variants, I will not discuss our two recent papers;

S. Nussinov and RS, “On the π and K as qq̄ Bound States and Approximate
Nambu-Goldstone Bosons”, Phys. Rev. D79, 016005 (2009), ArXiv:0811.3404.

S. Nussinov and RS, “Gluon-Glueball Duality and Searches for Glueballs”, Phys. Rev.
D80, 054003 (2009), ArXiv:0907.1577.



Dynamical Electroweak Symmetry Breaking

Origin of EWSB is an outstanding unsolved question in particle physics. Standard
model Higgs mechanism is somewhat unsatisfying as an explanation since:

Spontaneous symmetry breaking is put in by hand: Higgs potential
V (φ) = µ2φ†φ + λ(φ†φ)2 with µ2 < 0, so 〈φ〉 =

( 0
v/

√
2

)

, ⇒ EWSB, but does

not explain why µ2 is negative when it could, a priori, have been positive.

SM accomodates, but does not explain, fermion masses and mixing, via Yukawa
couplings, mf ' yfv/

√
2; yf values and generational hierarchy put in by hand; some

yf ’s range down to 10−5 with no explanation.



Might history teach us something?

In both of two previous cases where fundamental scalar fields were used to model
spontaneous symmetry breaking, the actual underlying physics did not involve
fundamental scalar fields but instead bilinear fermion condensates:

• Superconductivity: Ginzburg-Landau free energy functional used complex scalar field
φ with V = c2|φ|2 + c4|φ|4, c2 ∝ (T − Tc), so for T < Tc, c2 < 0 so
〈φ〉 6= 0. But superconductivity is actually due to dynamical formation of a
condensate of Cooper pairs 〈ee〉, as explained by the BCS theory.

• Gell-Mann Lévy σ model for spontaneous chiral symmetry breaking in hadronic
physics, due to 〈σ〉 = fπ 6= 0; in the actual underlying QCD, the SχSB is due to
the dynamical formation of a 〈q̄q〉 condensate.



QCD Breaks Electroweak Symmetry

We already know of a source of dynamical EWSB: QCD breaks electroweak symmetry.
Consider, for simplicity, Nf = 2 QCD with massless u, d. The quark condensate
〈q̄q〉 = 〈q̄LqR〉 + 〈q̄RqL〉, transforms as Iw = 1/2, |Y | = 1. If this were the only
source of EWSB, then the Nambu-Goldstone bosons (NGB’s), π± and π0, would be
absorbed to become the longitudinal components of the W ± and Z, giving them
masses:

m2
W =

g2f2
π

4
, m2

Z =
(g2 + g′2)f2

π

4

These satisfy the tree-level relation ρ = 1, where

ρ =
m2

W

m2
Z cos2 θW

The value of fπ for massless u, d is slightly less than for mu, md ∼ few MeV, but
this is unimportant here; take fπ ∼ 90 MeV. With this value, if one also takes the
usual values of g, g′, this yields mW ' 29 MeV, mZ ' 33 MeV.



While the scale here is too small by ∼ 103 to explain the observed W and Z masses,
it motivates a dynamical approach to EWSB, technicolor (TC) (Weinberg, Susskind,
1979).

In TC theories, one has a new vectorial gauge symmetry, technicolor, with a gauge
group GTC = SU(NTC), and a set of technifermions F subject to this gauge
interaction and transforming nontrivially under EW interactions. For example, the
“one-doublet” TC model uses

(

F τ
u

F τ
d

)

L

F τ
uR, F τ

dR

(TC indices τ ) with Y = 0 for the SU(2)L technidoublet and Y = ±1 for the
SU(2)L technisinglets. The one-family TC model uses one SM family of technifermions.

TC interaction is asymptotically free, gets strong at the scale ΛTC, producing
technifermion condensates 〈F̄uFu〉, 〈F̄dFd〉 transforming as Iw = 1/2, |Y | = 1,
breaking EW symmetry. The resultant Nambu-Goldstone technipions are absorbed to
give the W and Z masses:



m2
W ' g2 f2

TC ND

4
, m2

Z ' (g2 + g′2) f2
TC ND

4

where fTC ∼ ΛTC is TC analogue of fπ, ND = no. of SU(2)L technidoublets: 1 and
(Nc + 1) = 4 for 1-doublet and 1-family TC. Again, ρ = 1.

Given asymptotic freedom of TC theory, condensate formation and hence EWSB are
automatic, do not require any ad hoc parameter choice like µ2 < 0 in the SM.
Because TC has no fundamental scalar field, there is no hierarchy problem.

×

f i

R
F τ

R
F τ

L f i

L

V i

τ

1

To give masses to quarks and leptons, must communicate the EWSB in the TC sector
to these SM fermions; hence, embed TC in a larger, extended technicolor (ETC) gauge
theory with ETC gauge bosons V j

τ with masses METC,j transforming (technisinglet)
SM fermions of j’th generation into technifermions, Resultant SM fermion mass:

mfj
' η

Λ3
TC

M2
ETC,j



Typical values: METC,1 ∼ 103 TeV, METC,2 ∼ 102 TeV, METC,3 ∼ few TeV.
Current TC theories involve a gauge coupling that gets large but runs slowly over an
extended interval of energies due to an approximate IR zero of the TC beta function; η
is a resultant enhancement factor.

It follows that the running mass mfj
(p) is hard up to METC,j and has the power-law

decay

mfj
(p) ∼ mfj(0)

M2
ETC,j

p2
for p >> METC,j

(Christensen and RS, PRL 94, 241801 (2005)).

How can TC/ETC explain neutrino masses without a GUT-scale seesaw? One can
construct a possible mechanism for this (Appelquist and RS, PL B548, 204 (2002); PRL
90, 201801 (2003)).

Early concern with flavor-changing neutral current (FCNC) interactions, e.g.,
K̄0 ↔ K0 (i.e., sd̄ ↔ ds̄) and resultant KL − KS mass difference ∆mKLKS

. SM
contribution consistent with experimental value ∆mKLKS

/mK ' 0.7 × 10−14.



Naive effective Lagrangian used in early studies without UV-complete ETC model:
Leff = c[sγµd]2 with coefficient c ∼ 1/M 2

ETC. With a more UV-complete theory,
we have analyzed this and shown that the coefficient is further suppressed by the
approximate generational symmetry.

In terms of ETC eigenstates, an sd̄ in a K̄0 produces a V 2
1 ETC gauge boson, but this

cannot directly yield a ds̄ in the final-state K0; the latter is produced by a V 1
2 . We

have calculated ETC gauge boson mixing V 2
1 → V 1

2 :

Contribution from V 2
1 → V 1

2 :

c ∼ 1

M2
ETC,1

1
2Π

2
1

1

M2
ETC,1

∼
M2

ETC,3

M4
ETC,1

<<
1

M2
ETC,1

With above values, METC,1 ∼ 103 TeV, METC,3 ∼ 3 TeV, the suppression factor is
(METC,3/METC,1)

2 ' 10−5. Hence, rather than the naive result
∆mKLKS

/mK ∼ Λ2
QCD/M 2

ETC,1, this yields the much smaller result

∆mKLKS

mK

∼
M2

ETC,3 Λ2
QCD

M4
ETC,1

∼ 10−18



so this and other FCNC processes are not problematic as had been thought (Appelquist,
Piai, RS, PR D69, 015002 (2004)).

We have studied fermion masses and mixing and constraints from FCNC’s in a series of
papers: Appelquist, Piai, RS, PL B593, 175 (2004); PL B595, 442 (2004); Appelquist,
Christensen, Piai, RS, PRD 70, 093010 (2004)).

The approach in TC/ETC models is very ambitious, since it tries to explain dynamically
not only EWSB but the pattern of fermion masses and mixings. Although one does not
have fully realistic models, and it is challenging to try to satisfy all phenomenological
constraints, e.g., large mass splitting between the t and b quarks, small contributions to
electroweak precision quantities, etc., this approach serves as an instructive alternate to
the SM and supersymmetric SM.



Modern TC theories use a slowly running (“walking”) gauge coupling associated with
an approximate IR fixed point of TC renorm. group. Approximate solutions of
Dyson-Schwinger (DS) eqs. for a one-family SU(2)TC theory, which has
Nw(Nc + 1) = 8 technifermions, plausibly yield this behavior. This has the potential
to reduce TC corrections to precision EW quantities, such as S (Appelquist and
Sannino, 1999; recent studies Kurachi and RS PR D74, 056003 (2006); Kurachi, RS,
Yamawaki, PR D76, 035003 (2007)).

Several recent lattice studies (Appelquist et al., PRL 100, 171607 (2008); Deutzeman
et al., PL B670, 41 (2008), Jin, Mawhinney, 2009) for Nc = 3, Nf fermions in fund.
rep. are consistent with suggestions, to within theoretical uncertainties, from
approximate solutions of DS eqs. on Nf,cr for boundary between phases with and
without spontaneous chiral symmetry breaking (SχSB), which one needs to know to
construct walking TC theories (also other work for higher reps.).

But there are significant theoretical uncertainties in the DS analysis, since it neglects
higher-order semiperturbative gluon (technigluon) effects and instanton contributions,
which enhance SχSB. Hence, one might have thought that it would underestimate the
size of the SχSB phase.



We can understand how the DS prediction for Nf,cr can nevertheless be roughly
correct (Brodsky and RS, PL B666, 95 (2008), ArXiv:0806.1535).

To see this, recall that the DS eqs. also do not incorporate information on confinement,
and the Euclidean loop integration takes k to 0. But because of confinement, the
quarks and gluons (technifermions and technigluons) have nonzero bound state
momenta of order ΛQCD (ΛTC), so the k integration should not really extend all the
way to 0; the k integration measure is smaller.

Hence, in this respect, the DS analysis overestimates SχSB. The effects of these
different physical features that are neglected are opposite and thus tend to cancel each
other.



Some Insights Into the Role of Nc = 3 in the SM

To gain insight into the role of Nc = 3 in the SM, we study the Nc-Extended
Standard Model (ESM) based on the gauge group

GESM = SU(Nc) × SU(2)L × U(1)Y

with various fermion contents. What are the properties of such theories? What
condition(s) must be satisfied for them to be embedded in a grand unified theory? To
keep baryons as fermions, one may require that Nc be odd.

The large-Nc expansion (’t Hooft, 1974; Witten, 1979...) has been very valuable as an
analytic tool for studying QCD. In applications, a common practice has been to turn off
the electroweak (EW) interactions and analyze the QCD sector by itself. Here we retain
the EW sector and do not necessarily take Nc → ∞.



First, consider the fermion content consisting of

Qa
L =

(

ua

da

)

L

: (Nc, 2)YQL

ua
R : (Nc, 1)YuR

da
R : (Nc, 1)YdR

LL =

(

ν
e

)

L

: (1, 2)YLL

νR : (1, 1)YνR

eR : (1, 1)YeR

for first generation, with Ng in all. Here, Q = T3 + (Y/2), so qu = qd + 1,
qν = qe + 1.

The SU(Nc)
2 U(1)Y anomalies vanish automatically. The vanishing of the

SU(2)2 U(1)Y anomaly implies

NcYQL
+ YLL

= 0

i.e.,
Nc(2qd + 1) + (2qe + 1) = 0

This also yields zero U(1)3
Y gauge anomaly.



General solution:

qd = −1

2

[

1 +
YLL

Nc

]

= −1

2

[

1 +
1

Nc

(2qe + 1)

]

or equivalently,

qe = −1

2

[

1 + NcYQL

]

= −1

2

[

1 + Nc(2qd + 1)

]

Thus, for a given Nc, anomaly cancellation yields a one-parameter family of solutions
for the fermion charges. The values of these charges are in R, not, in general, in Q, so
that electric and hypercharge are not quantized, although if one is rational, then they
all are, since YLL

/YQL
= −Nc, so YLL

∈ Q ⇐⇒ YQL
∈ Q and similarly for YfR

.



case qd (qu, qd) YQL
YLL

C1q > 0 (+, +) > 1 < −Nc

C2q −1 < qd < 0 (+, −) −1 < YQL
< 1 −Nc < YLL

< Nc

C2q,sym −1/2 (1/2, −1/2) 0 0
C3q < −1 (−, −) < −1 > Nc

C4q 0 (1,0) 1 −Nc

C5q −1 (0, −1) −1 Nc

case qe (qν, qe) YLL
YQL

C1` > 0 (+, +) > 1 < −1/Nc

C2` −1 < qe < 0 (+, −) −1 < YLL
< 1 −1/Nc < YQL

< 1/Nc

C2`,sym −1/2 (1/2, −1/2) 0 0
C3` < −1 (−, −) < −1 > 1/Nc

C4` 0 (1,0) 1 −1/Nc

C5` −1 (0, −1) −1 1/Nc

Tables listing classes of solutions for quark and lepton charges



Question: Can one embed the theory with GESM in a simple group GGUT ? This is
desirable since it

• unifies quarks and leptons, extending the link already contained in the condition for
the vanishing of the anomaly in gauged currents

• predicts the relative sizes of gauge couplings in the factor groups

• quantizes charges, since Q is a generator of GGUT

Clearly, the rank rk(GGUT) ≥ rk(GESM) = Nc + 1

Use standard procedure for constructing a GUT:

• put fermions in complex representations to avoid bare mass terms that would
produce masses of order MGUT for all fermions

• require absence of gauge anomalies

Try to place all fermions of each generation into one representation, which requires that
Tr(Y ) =

∑

f Yf = 0 (for each generation) since the hypercharge Y is a generator of
GGUT . This condition is satisfied with the fermion content shown:

Tr(Y ) = 2(NcYQL
+ YLL

) + Nc(Yuc
L
+ Ydc

L
) + Yec

L
+ Yνc

L
= 0



Since the exceptional groups have bounded ranks, they cannot satisfy the rank
condition above for arbitrary Nc; instead, use a GGUT that can satisfy this condition
for arbitrary Nc.

It is natural to try to embed GESM in an SO(4k + 2) GUT, since this group has
complex reps. and, for k ≥ 2, is anomaly-free. This would be a generalization, to
higher Nc, of the embedding of GSM in SO(10) (Fritzsch-Minkowski, Georgi). (Recall
that SO(N ) has only real representations for odd N and for N = 0 mod 4.)

Focus on odd Nc. Since rank rk(SO(4k + 2)) = 2k + 1, the condition
rk(GGUT) ≥ rk(GESM) is 2k ≥ Nc, but, since Nc is odd, this is 2k ≥ Nc + 1,
so the GGUT = SO(2Nc + 4) with rank Nc + 2. The chiral spinor rep. of this
group has dimension 2Nc+1. Each generation has 4(Nc + 1) Weyl fermions. The
condition that these fit into the spinor is

4(Nc + 1) = 2Nc+1

But the only solution of this equation is Nc = 3. Similar argument for even Nc. So
the Nc-extended SM can only be grand-unified in this way for Nc = 3. This may give
insight into the special role that Nc = 3 plays in our world. (RS, Phys. Rev. D53,
6465 (1996)).



Next, consider grand unification with an Nc-extended SM with modification of the
fermion content (RS, Phys Rev. D76, 055010 (2007),ArXiv:0704.3464).

Focus on a different minimal GUT, with rk(GGUT) = rk(GESM) = Nc + 1,
namely GGUT = SU(N) with N = Nc + 2.

Study examples both with and without supersymmetry. Consider two types of
(anomaly-free) chiral matter fermion content. First, consider Ng copies ( ∼ flavors) of
chiral superfields transforming as

[2]N + (N − 4)[1̄]N

where [k]N denotes antisymmetric rank-k tensor rep. of SU(N ) ([1]N , [2]N equiv. to
notation , , etc.), and fermion fields are written left-handed here. This is a chiral
gauge theory, so no fermion mass terms at GUT scale.

Assign Y for the fundamental representation so that

Y = diag(−2/Nc..., −2/Nc, 1, 1)

and hence
Q = diag(−1/Nc, ..., −1/Nc, 1, 0)



With respect to GESM , the (matter) fermions transform as N − 4 = Nc − 2 copies
of

[1̄]N : (N̄c, 1)2/Nc + (1, 2)−1

with corresponding fermions fields

dc
a,p,L , Lp,L =

(

νe

e

)

p,L

(where 1 ≤ p ≤ N − 4 is the copy index), and

[2]N : ([2]Nc, 1)−4/Nc + (Nc, 2)1−(2/Nc) + (1, 1)2

with fields

ξab
L ,

(

ua

da

)

L

, ec
L

Charges:

qd = − 1

Nc

, qu = 1 − 1

Nc

, qξ = − 2

Nc



If and only if Nc = 3, then ξL is a 3̄ and is uc
L; for larger Nc, it is a distinct

(antisymmetric rank-2) representation of SU(Nc), [2]Nc.

Moreover, since for Nc = 3, this set of fermions reduces to the SM-nonsinglet
fermions discussed above for the Nc-extended SM with qν = 0, it follows that the
charges coincide. For example,

qd = − 1

Nc

= −1

2

[

1 − 1

Nc

]

⇔ Nc = 3

Each generation contains Nd = 2(Nc − 1) SU(2)L doublets of matter fermions, of
which Nc are color-nonsinglets and Nc − 2 are color-singlets (leptons). We exclude
the value Nc = 2 because the resulting theory would not have any leptonic SU(2)L

doublets.



The electromagnetic U(1)em gauge interaction is vectorial if and only if the charges of
the (left-handed) fermions can be written as a set of equal and opposite pairs together
with possible zero values. It suffices to consider a single generation.

For the charges of the fermions in the [2]N we have

• qξ = −2/Nc, with multiplicity Nc(Nc − 1)/2

• qu = 1 − (1/Nc) with multiplicity Nc

• qd = −1/Nc with multiplicity Nc

• qec = 1, multiplicity 1

The charges of the fermions in the N − 4 = Nc − 2 copies of the [1̄]N are:

• qdc = 1/Nc with multiplicity (Nc − 2)Nc

• qe = −1 with multiplicity Nc − 2

• qν = 0 with multiplicity Nc − 2

These charges constitute a vectorial set, with nonzero charges in equal and opposite
pairs, if and only if Nc = 3. Hence, for Nc ≥ 4, U(1)em is an (anomaly-free) chiral
gauge interaction.



Since the SU(Nc) gauge interaction is asymptotically free, as the energy decreases
below the GUT scale, αs grows and, at the scale ΛQCD, causes condensation of color
nonsinglet matter fermions. If Nc 6= 3, this condensation breaks U(1)em and gives the
photon a mass.

Illustrate this in the simplest case, Nc = 4, i.e., an SU(6) GUT. Here the matter
fermions for a given generation transform as

[2]6 + 2([1̄]6)

and hence, with respect to SU(4)c × SU(2)L × U(1)Y , as

{([2]4, 1)−1 + ([1]4, [1]2)1/2 + (1, 1)2} + {2([1̄]4, 1)1/2 + 2(1, 2)−1}

with charges qu = 3/4, qd = −1/4, qξ = −1/2 (and qν = 0, qe = −1). Note
that [k]N ≈ [k̄]N iff k = N/2, so [2]4 ≈ [2̄]4.



The most attractive channel (MAC) for color-nonsinglet matter fermion condensation is
([2]4, 1)−1 × ([2]4, 1)−1 → (1, 1)−2, with the condensate

〈εabrsξ
ab T
L Cξrs

L 〉

This is invariant under SU(4)c but has charge q = −1, hypercharge y = 2q = −2
and hence breaks not only U(1)Y but also U(1)em.

For Nc = 5, i.e., an SU(7) GUT, SU(5)c is a chiral gauge interaction and the MAC for
the color-nonsinglet matter fermion condensation is

([2]5, 1)−4/5 × ([2]5, 1)−4/5 → ([1̄]5, 1)−8/5

with condensate 〈εabrsvξ
ab T
L Cξrs

L 〉, which breaks not only U(1)em and U(1)Y , but
also self-breaks color SU(5)c to SU(4)c (the SU(4)c theory is vectorial and does not
break further). In this theory, qu = 4/5, qd = −1/5, qξ = −2/5.



For odd Nc = 2m − 1, a second choice for the left-handed matter fermion content in
the SU(N ) GUT with N = Nc + 2 = 2m + 1 is Ng = 3 copies of the set

m
∑

`=1

[2`]N

Since [N − k]N ≈ [k̄]N , the ` = m term is [N − 1]N ≈ [1̄]N . For Nc = 3, this
fermion content is [2]5 + [4]5 ≈ [2]5 + [1̄]5 and thus coincides with the first set and
comprises the fermion content of the Georgi-Glashow SU(5) GUT. For other values of
Nc it constitutes a second type of Nc-generalization for a GUT.

The group SU(N ) with N = 2m + 1 has an embedding in SO(4m + 2) given by
SU(2m + 1) × U(1)X ⊂ SO(4m + 2), where U(1)X is an additional U(1)
symmetry. The total number of chiral matter fermions in this set is

m
∑

`=1

(

2m + 1

2`

)

= 22m − 1

Adding an SU(N )-singlet field to this set thus yields 22m = 2Nc+1 chiral fermions,
which fit in the spinor representation of SO(4m + 2).

Because of the profusion of fields for Nc ≥ 5, the SU(Nc) color sector loses
asymptotic freedom in the energy interval 1 TeV ≤ E ≤ MGUT .



A SM Variant with Color-Nonsinglet, Electroweak-Singlet
Fermions

The SM has fermions that are (i) color-nonsinglets and electroweak-nonsinglets (the
quarks) and (ii) color-singlets and EW-nonsinglets (the leptons), but no fermions that
are color-nonsinglets and EW-singlets. What would be the properties of a SM variant
with color-nonsinglet, electroweak-singlet (matter) fermions?

A study of such an SM variant reveals that it would have a number of unusual
properties (RS, Phys. Rev. D78, 076009 (2008), ArXiv:0809.0087).

One example: consider a SM variant with SU(2)L doublets for quarks and leptons (for
each generation):

Qa
L =

(

ua(1/2)

da(−1/2)

)

L

: YQL
= 0

LL =

(

`1(1/2)

`2(−1/2)

)

L

‘ : YLL
= 0

and a set of SU(2)L singlets {fR} with

YfR
= qfR

= 0 ∀ fR



To keep SU(3)c vectorial, the set {fR} includes two color triplets for each generation,
denoted ηa

R and η′a
R .

The remainder of the set {fR} is comprised of (two or some other number of)
GSM -singlets.

The SU(3)c color interaction confines and spontaneously breaks chiral symmetry. The
most attractive channel, 3 × 3̄ → 1, yields the condensates

〈ūa,L fa
R〉 , 〈d̄a,L fa

R〉

where fR refers to ηR or η′
R. Since quL

= 1/2, qdL
= −1/2, and qηR

= qη′
R

= 0,

these condensates break not just SU(2)L, but also U(1)em. Other examples analyzed in
RS, Phys. Rev. D78, 076009 (2008).



A Standard Model Variant with Primary Electroweak
Symmetry Breaking due to QCD

As noted, the QCD quark condensate 〈q̄q〉 = 〈q̄LqR〉 + 〈q̄RqL〉, transforms as an
Iw = 1/2, |Y | = 1 operator and breaks electroweak gauge symmetry at the scale of
ΛQCD ∼ 102 MeV. In the real world, this breaking is very small compared to the main
EWSB at the scale 250 GeV.

How would the world be different if the QCD-induced EWSB were dominant? A study
of models of this type reveals many striking differences with the real world (C. Quigg
and RS, Phys. Rev. D79, 096002 (2009), ArXiv:0901.3958). For this study, we mainly
keep Nc = 3.

So consider reduced Standard Models (RSM’s) in which the real-world 250 GeV-scale
EWSB is absent. We focus first on two types of models:

1. RSM1, with no bare mass terms for the quarks and leptons,

2. RSM2, with bare mass terms for quarks and leptons, explicitly violating EW
symmetry, restricted to be sufficiently small that the model serves as a reasonable
low-energy effective field theory up to energy scales well above the QCD scale.

We also study models with augmented electroweak symmetry groups.



We consider variable Ng and first take Ng = 1. The SU(3)c, SU(2)L, and U(1)Y

gauge couplings gs, g, and g′ are taken to have approximately their actual values.

As noted, the would-be Nambu-Goldstone bosons π± and π0 are absorbed to become
the longitudinal components of the W ± and Z, with masses (marked here with bars to
distinguish them from the real-world mW and mZ)

m̄2
W =

g2NDf2
π

4
, m̄2

Z =
(g2 + g′2)NDf2

π

4

where ND = Ng = number of quark SU(2)L doublets. Focus on ND = 1 first, for
which mW ∼ 29 MeV, mZ ∼ 33 MeV.

There is a new type of unification of weak and residual strong interactions here,
resulting from the absorption of the would-be π’s to make the electroweak vector
bosons W and Z.



The strength of charged- and neutral-current weak interactions is given by the Fermi
coupling

ḠF√
2

=
g2

8m̄2
W

=
1

2f2
π

=
g2 + g′2

8m̄2
Z

This is much larger than in the real world:

ḠF

GF

=
v2

f2
π

' 0.7 × 107

where v = 246 GeV is the real-world EW scale. This produces a number of interesting
differences between this hypothetical world and our real world.

For weak decays and charged-current (CC) and neutral-current (NC) cross sections with
momentum transfers small compared with m̄W and m̄Z, the effective strength of weak
interactions ∝ G2

F , is a factor of ∼ 1013 larger than in the real world and is much
closer to the strength of the residual strong interactions than in the real world.



For example, if, as is plausible, the masses of the nucleons p and n differ by a few
MeV, then the heavier nucleon beta-decays to the lighter with a lifetime

τ ∼
(

fπ

v

)4

τn ∼ 10−11 sec

where τn ' 0.9 × 103 s.

The long-range component of the residual strong interactions between color-singlet
hadrons in the real world is mediated by pion exchange, with range ∼ 1/mπ = 1.4
fm. Here there are no pions, as such, in the hadron spectrum, but instead there are the
very low-mass W and Z. Pion exchange is replaced by the weak CC and NC exchange
of the W and Z, with the greater range 1/m̄W,Z ∼ 6 fm. These interactions violate
P and C.

Effect on nucleon binding to form nuclei: A simple description of NN binding uses a
solution of the Schrödinger equation in a square-well potential. Let the radial size of
the square well be a and the depth V0. The occurrence and number of bound states is
determined by the dimensionless parameter



ξ =
2µV0a

2

~2π2

where µ is the reduced mass, i.e., MN/2 for the NN system. When ξ > O(1) a
first bound state appears, and as ξ increases, more bound states appear in the
spectrum. A figure of merit is V0a

2. Now

ā

arw

=
(1/m̄W,Z)

(1/mπ)
=

2mπ

gfπ

' 4.5

and since V0 ∼ amplitude for π or W, Z exchange, we have

V̄0

(V0)rw

=
g2/(8m̄2

W )

g2
πNN/m2

π

=
1/(2f2

π)

g2
πNN/m2

π
so

ξ̄

ξrw

=
2m4

π

g2
πNNg2f4

π

∼ 1

6

Thus, the fact that the coupling g2 for the W, Z exchange in this world is smaller
than the coupling gπNN for π exchange in the real world is partially cancelled by the
greater range, ā > arw.



Since the masses of the nucleons p and n in the real world are mainly due to
confinement energy of the quarks and gluons (as shown in bag models) or equivalently
to the dynamically generated constituent quark masses, but not to the very small
current-quark masses of a few MeV for u and d in the real world, taking the latter to
zero only reduces mN slightly.

The absence of a Higgs boson means that the perturbatively calculated partial wave
amplitudes (PWA’s) for W, Z scattering exceed unitarity at a scale of few ×ΛQCD,
reflecting the formation of hadronic bound states - ρ, etc. This is understandable, since
perturbation theory should not hold in the presence of strong interactions that produce
bound states. The full amplitudes including the effect of the resonances do, of course,
obey unitarity; the resonances “unitarize” the amplitudes.

For s >> m̄2
W , m̄2

Z, the matrix of J = 0 partial wave amplitudes for 2 → 2

scattering of the normalized states |W +W −〉 and |ZZ/
√

2〉 is

a0 =
s

32πNgf2
π

(

1
√

2√
2 0

)

The larger eigenvalue is a0,max = s/(16πNgf
2
π). Imposing the unitarity condition

|a0| ≤ 1 yields the inequality
√

s < 4
√

Ngπ fπ, i.e., ' 640 MeV for Ng = 1, for



the perturbatively calculated PWA’s to hold. This makes sense, since the
nonperturbative bound state, ρ, with mass comparable to its real-world value, 775
MeV, is just above this. Other contributions to 2 → 2 W and Z scattering would
include the analogue of the S = 1, L = 1, J = 2 f2(1270) meson, etc.

The decay width of the ρ in this world would be similar to that of the real-world ρrw:

Γ(ρ → W +W −) ' Γ(ρrw → π+π−)

In the real world, the difference md − mu is important in counterbalancing the greater
Coulombic self-energy of the proton and producing the difference mn − mp = 1.3
MeV. Here, with mu = md = 0, this effect is absent.

However, there are important corrections to the p and n propagators due to emission
and reabsorption of virtual W ’s and Z’s. The W contributions cancel in the difference
mn − mp, while estimates of the Z exchange contributions are of comparable size
and, for sin2 θW < 1/2, of opposite sign, relative to the electromagnetic
contributions, so the estimate of the sign of mn − mp is model-dependent.



The EWSB by the 〈q̄q〉 condensate does not directly give masses to the SM fermions.
These fermion masses are dependent on the UV completion of the theory. If one
assumes nothing further, then there is an infrared pathology due to the presence of the
massless charged unconfined electron. Among other things, this leads to the collapse of
the vacuum into a plasma due to the production of an avalanche of e+e− pairs by
arbitrarily soft photons and arbitrarily weak electric fields.

If one assumes a a GUT UV completion of this theory, a tree-level process that
contributes to proton decay is u + u → X → e+dc, where X is a GUT-mass vector
boson. The four-fermion operator for this transition also has a transition matrix element
between |e+〉 and |p〉, with size ε ∼ Λ3

QCD/M 2
GUT ∼ 10−34ΛQCD. Diagonalizing

the mass mixing matrix involving |e+〉 and |p〉,

Me+,p =

(

0 ε
ε mp

)

gives me = ε2/mp. For MGUT ∼ 1016 GeV, this gives a nonzero but extremely
small value for me, so the infrared pathology and vacuum instability via e+e− pair
creation remains.



If one considers Ng ≥ 2 generations of (massless) fermions, the breaking of the global
SU(Nf)L × SU(Nf)R chiral symmetry to vectorial SU(Nf)V , where Nf = 2Ng,
by the 〈q̄q〉 condensate leads to N 2

f − 1 = 4N 2
g − 1 Nambu-Goldstone bosons

(NGB’s). Of these, there are (i) 2N 2
g with charges ±1, (ii) 2Ng(Ng − 1) electrically

neutral non-selfconjugate NGB’s, and (iii) 2Ng − 1 self-conjugate NGB’s. Of these,
two of (i) and one of (iii) get absorbed by the W ± and Z; the residual 2N 2

g − 2
charged NGB’s produce a further IR pathology.

In view of the IR pathology of the RSM1 model, consider a second model, RSM2, with
bare SM fermion mass terms. This has the advantage of being free of any IR pathology
and still allowing a study of the properties of a model in which EWSB can be
dominantly due to the QCD condensate, for small enough mf .

The bare SM fermion mass terms explicitly violate the electroweak symmetry, and this
is reflected in a growth in perturbatively calculated partial wave amplitudes for
ff̄ → V V , V = W, Z like GFmfE. These PWA’s exceed the unitarity bounds if√

s > 8πcNgf
2
π/mf , where c ∼ O(1).

We keep the bare SM fermion mass terms sufficiently small so that the SMR2 is a good
low-energy effective field theory up to energies where V V scattering becomes strong,√

s ' 640
√

Ng MeV. This allows mf
<∼

√

Ngfπ. For small nonzero mf in this



range, the QCD 〈q̄q〉 condensate remains the dominant source of EWSB; as mf

approaches the upper bound, both QCD and explicit EWSB-breaking fermion mass
terms are important.

One can also generalize Nc in these theories. One has fπ ∝ N 1/2
c . Recall the ’t Hooft

limit Nc → ∞ with g2
sNc fixed, i.e., gs ∝ N−1/2

c . To control the size of EW versus
QCD interactions in this limit, one also requires that g, g′ ∝ N−1/2

c . Hence,

m̄2
W =

g2NDf2
π

4
∝ (Nc)

0

and similarly m̄2
Z is independent of Nc, so that

GF√
2

=
g2

8m̄2
W

=
g2 + g′2

8m̄2
Z

=
1

2NDf2
π

∝ N−1
c



Variants of Models with Augmented Electroweak Gauge
Groups

It is also instructive to analyze a model with an augmented EW gauge group,

GLR = SU(3)c × SU(2)L × SU(2)R × U(1)B−L

and fermions transforming, for each generation, as

Qa
L :

(

u

d

)

L

(3, 2, 1)1/3 , Qa
R :

(

u

d

)

R

(3, 1, 2)1/3

LL :

(

ν

e

)

L

(1, 2, 1)−1 , LR :

(

ν

e

)

R

(1, 1, 2)−1

This has the appeal that the electric charge operator takes the elegant form

Q = T3L + T3R +
1

2
(B − L)

where B and L are baryon and lepton number. We focus on Ng = 1. Here the QCD
〈q̄q〉 condensate breaks the SU(2)L × SU(2)R EW gauge symmetry to the diagonal



vectorial subgroup SU(2)V . The gauge bosons corresponding to the three axial weak
isospin generators pick up a common mass given by

m2
A =

(g2
L + g2

R)f2
π

4

The corresponding three gauge bosons corresponding to the vectorial weak isospin
generators remain massless and couple with gauge coupling

gV =
gLgR

√

g2
L + g2

R

Below the scale ΛQCD, the theory has the gauge symmetry
SU(3)c × SU(2)V × U(1)B−L, and color-nonsinglets are confined, so the effective
gauge symmetry is SU(2)V × U(1)B−L. In terms of the conserved generators, the
electric charge Q = T3V + (B − L)/2.

The spin 1/2 fermions include N =
(p
n

)

and L =
(ν

e

)

, vectorially coupled and
transforming as (1, 2)1 and (1, 2)−1. The leptons are massless at this stage.

Since the SU(2)V gauge interaction is asymptotically free, as the energy scale decreases
to a much smaller value ΛV , gV grows sufficiently large to produce the condensate



〈L̄L〉 = 〈ēe + ν̄ν〉

This is invariant under the SU(2)V × U(1)B−L gauge symmetry and gives the e and
ν dynamical masses of order ΛV . Because of the logarithmic running of gV ,
ΛV << ΛQCD; for example, with gL = gR = g at the EW level,
ΛV ∼ 10−24ΛQCD.

The confining SU(2)V interaction produces a set of leptonic bound states, including
leptonic mesons of the form ν̄ν + ēe with L = 0, leptonic baryons νe with L = 2,
and SU(2)V glueballs, with masses ∼ ΛV .

An interesting feature of this theory is that it has two quite different scales of
confinement, chiral symmetry breaking, and bound-state masses, ΛQCD and ΛV .

Below the scale ΛV , since SU(2)V is confined, the surviving abelian gauge symmetry is
not the full U(1)em, but only the (B − L)/2 part of it.

The condensate 〈L̄L〉 spontaneously breaks the leptonic global chiral symmetry

SU(2)
(`)
L × SU(2)

(`)
R to SU(2)

(`)
V , giving rise to three massless leptonic NGB’s.

These are neutral under the only surviving deconfined gauge interaction, U(1)B−L, so
they do not cause any IR pathology.



We have also studied a theory based on the gauge group

G422 = SU(4)PS × SU(2)L × SU(2)R

with fermions

FL =

(

ua ν
da e

)

L

: (4, 2, 1)

FR =

(

ua ν
da e

)

R

: (4, 1, 2)

(Ng = 1 for simplicity). Here the SU(3)c × U(1)B−L is embedded in the Pati-Salam
group SU(4)PS. This theory has the appeal that electric charge is quantized:
Q = T3L + T3R +

√

2/3TPS,15 = T3L + T3R + (1/6)diag(1, 1, 1, −3).

The SU(4)PS interaction is asymptotically free and confines and breaks chiral symmetry
at the scale ΛPS via the formation of the condensate 〈F̄LFR〉, i.e.,

〈ūu + ν̄ν〉 = 〈d̄d + ēe〉



These preserve SU(4)PS and break SU(2)L × SU(2)R to the diagonal vectorial
SU(2)V , giving a common mass to the gauge bosons corresponding to the axial
generators, as before. This condensation produces a common dynamical mass ∼ ΛPS

for u, d, ν, and e. The SU(4)PS-singlet bound states at this scale include mesons,
(bosonic) baryons, and SU(4)PS glueballs. Since SU(4)PS confines, effectively,
Q = T3V .

Below ΛPS the active gauge symmetry is SU(2)V . There are no light fermions below
this scale. The SU(2)V gauge interaction is asymptotically free and becomes strong at
the much lower scale ΛV << ΛPS, producing a spectrum of glueballs with masses
∼ ΛV . There is no residual exact abelian gauge symmetry and hence no long-range
force in the low-energy effective field theory at this scale.



Conclusions

We hope to have illustrated how one can gain useful insights into the Standard Model
by constructing and analyzing variants of it. We have discussed several such variants:

• Models with dynamical EWSB provide an instructive alternative to the SM Higgs.
The LHC should elucidate the source of EWSB

• SM variants with general Nc show the special role of Nc = 3

• SM variants with color-nonsinglet electroweak-singlet fermions

• SM variants in which QCD-induced EWSB is the dominant source of EWSB


